
–
2
–
2
0
19
-0
4
-2
9
–
m
ai
n
–

Softwaretechnik / Software-Engineering

Lecture 2:

Software Metrics, Cost Estimation

2019-04-29

Prof. Dr. Andreas Podelski, Dr. BerndWestphal

Albert-Ludwigs-Universität Freiburg, Germany

Topic Area Project Management: Content

–
2
–
2
0
19
-0
4
-2
9
–
S
b
lo
ck
co
n
te
n
t
–

2/62

•VL 2 Software Metrics

• Metrics, Properties of Metrics

• Software Metrics

• Software Metrics Issues

• Cost Estimation

• (Software) Economics in a Nutshell

• Software Cost Estimation

• Expert’s / Algorithmic Estimation

• Project Management

• Project

• Process and Process Modelling

• Procedure Models

• Process Models

•
..
.

Process Metrics

• CMMI, Spice

..

.

VL 3

..

.

VL 4

Content

–
2
–
2
0
19
-0
4
-2
9
–
S
co
n
te
n
t
–

3/62

• Survey: Previous Experience and Expectations

• Software Metrics

• Metrics

• Vocabulary, Examples from Other Disciplines

• Common Uses of (Software) Metrics

• Desirable Properties of (Software) Metrics

• Software Metrics

• Properties of Some Software Metrics

• Examples: LOC, McCabe

• Software Metrics Issues

• Base vs. Derived Measures, Excursion: Scales

• Objective, Subjective, Pseudo

• Practical Software Metrics

• Cost Estimation

• (Software) Economics in a Nutshell

• Software Cost Estimation

• Expert’s Estimation
(Delphi Method)

• Algorithmic Estimation
(COCOMO, Function Points)

Survey: Previous Experience & Expectations

–
2
–
2
0
19
-0
4
-2
9
–
m
ai
n
–

4/62

Survey: Previous Experience

–
2
–
2
0
19
-0
4
-2
9
–
S
e
xp
e
ri
e
n
ce
–

5/62

10

20

30

0 1 2 3 4 5 6 7 8 9 10

Project Management
0-(1/1/3)-10

10

20

30

0 1 2 3 4 5 6 7 8 9 10

Requirements Engineering
0-(1/1/3)-10

10

20

30

0 1 2 3 4 5 6 7 8 9 10

Programming
1-(3/4/6)-10

10

20

30

0 1 2 3 4 5 6 7 8 9 10

Design Modelling
0-(1/2/4)-10

10

20

30

0 1 2 3 4 5 6 7 8 9 10

Software Quality Assurance
0-(1/2/3)-10

Expectations: What We Do Not Do (For Reasons)

–
2
–
2
0
19
-0
4
-2
9
–
S
e
xp
e
ct
at
io
n
s
–

6/62

• Soft Skills

✘ Individual time management.

✘ What do we do if a teammember does not perform his/her tasks?

✘ dealing with unrealistic expectations from the client

• How to get a Good Design

✘ What does it mean: better design?

✘ Overview over object-oriented architecture, Design Patterns

✘ the capability to create a software architecture

→Our focus: Describe and Discuss Design Ideas

• Programming

✘ We want to programmore efficient.

• Large Examples

✘ More practical examples [...] from larger projects.

→Many of our examples are inspired by real projects.

Expectations: Needs Clarification

–
2
–
2
0
19
-0
4
-2
9
–
S
e
xp
e
ct
at
io
n
s
–

7/62

• Concrete problems / approaches:

(✔) the state of the art of testing, project management, etc.

(✔) ideal planning of budget and workload

(✔) how to find out the customer’s requiremens on a software?

(✔) learn the proper metrics to measure progress [...] and check product quality of the product

(✔) how to systematically conduct a test

(✔) how to decide which methods or techniques are good choices

(✘) successful completion of the Softwarepraktikum

• Tools

✔ Which tools can be used to develop (high quality) software?

Expectations: Yes \o/

–
2
–
2
0
19
-0
4
-2
9
–
S
e
xp
e
ct
at
io
n
s
–

8/62

• Can be solved right here:

• what can, in general, be assumed to be self-evident (‘selbstverständlich’)?

• Vocabulary

✔ communication skills; learn the ‘language’ of the software engineering branch

• Overview:

✔ methodological and global view on software development

• What not to do

✔ avoid common errors and mistakes

✔ spotting critical points of requirements, avoid misunderstandings, etc.

• Formal Methods

✔ how can requirements be formalised to avoid misunderstandings

✔ ensure the feasibility of the solution

✔ how the quality of a design can be shown formally

Expectations: Yes \o/

–
2
–
2
0
19
-0
4
-2
9
–
S
e
xp
e
ct
at
io
n
s
–

9/62

✔ UNDERSTAND the areas of software development

✔ In the end, you have to organise yourself,
nobody else can do that for you.

We find it important to get stimuli to think about
the importance of project management, quality assurance etc.
and get examples to see that it is really important.

The rest, we think, we can figure out on our own.
“Dann kann man den Rest denke ich auch alleine schaffen.”

✔ In a nutshell, We expect to get prepared for the future,

and above all, to have a good time. :)

Content

–
2
–
2
0
19
-0
4
-2
9
–
S
co
n
te
n
t
–

10/62

• Survey: Previous Experience and Expectations

• Software Metrics

• Metrics

• Vocabulary, Examples from Other Disciplines

• Common Uses of (Software) Metrics

• Desirable Properties of (Software) Metrics

• Software Metrics

• Properties of Some Software Metrics

• Examples: LOC, McCabe

• Software Metrics Issues

• Base vs. Derived Measures, Excursion: Scales

• Objective, Subjective, Pseudo

• Practical Software Metrics

• Cost Estimation

• (Software) Economics in a Nutshell

• Software Cost Estimation

• Expert’s Estimation
(Delphi Method)

• Algorithmic Estimation
(COCOMO, Function Points)

Metrics

–
2
–
2
0
19
-0
4
-2
9
–
m
ai
n
–

11/62

Vocabulary

–
2
–
2
0
19
-0
4
-2
9
–
S
m
e
tr
ic
s
–

12/62

metric — A quantitative measure of the degree to which
a system, component, or process possesses a given attribute.
See: quality metric. IEEE 610.12 (1990)

quality metric —

(1) A quantitative measure of the degree to which
an item possesses a given quality attribute.

(2) A function whose inputs are software data and whose output is a
single numerical value that canbe interpreted as the degree towhich
the software possesses a given quality attribute. IEEE 610.12 (1990)

Definition. Ametric1 is a function

m : P → S

that assigns to each proband p ∈ P a valuation (“Bewertung”)m(p) ∈ S.

We call S the scale ofm.

1 : in mathematics, ametric is something different (would be too easy otherwise. . .).

Metric Examples from Other Engineering Disciplines

–
2
–
2
0
19
-0
4
-2
9
–
S
m
e
tr
ic
s
–

13/62

• Agricultural Engineering:ma : Pa → Sa

• probands Pa : milk samples;
scale Sa = [0, 100]× [0, 100]: percentage of fat and protein

• “can be interpreted as (the degree of) [...] quality”:

milk sample pa has acceptable quality
ifma(pa) ≥ (4.0, 3.4) (4% fat, 3.4% protein)

(higher values are better: dairy may pay extra)

• Railway Engineering:mr : Pr → Sr

• probands Pr : trams,
scale Sr = R+

0
: braking distance from 70 km/h to 0 km/h in m

• “can be interpreted as (the degree of) [...] quality”:

tram pr has acceptable evasive braking quality ifmr(pr) ≤ 69 (BOStrab)

fun fact: a tram brake manufacturer may viewmr(pr) = 68 as of lower overall quality

• Construction Engineering:mc : Pc → Sc

• probands Pc : walls (length up to 3m),
scale Sc = R: deviation from nominal in mm

• “can be interpreted as (the degree of) [...] quality”:

wall pc has acceptable dimension if |mc(pc)| ≤ 12 (DIN 18202)

Common Uses of (Software) Metrics

–
2
–
2
0
19
-0
4
-2
9
–
S
m
e
tr
ic
s
–

14/62

• Specify Product Properties

Example: The code should be written in MISRA-C.
Metric: Number of MISRA-C violations (should be 0).

• Assess Product Properties / Support Decisions

Example: The system is responsive for 100 concurrent users.
Metric: average milliseconds between event and response
(measure for 100 concurrent users; note: ‘up to 100 users’ is a different property).

• Project Management

Example: Do not have too many open bug reports.
Metric: Number of open bug reports (if above threshold, fix bugs before writing new code).

• Predict / Estimate / Forecast

Example: Effort estimation for new project.
Metric: Effort (in person-months); collect data from previous projects.

• Research / State & Investigate Hypotheses

Example: The SWT course audience is not homogeneous regarding previous experience.

Common Uses of (Software) Metrics

–
2
–
2
0
19
-0
4
-2
9
–
S
m
e
tr
ic
s
–

14/62

• Specify Product Properties

• Assess Product Properties / Support Decisions

• Project Management

• Predict / Estimate / Forecast

• Research / State & Investigate Hypotheses

In other terms: Metrics can be used

• prescriptive, i.e. stating a need or demand on not yet existing software.

Example: “The system to be developed needs to have a response time below 100ms.”
(In order for the customers to accept and pay.)

• descriptive, i.e. stating a diagnosed or prognosed property of existing software.

Examples:

• diagnostic /measured:
“The system has a response time of 50ms.” (Hence we meet the customers’ needs.)

• prognostic / predicted:
“There areN open bug reports; if these bugs are all ‘as usual’, we expect to have all closed inM days.”

• Note: prescriptive and prognostic are different things.

Desirable Properties of (Software) Metrics

–
2
–
2
0
19
-0
4
-2
9
–
S
m
e
tr
ic
s
–

15/62

In Order to be Useful, a Metric Should be . . .

• relevant wrt. overall goals and needs

• plausible: Good evidence that proband’s valuations and quality are related

• robust: The valuation of a proband cannot be arbitrarily manipulated;
antonym / opposite: subvertible

• available: Valuations need to be in place when needed

• economical: Cost of measuring needs to be in a good relation to gain

Note: irrelevant metrics are not economical (if not available for free).

• comparable: Some scales have incomparable values (→ later)

• reproducible: Multiple applications to the same proband yields the same valuation

• differentiated: Sufficiently different valuations for sufficiently different probands

Content

–
2
–
2
0
19
-0
4
-2
9
–
S
co
n
te
n
t
–

16/62

• Survey: Previous Experience and Expectations

• Software Metrics

• Metrics

• Vocabulary, Examples from Other Disciplines

• Common Uses of (Software) Metrics

• Desirable Properties of (Software) Metrics

• Software Metrics

• Properties of Some Software Metrics

• Examples: LOC, McCabe

• Software Metrics Issues

• Base vs. Derived Measures, Excursion: Scales

• Objective, Subjective, Pseudo

• Practical Software Metrics

• Cost Estimation

• (Software) Economics in a Nutshell

• Software Cost Estimation

• Expert’s Estimation
(Delphi Method)

• Algorithmic Estimation
(COCOMO, Function Points)

Software Metrics

–
2
–
2
0
19
-0
4
-2
9
–
m
ai
n
–

17/62

Example Software Metrics

–
2
–
2
0
19
-0
4
-2
9
–
S
sw
m
e
tr
ic
s
–

18/62

characteristic
(‘Merkmal’)

positive example(s) negative example(s)

relevant expected development
cost; number of errors

number of subclasses (NOC)

plausible cost estimation
following COCOMO
(to a certain amount)

cyclomatic complexity of a
program with pointer
operations

robust grading by experts almost all pseudo-metrics
(→ in three minutes)

available number of developers number of errors in the code
(not only known ones)

economical number of discovered
errors in code

highly detailed timekeeping

comparable cyclomatic complexity
(→ in two minutes)

expert’s review (in textual form)

reproducible memory consumption grade assigned by inspector

differentiated program length in LOC
(→ in a minute)

CMM/CMMI level below 2
(a process metric;→ later)

(Ludewig and Lichter, 2013)

Example: Lines of Code (LOC)

–
2
–
2
0
19
-0
4
-2
9
–
S
lo
c
–

19/62

1 / * h t t p s : / / de . w i k i p e d i a . o r g / w i k i /
2 * L i s t e _ v on_Ha l l o−Welt−Programmen /
3 * Höhe r e_P rog rammie r sp ra chen#Java * /
4

5 c l a s s Ha l l o {
6

7 pub l i c s t a t i c void

8 main (S t r i n g [] a r g s) {
9 System . out . p r i n t (
10 " Ha l l o Welt ! ") ; / / no new l i n e
11 }
12 }

dimension unit measurement procedure

program size LOCtot number of lines in total

net program
size

LOCne number of non-empty lines

code size LOCpars number of lines with not
only comments and
non-printable

delivered
program size

DLOCtot,
DLOCne,
DLOCpars

LOC of only that code
which is delivered
to the customer

(Ludewig and Lichter, 2013)

relevant

plausible

robust

available

economical

comparable

reproducible

differentiated

McCabe Complexity

–
2
–
2
0
19
-0
4
-2
9
–
S
m
cc
ab
e
–

20/62

complexity —

(1) The degree to which a system or component has a design or implementation that is
difficult to understand and verify. Contrast with: simplicity.

(2) Pertaining to any of a set of structure-basedmetrics thatmeasure the attribute in (1).

IEEE 610.12 (1990)

Definition. [Cyclomatic Number [graph theory]]

LetG = (V,E) be a graph comprising vertices V and edgesE.

The cyclomatic number ofG is defined as

v(G) = |E| − |V |+ 1.

Intuition: minimum number of edges to be removed to makeG cycle free.

McCabe Complexity Cont’d

–
2
–
2
0
19
-0
4
-2
9
–
S
m
cc
ab
e
–

21/62

Definition. [Cyclomatic Complexity [McCabe, 1976]]

LetG = (V,E) be the Control Flow Graph of program P .

Then the cyclomatic complexity of P is defined as v(P) = |E| − |V | + p where p is the
number of entry or exit points.

1 void i n s e r t i o n S o r t (i n t [] a r r a y) {
2 f o r (i n t i = 2 ; i < a r r a y . l eng th ; i + +) {
3 tmp = a r r a y [i] ;
4 a r r a y [0] = tmp ;
5 i n t j = i ;
6 whi l e (j > 0 && tmp < a r r a y [j − 1]) {
7 a r r a y [j] = a r r a y [j − 1] ;
8 j −−;
9 }
10 a r r a y [j] = tmp ;
11 }
12 }

Number of edges: |E| = 11
Number of nodes: |V | = 6 + 2 + 2 = 10
External connections: p = 2

→ v(P) = 11 − 10 + 2 = 3

1

2

3

4

5

8

7

6

10

Entry

Exit

McCabe Complexity Cont’d

–
2
–
2
0
19
-0
4
-2
9
–
S
m
cc
ab
e
–

21/62

Definition. [Cyclomatic Complexity [McCabe, 1976]]

LetG = (V,E) be the Control Flow Graph of program P .

Then the cyclomatic complexity of P is defined as v(P) = |E| − |V | + p where p is the
number of entry or exit points.

• Intuition: number of paths, number of decision points.

• easy to compute;
Interval scale (not absolute, no zero due to p > 0);

• Somewhat independent from programming language.

• Plausibility:

+ loops and conditions
are harder to understand than sequencing.

− doesn’t consider data.

• Prescriptive use:

“For each procedure, either limit cyclomatic
complexity to [agreed-upon limit] or provide
written explanation of why limit exceeded.”

1

2

3

4

5

8

7

6

10

Entry

Exit

Code Metrics for OO Programs (Chidamber and Kemerer, 1994)

–
2
–
2
0
19
-0
4
-2
9
–
S
m
cc
ab
e
–

22/62

metric computation

weighted methods
per class (WMC)

n∑

i=1

ci , n = number of methods, ci = complexity of method i

depth of inheritance
tree (DIT)

graph distance in inheritance tree
(what about multiple inheritance?)

number of children
of a class (NOC)

number of direct subclasses of the class

coupling between
object classes (CBO)

CBO(C) = |Ko ∪Ki|,
Ko = set of classes used byC ,Ki = set of classes usingC

response for a class
(RFC)

RFC = |M ∪
⋃

m∈M
Rm|, M = set of methods ofC ,

Rm = set of all methods calling methodm

lack of cohesion in
methods (LCOM)

max(|P | − |Q|, 0), P =methods using no common attribute,
Q =methods using at least one common attribute

• objective metrics: DIT, NOC, CBO; pseudo-metrics: WMC, RFC, LCOM

. . . there seems to be agreement that it is far more important to focus on empirical
validation (or refutation) of the proposed metrics than to propose new ones, . . . (Kan, 2003)

Aspects of Software Quality (cf. ISO/IEC 9126-1:2000 (2000))

–
2
–
2
0
19
-0
4
-2
9
–
S
sw
q
u
al
it
y
–

23/62

software related quality

process quality . . .

product quality

functionality

suitability
accuracy

interoperability

security

reliability

maturity

fault tolerance

recoverability

usability

understandability

learnability

operability

attractiveness

efficiency
time behaviour

resource utilisation

maintainability

analysability

changeability

stability

testability

portability

adaptability

installability

co-existence

replaceability

Aspects of Software Quality (cf. ISO/IEC 9126-1:2000 (2000))

–
2
–
2
0
19
-0
4
-2
9
–
S
sw
q
u
al
it
y
–

23/62

software related quality

process quality . . .

product quality

functionality

suitability
accuracy

interoperability

security

reliability

maturity

fault tolerance

recoverability

usability

understandability

learnability

operability

attractiveness

efficiency
time behaviour

resource utilisation

maintainability

analysability

changeability

stability

testability

portability

adaptability

installability

co-existence

replaceability

6.2 Reliability
The capability of the software product to
maintain a specified level of performance
when used under specified conditions.

6.2.2 Fault tolerance
The capability of the software product to
maintain a specified level of performance
in cases of software faults or of infringement
of its specified interface.

Aspects of Software Quality (cf. ISO/IEC 9126-1:2000 (2000))

–
2
–
2
0
19
-0
4
-2
9
–
S
sw
q
u
al
it
y
–

23/62

software related quality

process quality . . .

product quality

functionality

suitability
accuracy

interoperability

security

reliability

maturity

fault tolerance

recoverability

usability

understandability

learnability

operability

attractiveness

efficiency
time behaviour

resource utilisation

maintainability

analysability

changeability

stability

testability

portability

adaptability

installability

co-existence

replaceability

6.1 Functionality
The capability of the software product to
provide functions which meet stated and
implied needs when the software is used
under specified conditions.

6.1.1 Suitability
The capability of the software product to
provide an appropriate set of functions for
specified tasks and user objectives.

Content

–
2
–
2
0
19
-0
4
-2
9
–
S
co
n
te
n
t
–

24/62

• Survey: Previous Experience and Expectations

• Software Metrics

• Metrics

• Vocabulary, Examples from Other Disciplines

• Common Uses of (Software) Metrics

• Desirable Properties of (Software) Metrics

• Software Metrics

• Properties of Some Software Metrics

• Examples: LOC, McCabe

• Software Metrics Issues

• Base vs. Derived Measures, Excursion: Scales

• Objective, Subjective, Pseudo

• Practical Software Metrics

• Cost Estimation

• (Software) Economics in a Nutshell

• Software Cost Estimation

• Expert’s Estimation
(Delphi Method)

• Algorithmic Estimation
(COCOMO, Function Points)

Software Metric Issues

–
2
–
2
0
19
-0
4
-2
9
–
m
ai
n
–

25/62

Kinds of Metrics: ISO/IEC 15939:2011

–
2
–
2
0
19
-0
4
-2
9
–
S
b
as
e
d
e
ri
ve

–

26/62

base measure — measure de-
fined in termsof an attribute and
the method for quantifying it.

ISO/IEC 15939 (2011)

derived measure — measure
that is defined as a function
of two or more values of base
measures. ISO/IEC 15939 (2011)

Examples:

• lines of code,

• hours spent on testing,

• execution time,

• . . .

Examples:

• average or median
of lines of code,

• productivity
(in lines per hour),

• . . .

• Derivedmeasures are easier to get wrong, i.e., to not measure the intended property.

→ be extra careful with derived metrics/measures

Issues with Scales I: People Like Aggregated Data

–
2
–
2
0
19
-0
4
-2
9
–
S
sc
al
e
s
–

27/62

10

20

30

0 1 2 3 4 5 6 7 8 9 10

Requirements Engineering
0-(1/1/3)-10

minimum

1st quartile
median

3rd quartile

maximum

• 1st quartile: 25% of the values are below-or-equal

• 2nd quartile ormedian: 50% of the values are below-or-equal

• 3nd quartile: 75% of the values are below-or-equal

• Issue: There are scales on which quartiles are not defined. For example: program of studies.

• Issue: How would data with arithmetic average, mean 3.725 look like? For example, like this:

10

20

30

0 1 2 3 4 5 6 7 8 9 10

Requirements Engineering
0-(0/0/10)-10

→ when aggregating datawith defined quartiles and mean, aggregate carefully.

Issues with Scales II: People Like to Compare Data

–
2
–
2
0
19
-0
4
-2
9
–
S
sc
al
e
s
–

28/62

10

20

30

0 1 2 3 4 5 6 7 8 9 10

Requirements Engineering
0-(1/1/3)-10

• Howmuch better exactly is response ’4’ compared to response ’2’?

• We cannot tell! The scale is only ordinal.

Scales and Types of Scales

–
2
–
2
0
19
-0
4
-2
9
–
S
sc
al
e
s
–

29/62

Scales S can be distinguished by supported operations:

=, 6=
<,> (with
transitivity)

min,
max

percen-
tiles, e.g.
median

∆
propor-
tion

natural
0 (zero)

nominal scale ✔ ✘ ✘ ✘ ✘ ✘ ✘

ordinal scale ✔ ✔ ✔ ✔ ✘ ✘ ✘

interval scale
(with units)

✔ ✔ ✔ ✔ ✔ ✘ ✘

rational scale
(with units)

✔ ✔ ✔ ✔ ✔ ✔ ✔

absolute scale a rational scale where S comprises the key figures itself

Examples: Nominal Scale

• nationality, gender, car manufacturer, geographic direction, train number, . . .

• Software engineering example: programming language (S = {Java, C, . . . })

→ There is no (natural) order between elements of S; the lexicographic order can be imposed
(“C < Java”), but is not related to the measured information (thus not natural).

Scales and Types of Scales

–
2
–
2
0
19
-0
4
-2
9
–
S
sc
al
e
s
–

29/62

Scales S can be distinguished by supported operations:

=, 6=
<,> (with
transitivity)

min,
max

percen-
tiles, e.g.
median

∆
propor-
tion

natural
0 (zero)

nominal scale ✔ ✘ ✘ ✘ ✘ ✘ ✘

ordinal scale ✔ ✔ ✔ ✔ ✘ ✘ ✘

interval scale
(with units)

✔ ✔ ✔ ✔ ✔ ✘ ✘

rational scale
(with units)

✔ ✔ ✔ ✔ ✔ ✔ ✔

absolute scale a rational scale where S comprises the key figures itself

Examples: Ordinal Scale

• strongly agree> agree> disagree> strongly disagree; Chancellor>Minister (administrative ranks);

• leaderboard (finishing number tells us that 1st was faster than 2nd, but not how much faster)

• types of scales, . . .

• Software engineering example: CMMI scale (maturity levels 1 to 5) (→ later)

→ There is a (natural) order between elements ofM ,
but no (natural) notion of distance or average.

Scales and Types of Scales

–
2
–
2
0
19
-0
4
-2
9
–
S
sc
al
e
s
–

29/62

Scales S can be distinguished by supported operations:

=, 6=
<,> (with
transitivity)

min,
max

percen-
tiles, e.g.
median

∆
propor-
tion

natural
0 (zero)

nominal scale ✔ ✘ ✘ ✘ ✘ ✘ ✘

ordinal scale ✔ ✔ ✔ ✔ ✘ ✘ ✘

interval scale
(with units)

✔ ✔ ✔ ✔ ✔ ✘ ✘

rational scale
(with units)

✔ ✔ ✔ ✔ ✔ ✔ ✔

absolute scale a rational scale where S comprises the key figures itself

Examples: Interval Scale

• temperature in Fahrenheit

• “today it is 10°F warmer than yesterday” (∆(ϑtoday, ϑyesterday) = 10°F)

• “100°F is twice as warm as 50°F”: . . . ? No. Note: the zero is arbitrarily chosen.

• Software engineering example: time of check-in in revision control system

→ There is a (natural) notion of difference∆ : S × S → R, but no (natural) proportion and 0.

Scales and Types of Scales

–
2
–
2
0
19
-0
4
-2
9
–
S
sc
al
e
s
–

29/62

Scales S can be distinguished by supported operations:

=, 6=
<,> (with
transitivity)

min,
max

percen-
tiles, e.g.
median

∆
propor-
tion

natural
0 (zero)

nominal scale ✔ ✘ ✘ ✘ ✘ ✘ ✘

ordinal scale ✔ ✔ ✔ ✔ ✘ ✘ ✘

interval scale
(with units)

✔ ✔ ✔ ✔ ✔ ✘ ✘

rational scale
(with units)

✔ ✔ ✔ ✔ ✔ ✔ ✔

absolute scale a rational scale where S comprises the key figures itself

Examples: Rational Scale

• age (“twice as old”); finishing time; weight; pressure; price; speed; distance from Freiburg. . .

• Software engineering example: runtime of a program for given inputs.

→ The (natural) zero induces a meaning for proportionm1/m2.

Scales and Types of Scales

–
2
–
2
0
19
-0
4
-2
9
–
S
sc
al
e
s
–

29/62

Scales S can be distinguished by supported operations:

=, 6=
<,> (with
transitivity)

min,
max

percen-
tiles, e.g.
median

∆
propor-
tion

natural
0 (zero)

nominal scale ✔ ✘ ✘ ✘ ✘ ✘ ✘

ordinal scale ✔ ✔ ✔ ✔ ✘ ✘ ✘

interval scale
(with units)

✔ ✔ ✔ ✔ ✔ ✘ ✘

rational scale
(with units)

✔ ✔ ✔ ✔ ✔ ✔ ✔

absolute scale a rational scale where S comprises the key figures itself

Examples: Absolute Scale

• seats in a bus, number of public holidays, number of inhabitants of a country, . . .

• “average number of children per family: 1.203” – what is a 0.203-child?
The absolute scale has been used as a rational scale (makes sense for certain purposes if done with care).

• Software engineering example: number of known errors.

→ An absolute scale has amedian, but in general not an average in the scale.

Kinds of Metrics: by Measurement Procedure

–
2
–
2
0
19
-0
4
-2
9
–
S
o
b
su
b
p
se
u
d
o
–

30/62

objective metric pseudo metric subjective metric

Procedure measurement, counting,
possibly standardised

computation
(based on measurements
or assessment)

review by inspector,
verbal or by given scale

Example,
general

body height, air pressure body mass index (BMI),
tomorrow’s weather
forecast

health condition,
weather condition
(“bad weather”)

Example in
Software
Engineering

size in LOC or NCSI;
number of (known) bugs

productivity as LOC/h;
COCOMO cost estimate;
judge Software Engineer
by SWT course grade

usability;
severeness of an error

Usually used for collection of simple
base measures

predictions
(cost estimation);
overall assessments

quality assessment;
error weighting

Advantages exact, reproducible,
can be obtained
automatically

yields relevant, directly
usable statement
on not directly visible
characteristics

not subvertible,
plausible results,
applicable to complex
characteristics

Disadvantages not always relevant,
often subvertible,
no interpretation

hard to comprehend,
pseudo-objective,
does not actually
measure what it promises

assessment costly,
quality of results depends
on inspector

(Ludewig and Lichter, 2013)

Pseudo-Metrics

–
2
–
2
0
19
-0
4
-2
9
–
S
p
se
u
d
o
–

31/62

For many of themost relevant aspects of software development projects, such as:

• howmaintainable is the software?

• howmuch effort is needed until completion?

• does the product have good usability?

• documentation sufficient and well usable?

(today) we do not have good objective metrics.

Two choices left: subjective or pseudometrics.

pl
au
sib
le

ro
bu
st

av
ail
ab
le

ec
on
om
ica
l

co
m
pa
ra
bl
e

re
pr
od
uc
ib
le

di
ffe
re
nt
iat
ed

Subjective Metrics ✔ ✔ (✔) (✘) (✔) (✘) (✔)

Pseudo Metrics (✘) (✘) ✔ ✔ ✔ ✔ ✔

Note: Not every derived measure is a pseudo-metric:

• measure average LOC per module:
derived, not pseudo (we really measure average LOC per module).

• measuremaintainability in average LOC per module:
derived, pseudo (we do not reallymeasuremaintainability; average-LOC is only interpreted as such.)

Plus: Not robust if easily subvertible (see exercises).

Useful and Non-Useful Pseudo-Metrics

–
2
–
2
0
19
-0
4
-2
9
–
S
p
se
u
d
o
–

32/62

pseudo-metric valuation
low high

p
ro
b
an
d
(r
e
al
)
q
u
al
it
y

high

false negative

×

true positive

× ×

× × ×

× ×

low

true negative

× ×

×

× ×

false positive

×

× ×

some sotware p we
usually deal with;

high quality, lowm(p)

some sotware p we
usually deal with;

high quality, highm(p)

some sotware p we
usually deal with;

low quality, lowm(p)

some sotware p we
usually deal with;

low quality, highm(p)

• Useful: a pseudo-metricm with good correlation
between proband quality and metric valuation for our usual probands!

• Not Useful: pretty random (left); too many false positives (right)

pseudo-metric valuation
low high

p
ro
b
an
d
(r
e
al
)
q
u
al
it
y

high

false negative

× ×

×

× ×

true positive

× ×

× ×

×

low

true negative

× ×

×

× ×

false positive

× ×

× ×

×

pseudo-metric valuation
low high

p
ro
b
an
d
(r
e
al
)
q
u
al
it
y

high

false negative

×

true positive

× ×

× × ×

× ×

low

true negative

× ×

false positive

× ×

× × ×

× ×

Risk: people prioritise
high metric valuation
over (real) quality.

Content

–
2
–
2
0
19
-0
4
-2
9
–
S
co
n
te
n
t
–

33/62

• Survey: Previous Experience and Expectations

• Software Metrics

• Metrics

• Vocabulary, Examples from Other Disciplines

• Common Uses of (Software) Metrics

• Desirable Properties of (Software) Metrics

• Software Metrics

• Properties of Some Software Metrics

• Examples: LOC, McCabe

• Software Metrics Issues

• Base vs. Derived Measures, Excursion: Scales

• Objective, Subjective, Pseudo

• Practical Software Metrics

• Cost Estimation

• (Software) Economics in a Nutshell

• Software Cost Estimation

• Expert’s Estimation
(Delphi Method)

• Algorithmic Estimation
(COCOMO, Function Points)

Practical Software Metrics

–
2
–
2
0
19
-0
4
-2
9
–
m
ai
n
–

34/62

Which Metrics Should We Use?

–
2
–
2
0
19
-0
4
-2
9
–
S
p
ra
ct
m
e
t
–

35/62

• Approach:

Understand what we need to know, then choose / develop metrics that measure that.

For example, Goal-Question-Metric (GQM) (Basili andWeiss, 1984):

(i) Identify the goals relevant for project or organisation.

(ii) From each goal, derive questions
that need to be answered to see whether the goal is reached.

(iii) For each question, choose (or develop)metrics that contribute to finding answers.

• Often useful:

Collect some basic measures continuously
(in particular if collection is cheap), e.g.:

• size of . . .newly created and changed code, etc.

• effort for . . . coding, review, testing, verification,
fixing, maintenance, etc.

• number of errors . . . found during quality assurance,
corrected, reported by customer, etc.

Know usual valuations and keep an eye
on current measures over time:

Unusual valuesmay indicate problems;
investigate further (possibly with other metrics).

LOC and changed lines over time
(obtained by statsvn(1).

Tool support for software metrics,
e.g., SonarCube.

Content

–
2
–
2
0
19
-0
4
-2
9
–
S
co
n
te
n
t
–

36/62

• Survey: Previous Experience and Expectations

• Software Metrics

• Metrics

• Vocabulary, Examples from Other Disciplines

• Common Uses of (Software) Metrics

• Desirable Properties of (Software) Metrics

• Software Metrics

• Properties of Some Software Metrics

• Examples: LOC, McCabe

• Software Metrics Issues

• Base vs. Derived Measures, Excursion: Scales

• Objective, Subjective, Pseudo

• Practical Software Metrics

• Cost Estimation

• (Software) Economics in a Nutshell

• Software Cost Estimation

• Expert’s Estimation
(Delphi Method)

• Algorithmic Estimation
(COCOMO, Function Points)

(Software) Economics in a Nutshell

–
2
–
2
0
19
-0
4
-2
9
–
m
ai
n
–

37/62

Why Estimate Cost?

–
2
–
2
0
19
-0
4
-2
9
–
S
sw
e
co

–

38/62

Software!

need 1
need 2
need 3
. . .

Customer Developer

announcement
(Lastenheft)

→

. . .e
prop. 1
prop. 2
. . .

Customer Developer

offer
(Pflichtenheft)

→

spec 1
spec 2a
spec 2b
. . .§
. . .e

Customer Developer

software contract
(incl. Pflichtenheft)

→

10
0

10
0

10
0

Developer Customer

software delivery

e e

Lastenheft (Requirements Specification)
Vom Auftraggeber festgelegte Gesamtheit
der Forderungen an die Lieferungen und
Leistungen eines Auftragnehmers inner-
halb eines Auftrages.

(Entire demands on deliverables and services of a

developer within a contracted development, cre-

ated by the customer.)
DIN 69901-5 (2009)

Pflichtenheft (Feature Specification)
Vom Auftragnehmer erarbeitete Reali-
sierungsvorgaben aufgrund der Umset-
zung des vom Auftraggeber vorgegebenen
Lastenhefts.

(Specification of how to realise a given require-

ments specification, created by the developer.)

DIN 69901-5 (2009)

Speaking of Lastenheft / Pflichtenheft:

• If customer is, e.g., lacking technical background or time.
developer side can help with writing the requirements specification.

• Creating the feature specification can be a project on its own
(may be subject of a designated contract, then needs cost estimation. . .).

• Tricky / Confusing: one and the same content can serve both purposes;
then only the title defines the purpose.
In other words: Lastenheft / Pflichtenheft is not a property of content.

Business Economics in a Nutshell

–
2
–
2
0
19
-0
4
-2
9
–
S
sw
e
co

–

39/62

Software!

need 1
need 2
need 3
. . .

Customer Developer

announcement
(Lastenheft)

→

. . .e
prop. 1
prop. 2
. . .

Customer Developer

offer
(Pflichtenheft)

→

spec 1
spec 2a
spec 2b
. . .§
. . .e

Customer Developer

software contract
(incl. Pflichtenheft)

→

10
0

10
0

10
0

Developer Customer

software delivery

e e

• Usual developer side’s view:

Maximise profit, i.e. maximise difference between benefit and cost.

cost (‘Kosten’)
(or: positive costs)

all disadvantages of a solution.

benefit (‘Nutzen’)
(or: negative costs)

all benefits of a solution.

Note: cost / benefit may be subjective — and not necessarily quantifiable in terms of money...

Software Engineering — the establishment and use of sound engineering
principles to obtain economically software that is reliable and works effi-
ciently on real machines. F. L. Bauer (1971)

co
m
m
o
n
s.
w
ik
im
e
d
ia
.o
rg

(C
C
-b
y
-s
a
3
.0
)

“Next to ‘Software’, ‘Cost’ is one of the terms occurring most often in this book.”
Ludewig and Lichter (2013)

Software Cost Estimation

–
2
–
2
0
19
-0
4
-2
9
–
m
ai
n
–

40/62

Principles of Software Cost Estimation

–
2
–
2
0
19
-0
4
-2
9
–
S
sw
co
st
e
st
–

41/62

In the end, it’s experience, experience, experience:

“Estimate, document, estimate better.” (Ludewig and Lichter, 2013)

Content

–
2
–
2
0
19
-0
4
-2
9
–
S
co
n
te
n
t
–

59/62

• Survey: Previous Experience and Expectations

• Software Metrics

• Metrics

• Vocabulary, Examples from Other Disciplines

• Common Uses of (Software) Metrics

• Desirable Properties of (Software) Metrics

• Software Metrics

• Properties of Some Software Metrics

• Examples: LOC, McCabe

• Software Metrics Issues

• Base vs. Derived Measures, Excursion: Scales

• Objective, Subjective, Pseudo

• Practical Software Metrics

• Cost Estimation

• (Software) Economics in a Nutshell

• Software Cost Estimation

• Expert’s Estimation
(Delphi Method)

• Algorithmic Estimation
(COCOMO, Function Points)

Tell Them What You’ve Told Them. . .

–
2
–
2
0
19
-0
4
-2
9
–
S
tt
w
y
tt
–

60/62

• Software Metrics

• A (software)metric

• Is a quantitativemeasure on software data.

• Has valuations that can be interpreted as degree-of-quality.

• Can be used prescriptive or descriptive (diagnostic or prognostic).

• Measuring material goods (milk, trams, walls, etc.) is often
much easier than measuring immaterial goods (like software).

• Look out for relevant, plausible, robust, economicalmetrics.

• Be careful with derived measures and pseudo-metrics.

• Cost Estimation

• F. L. Bauer: “[...] obtain software economically [...]”

• It’s about experience (and based on data obtained with metrics),
and often a well-kept business secret.

• Distinguish Expert’s and Algorithmic Cost Estimation.

• Algorithmic Cost Estimations “just” shift the estimation.

• Cost estimation is everywhere (→ tutorials).

References

–
2
–
2
0
19
-0
4
-2
9
–
m
ai
n
–

61/62

References

–
2
–
2
0
19
-0
4
-2
9
–
m
ai
n
–

62/62

Basili, V. R. and Weiss, D. M. (1984). A methodology for collecting valid software engineering data. IEEE
Transactions of Software Engineering, 10(6):728–738.

Bauer, F. L. (1971). Software engineering. In IFIP Congress (1), pages 530–538.

Boehm, B. W. (1981). Software Engineering Economics. Prentice-Hall.

Boehm, B. W., Horowitz, E., Madachy, R., Reifer, D., Clark, B. K., Steece, B., Brown, A. W., Chulani, S., and Abts, C.
(2000). Software Cost Estimation with COCOMO II. Prentice-Hall.

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics suite for object oriented design. IEEE Transactions on
Software Engineering, 20(6):476–493.

DIN (2009). Projektmanagement; Projektmanagementsysteme. DIN 69901-5.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

ISO/IEC (2011). Information technology – Software engineering – Software measurement process. 15939:2011.

ISO/IEC FDIS (2000). Information technology – Software product quality – Part 1: Quality model. 9126-1:2000(E).

Kan, S. H. (2003). Metrics and models in Software Quality Engineering. Addison-Wesley, 2nd edition.

Knöll, H.-D. and Busse, J. (1991). Aufwandsschätzung von Software-Projekten in der Praxis: Methoden,
Werkzeugeinsatz, Fallbeispiele. Number 8 in Reihe Angewandte Informatik. BI Wissenschaftsverlag.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Noth, T. and Kretzschmar, M. (1984). Aufwandsschätzung von DV-Projekten, Darstellung und Praxisvergleich der
wichtigsten Verfahren. Springer-Verlag.

Wheeler, D. A. (2006). Linux kernel 2.6: It’s worth more!

