
–
9
–
2
0
19
-0
6
-0
3
–
m
ai
n
–

Softwaretechnik / Software-Engineering

Lecture 9: Live Sequence Charts

& RE Wrap-Up

2019-06-03

Prof. Dr. Andreas Podelski, Dr. BerndWestphal

Albert-Ludwigs-Universität Freiburg, Germany

Topic Area Requirements Engineering: Content

–
9
–
2
0
19
-0
6
-0
3
–
S
b
lo
ck
co
n
te
n
t
–

2/59

• Introduction

• Definition: Software & SW Specification

• Requirements Specification

• Desired Properties

• Kinds of Requirements

• Analysis Techniques

• Documents

• Dictionary, Specification

• Specification Languages

• Natural Language

• Decision Tables

• Syntax, Semantics

• Completeness, Consistency, . . .

Vocabulary

Techniques

informal

semi-formal

formal

• Scenarios

• User Stories, Use Cases

• Live Sequence Charts

• Syntax, Semantics

• Wrap-Up

VL 5

...

VL 6

...

VL 7
...

VL 8

...

VL 9
...

–
9
–
2
0
19
-0
6
-0
3
–
m
ai
n
–

3/59

Content

–
9
–
2
0
19
-0
6
-0
3
–
S
co
n
te
n
t
–

4/59

• Live Sequence Charts

• TBA Construction

• LSCs vs. Software

• Full LSC (without pre-chart)

• Activation Condition & Activation Mode

• (Slightly) Advanced LSC Topics

• Full LSC with pre-chart

• LSCs in Requirements Engineering

• strengthening existential LSCs (scenarios)
into universal LSCs (requirements)

• LSCs in Quality Assurance

• Requirements Engineering Wrap-Up

• Requirements Analysis in a Nutshell

• Recall: Validation by Translation

LSC Semantics: TBA Construction

–
9
–
2
0
19
-0
6
-0
3
–
m
ai
n
–

5/59

–
9
–
2
0
19
-0
6
-0
3
–
S
cu
tf
ir
e
re
st
–

6/59

LSC Semantics: It’s in the Cuts!

–
8
–
2
0
19
-0
5
-2
7
–
S
cu
tf
ir
e
–

39/46

Definition. Let ((L,�,�), I,Msg,Cond, LocInv,�) be an LSC body.

A non-empty set � 6= C � L is called a cut of the LSC body iff C

• is downward closed, i.e.

� l, l� � L • l� � C � l � l� =� l � C,

• is closed under simultaneity, i.e.

� l, l� � L • l� � C � l � l� =� l � C , and

• comprises at least one location per instance line, i.e.

� I � I • C � I 6= �.

The temperature function is extended to cuts as follows:

�(C) =

�

hot if � l � C • (� l� � C • l � l�) ��(l) = hot

cold otherwise

that is, C is hot if and only if at least one of its maximal elements is hot.

–
9
–
2
0
19
-0
6
-0
3
–
S
cu
tf
ir
e
re
st
–

7/59

Cut Examples

–
8
–
2
0
19
-0
5
-2
7
–
S
cu
tf
ir
e
–

40/46

� 6= C � L — downward closed — simultaneity closed — at least one loc. per instance line

LSC: none
AM: invariant I: strict

I1 I2

�

I3

E

F

G

l1,0

l1,1

l1,2

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

Cut Examples

–
9
–
2
0
19
-0
6
-0
3
–
S
cu
tf
ir
e
re
st
–

8/59

∅ 6= C ⊆ L — downward closed — simultaneity closed — at least one loc. per instance line

I1 I2

φ

I3

E

F

G

l1,0

l1,1

l1,2

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

A Successor Relation on Cuts

–
9
–
2
0
19
-0
6
-0
3
–
S
cu
tf
ir
e
re
st
–

9/59

The partial order “�” and the simultaneity relation “∼” of locations
induce a direct successor relation on cuts of an LSC body as follows:

Definition.
LetC ⊆ L bet a cut of LSC body ((L,�,∼), I,Msg,Cond, LocInv,Θ).

A set ∅ 6= F ⊆ L of locations is called fired-set F of cut C if and only if

• C ∩ F = ∅ andC ∪ F is a cut, i.e.F is closed under simultaneity,

• all locations inF are direct≺-successors of the front ofC , i.e.

∀ l ∈ F ∃ l′ ∈ C • l′ ≺ l ∧ (∄ l′′ ∈ L • l′ ≺ l′′ ≺ l),

• locations inF that lie on the same instance line are pairwise unordered, i.e.

∀ l 6= l′ ∈ F • (∃ I ∈ I • {l, l′} ⊆ I) =⇒ l 6� l′ ∧ l′ 6� l,

• for each asynchronous message reception in F ,
the corresponding sending is already inC ,

∀ (l, E, l′) ∈ Msg • l′ ∈ F =⇒ l ∈ C.

The cut C′ = C ∪ F is called direct successor ofC viaF , denoted byC F C′.

TBA Construction Principle

–
9
–
2
0
19
-0
6
-0
3
–
S
ls
cs
e
m
–

12/59

Recall: The TBA B(L) of LSCL is (C, Q, qini ,→, QF) with

• Q is the set of cuts ofL , qini is the instance heads cut,

• CB = C ∪̇ EI
!? ,

• → consists of loops, progress transitions (from F), and legal exits (cold cond./local inv.),

• QF = {C ∈ Q | Θ(C) = cold ∨ C = L} is the set of cold cuts.

So in the following, we “only” need to construct the transitions’ labels:

→= {(q, ψloop(q), q) | q ∈ Q} ∪ {(q, ψprog (q, q
′
), q

′
) | q F q

′} ∪ {(q, ψexit (q),L) | q ∈ Q}

q

. . .

ψloop(q): “what

allows us to stay at
cut q”

“. . .F1”
ψprog (q, q

′):
“characterisation of

firedset Fn”

ψexit(q):
“what allows us to

legally exit”

true

I1 I2

c1

I3

A

B C

D
E

c2 ∧ c3

TBA Construction Principle

–
9
–
2
0
19
-0
6
-0
3
–
S
ls
cs
e
m
–

13/59

“Only” construct the transitions’ labels:

→= {(q, ψloop(q), q) | q ∈ Q} ∪ {(q, ψprog (q, q
′
), q

′
) | q F q

′} ∪ {(q, ψexit (q),L) | q ∈ Q}

q

q1 . . . qn

ψloop(q) =

=:ψhot
loop

(q)

︷ ︸︸ ︷

ψ
Msg

(q) ∧ ψLocInv
hot (q)∧ψLocInv

cold (q)

ψexit (q) =
(
ψhot

loop(q) ∧ ¬ψLocInv
cold (q)

)

∨
∨

1≤i≤n

(
ψhot

prog(q, qi)

∧
(
¬ψLocInv,•

cold
(q, qi)∨¬ψCond

cold (q, qi)
))

ψprog (q, qn) = =:ψhot
prog (q,qn)

︷ ︸︸ ︷

ψMsg(q, qn) ∧ ψ
Cond
hot (q, qn) ∧ ψ

LocInv,•
hot

(q, qn)

∧ ψCond
cold (q, qn) ∧ ψ

LocInv,•
cold

(q, qn)

true
I1 I2

c1

I3

A

B C

D
E

c2 ∧ c3

Loop Condition

–
9
–
2
0
19
-0
6
-0
3
–
S
ls
cs
e
m
–

14/59

ψloop(q) = ψMsg(q) ∧ ψLocInv
hot (q) ∧ ψLocInv

cold (q)

• ψMsg(q) = ¬
∨

1≤i≤n,ψ∈Msg(qi\q)
ψ ∧

(
strict =⇒

∧

ψ∈EI
!?
∩Msg(L)

¬ψ
)

︸ ︷︷ ︸

=:ψstrict(q)

• ψLocInv
θ

(q) =
∧

ℓ=(l,ι,φ,l′,ι′)∈LocInv, Θ(ℓ)=θ, ℓ active at q φ

A location l is called front location of cutC if and only if ∄ l′ ∈ C • l ≺ l′.

Local invariant (l0, ι0, φ, l1, ι1) is active at cut (!) q
if and only if l0 � l ≺ l1 for some front location l of cut q or l = l1 ∧ ι1 = •.

• Msg(F) = {E
I(l),I(l′)
! | (l, E, l′) ∈ Msg, l ∈ F} ∪ {E

I(l),I(l′)
? | (l, E, l′) ∈ Msg, l′ ∈ F}

• Msg(F1, . . . ,Fn) =
⋃

1≤i≤nMsg(Fi)
I1 I2

c1

I3

A

B C

D
E

c2 ∧ c3

Progress Condition

–
9
–
2
0
19
-0
6
-0
3
–
S
ls
cs
e
m
–

15/59

ψhot
prog(q, qi) = ψMsg(q, qn) ∧ ψ

Cond
hot (q, qn) ∧ ψ

LocInv,•
hot

(qn)

• ψMsg(q, qi) =
∧

ψ∈Msg(qi\q)
ψ ∧

∧

j 6=i

∧

ψ∈(Msg(qj\q)\Msg(qi\q))
¬ψ

∧
(
strict =⇒

∧

ψ∈(EI
!?
∩Msg(L))\Msg(Fi)

¬ψ
)

︸ ︷︷ ︸

=:ψstrict(q,qi)

• ψCond
θ

(q, qi) =
∧

γ=(L,φ)∈Cond, Θ(γ)=θ, L∩(qi\q) 6=∅ φ

• ψLocInv,•
θ

(q, qi) =
∧

λ=(l,ι,φ,l′,ι′)∈LocInv, Θ(λ)=θ, λ •-active at qi
φ

Local invariant (l0, ι0, φ, l1, ι1) is •-active at q if and only if

• l0 ≺ l ≺ l1 , or

• l = l0 ∧ ι0 = •, or

• l = l1 ∧ ι1 = •

for some front location l of cut (!) q.

I1 I2

c1

I3

A

B C

D
E

c2 ∧ c3

Content

–
9
–
2
0
19
-0
6
-0
3
–
S
co
n
te
n
t
–

17/59

• Live Sequence Charts

• TBA Construction

• LSCs vs. Software

• Full LSC (without pre-chart)

• Activation Condition & Activation Mode

• (Slightly) Advanced LSC Topics

• Full LSC with pre-chart

• LSCs in Requirements Engineering

• strengthening existential LSCs (scenarios)
into universal LSCs (requirements)

• LSCs in Quality Assurance

• Requirements Engineering Wrap-Up

• Requirements Analysis in a Nutshell

• Recall: Validation by Translation

Excursion: Symbolic Büchi Automata

–
9
–
2
0
19
-0
6
-0
3
–
m
ai
n
–

18/59

From Finite Automata to Symbolic Büchi Automata

–
9
–
2
0
19
-0
6
-0
3
–
S
tb
a
–

19/59

q1 q2

0

1

A: Σ = {0, 1}

q1 q2

0

1

B: Σ = {0, 1}

q1 q2

0

1

1

0

B′: Σ = {0, 1}

q1 q2

a ∧ b

c ∨ d

Asym : Σ = ({a, b, c, d} → B)

q1 q2

a ∧ b

c ∨ d

Bsym : Σ = ({a, b, c, d} → B)

Büchi

infinite words

symbolic

symbolic

Büchi

infinite words

Symbolic Büchi Automata

–
9
–
2
0
19
-0
6
-0
3
–
S
tb
a
–

20/59

Definition. A Symbolic Büchi Automaton (TBA) is a tuple

B = (CB, Q, qini ,→, QF)

where

• CB is a set of atomic propositions,

• Q is a finite set of states,

• qini ∈ Q is the initial state,

• → ⊆ Q× Φ(CB)×Q is the finite transition relation.

Each transitions (q, ψ, q′) ∈ → from state q to state q′

is labelled with a propositional formula ψ ∈ Φ(CB).

• QF ⊆ Q is the set of fair (or accepting) states.

Example: q1 q2

a ∧ b

c ∨ d

Bsym : Σ = ({a, b, c, d} → B)

Run of TBA

–
9
–
2
0
19
-0
6
-0
3
–
S
tb
a
–

21/59

Definition. Let B = (CB, Q, qini ,→, QF) be a TBA and

w = σ1, σ2, σ3, · · · ∈ (CB → B)ω

an infinite word, each letter is a valuation of CB .

An infinite sequence
̺ = q0, q1, q2, . . . ∈ Q

ω

of states is called run of B overw if and only if

• q0 = qini ,

• for each i ∈ N0 there is a transition (qi, ψi, qi+1) ∈→ s.t. σi |= ψi.

Example: q1 q2

a ∧ b

c ∨ d

Bsym : Σ = ({a, b, c, d} → B)

w = {a 7→ true, b 7→ true, c 7→ false, d 7→ false}
︸ ︷︷ ︸

{a,b} for short

, {c}, {a, b}, ({d}, {a, b})ω

The Language of a TBA

–
9
–
2
0
19
-0
6
-0
3
–
S
tb
a
–

22/59

Definition.
We say TBA B = (CB, Q, qini ,→, QF) accepts the word

w = (σi)i∈N0 ∈ (CB → B)ω

if and only if B has a run
̺ = (qi)i∈N0

overw
such that fair (or accepting) states are visited infinitely often by ̺, i.e.,

∀ i ∈ N0 ∃ j > i : qj ∈ QF .

We call the set Lang(B) ⊆ (CB → B)ω of words that are accepted by B
the language of B.

Example: q1 q2

a ∧ b

c ∨ d

Bsym : Σ = ({a, b, c, d} → B)

LSCs vs. Software

–
9
–
2
0
19
-0
6
-0
3
–
m
ai
n
–

23/59

–
9
–
2
0
19
-0
6
-0
3
–
S
fo
rm
al
re
–

24/59

Software, formally

–
5

–
2

0
19

-0
5

-1
3

–
S

re
in

tr
o

–

8/49

Definition. Software is a finite description S of a (possibly infinite)
set �S� of (finite or infinite) computation paths of the form

�0

�
1

��� �1

�
2

��� �2 · · ·

where

• �i � �, i � N0, is called state (or configuration), and

• �i � A, i � N0, is called action (or event).

The (possibly partial) function � · � : S 7� �S� is called interpretation of S.

–
9
–
2
0
19
-0
6
-0
3
–
S
fo
rm
al
re
–

25/59

–
9
–
2
0
19
-0
6
-0
3
–
S
ls
cv
ss
w
–

28/59

LSCs as Software Specification

–
9
–
2
0
19
-0
6
-0
3
–
S
ls
cv
ss
w
–

29/59

A software S is called compatible with LSCL over C and E is if and only if

• Σ = (C → B), C ⊆ C , i.e. the states comprise valuations of the conditions in C,

• A = (B → B), EI
!? ⊆ B, i.e. the events comprise valuations of Ei,j! , Ei,j? .

A computation path π = σ0

α1−−→ σ1

α2−−→ σ2 · · · ∈ JSK of software S induces the word

w(π) = (σ0 ∪ α1), (σ1 ∪ α2), (σ2 ∪ α3), . . . ,

we useWS to denote the set of words induced by JSK, i.e.

WS = {w(π) | π ∈ JSK}.

LSCs vs. Software (or Systems)

–
9
–
2
0
19
-0
6
-0
3
–
S
ls
cv
ss
w
–

30/59

σ0
τ
−→ σ1

E1U,V

−−−−−→ σ2
pSOFTU,V

−−−−−−−−→ σ3
τ
−→ σ4

τ
−→ σ5

τ
−→ σ6

SOFTV,U

−−−−−−−→ · · · ∈ JSK

w = {}, {E1
U,V

! ,E1
U,V

? }, {pSOFT
U,V

! , pSOFT
U,V

? }, {}, {}, {}, {SOFT
V,U

! ,SOFT
V,U

? }, {}, . . .

∈ Lang(B(L))

User Vend. Mach.

E1

pSOFT

SOFT

E1 : insert 1 e coin
pSOFT : press ‘SOFT’ button
SOFT : dispense soft drink

q0

q1

q2

q3

¬E1U,V! ∧ ¬E1U,V?

E1
U,V
! ∧ E1

U,V
?

¬pSOFT
U,V
! ∧ ¬pSOFT

U,V
?

pSOFT
U,V
! ∧ pSOFT

U,V
?

¬SOFT
V,U
! ∧ ¬SOFT

V,U
?

SOFT
V,U
! ∧ SOFT

V,U
?

true

TBA over CB = C ∪ EI
!? ,

where C = ∅ and
EI
!? = {E1

U,V

! ,

E1
U,V

? , pSOFT
U,V

! ,

pSOFT
U,V

? ,

SOFT
V,U

! ,

SOFT
V,U

? , . . . }.

LSCs vs. Software (or Systems)

–
9
–
2
0
19
-0
6
-0
3
–
S
ls
cv
ss
w
–

30/59

σ0
τ
−→ σ1

E1U,V

−−−−−→ σ2
pSOFTU,V

−−−−−−−−→ σ3
τ
−→ σ4

τ
−→ σ5

τ
−→ σ6

SOFTV,U

−−−−−−−→ · · · ∈ JSK

w(π) = σ0, (σ1 ∪ {E1
U,V

! ,E1
U,V

?), (σ2 ∪ {pSOFT
U,V

! , pSOFT
U,V

?), σ3, σ4, σ5,

(σ6 ∪ {SOFT
V,U

! ,SOFT
V,U

?), . . .

w = {}, {E1
U,V

! ,E1
U,V

? }, {pSOFT
U,V

! , pSOFT
U,V

? }, {}, {}, {}, {SOFT
V,U

! ,SOFT
V,U

? }, {}, . . .

∈ Lang(B(L))

User Vend. Mach.

E1

pSOFT

SOFT

E1 : insert 1 e coin
pSOFT : press ‘SOFT’ button
SOFT : dispense soft drink

q0

q1

q2

q3

¬E1U,V! ∧ ¬E1U,V?

E1
U,V
! ∧ E1

U,V
?

¬pSOFT
U,V
! ∧ ¬pSOFT

U,V
?

pSOFT
U,V
! ∧ pSOFT

U,V
?

¬SOFT
V,U
! ∧ ¬SOFT

V,U
?

SOFT
V,U
! ∧ SOFT

V,U
?

true

TBA over CB = C ∪ EI
!? ,

where C = ∅ and
EI
!? = {E1

U,V

! ,

E1
U,V

? , pSOFT
U,V

! ,

pSOFT
U,V

? ,

SOFT
V,U

! ,

SOFT
V,U

? , . . . }.

Content

–
9
–
2
0
19
-0
6
-0
3
–
S
co
n
te
n
t
–

31/59

• Live Sequence Charts

• TBA Construction

• LSCs vs. Software

• Full LSC (without pre-chart)

• Activation Condition & Activation Mode

• (Slightly) Advanced LSC Topics

• Full LSC with pre-chart

• LSCs in Requirements Engineering

• strengthening existential LSCs (scenarios)
into universal LSCs (requirements)

• LSCs in Quality Assurance

• Requirements Engineering Wrap-Up

• Requirements Analysis in a Nutshell

• Recall: Validation by Translation

Activation Condition and Mode

–
9
–
2
0
19
-0
6
-0
3
–
m
ai
n
–

32/59

Full LSC Syntax (without pre-chart)

–
9
–
2
0
19
-0
6
-0
3
–
S
ls
ca
c
–

33/59

LSC: buy softdrink
AC: true
AM: invariant I: permissive

User Vend. Mach.

E1

pSOFT

SOFT

LSC: power-on self test
AC: true
AM: initial I: permissive

User Vend. Ma.

ckWATER

ckSOFT

ckTEA

A full LSCL = (MC , ac0, am,ΘL) consists of

• (non-empty)main-chartMC = ((LM ,�M ,∼M), IM ,MsgM ,CondM ,LocInvM ,ΘM),

• activation condition ac0 ∈ Φ(C),

• strictness flag strict (if false,L is permissive)

• activation mode am ∈ {initial, invariant},

• chart mode existential (ΘL = cold) or universal (ΘL = hot).

Software Satisfies LSC

–
9
–
2
0
19
-0
6
-0
3
–
S
ls
ca
c
–

34/59

Let S be a software which is compatible with LSCL (without pre-chart).

We say software S satisfies LSCL , denoted by S |= L , if and only if

ΘL am = initial am = invariant

co
ld ∃w ∈WS • w0 |= ac ∧ ¬ψexit (C0)

∧ w0 |= ψprog (∅, C0) ∧ w/1 ∈ Lang(B(L))

∃w ∈WS ∃ k ∈ N0 • wk |= ac ∧ ¬ψexit (C0)

∧ wk |= ψprog (∅, C0) ∧w/k + 1 ∈ Lang(B(L))
h
o
t ∀w ∈WS • w0 |= ac ∧ ¬ψexit (C0)

=⇒ w0 |= ψprog (∅, C0)∧w/1 ∈ Lang(B(L))

∀w ∈WS ∀ k ∈ N0 • wk |= ac ∧ ¬ψexit (C0)

=⇒ wk |= ψCond
hot

(∅, C0)∧w/k+1 ∈ Lang(B(L))

where andC0 is the minimal (or instance heads) cut of the main-chart.

LSC: buy softdrink
AC: true
AM: invariant I: permissive

User Vend. Mach.

E1

pSOFT

SOFT

LSC: power-on self test
AC: true
AM: initial I: permissive

User Vend. Ma.

ckWATER

ckSOFT

ckTEA

Software Satisfies LSC

–
9
–
2
0
19
-0
6
-0
3
–
S
ls
ca
c
–

34/59

Let S be a software which is compatible with LSCL (without pre-chart).

We say software S satisfies LSCL , denoted by S |= L , if and only if

ΘL am = initial am = invariant

co
ld ∃w ∈WS • w0 |= ac ∧ ¬ψexit (C0)

∧ w0 |= ψprog (∅, C0) ∧ w/1 ∈ Lang(B(L))

∃w ∈WS ∃ k ∈ N0 • wk |= ac ∧ ¬ψexit (C0)

∧ wk |= ψprog (∅, C0) ∧w/k + 1 ∈ Lang(B(L))

h
o
t ∀w ∈WS • w0 |= ac ∧ ¬ψexit (C0)

=⇒ w0 |= ψprog (∅, C0)∧w/1 ∈ Lang(B(L))

∀w ∈WS ∀ k ∈ N0 • wk |= ac ∧ ¬ψexit (C0)

=⇒ wk |= ψCond
hot

(∅, C0)∧w/k+1 ∈ Lang(B(L))

where andC0 is the minimal (or instance heads) cut of the main-chart.

LSC: buy softdrink
AC: true
AM: invariant I: permissive

User Vend. Mach.

E1

pSOFT

SOFT

LSC: power-on self test
AC: true
AM: initial I: permissive

User Vend. Ma.

ckWATER

ckSOFT

ckTEA

Software S satisfies a set of LSCsL1, . . . ,Ln if and only if S |= Li for all 1 ≤ i ≤ n.

LSCs At Work

–
9
–
2
0
19
-0
6
-0
3
–
m
ai
n
–

35/59

Example: Vending Machine

–
9
–
2
0
19
-0
6
-0
3
–
S
ls
ca
tw
o
rk
–

36/59

• Positive scenario: Buy a Softdrink

LSC: buy softdrink
AC: true
AM: invariant I: permissive

User Vend. Mach.

E1

pSOFT

SOFT

We (only) accept the software if it

is possible to buy a softdrink.

(i) Insert one 1 euro coin.

(ii) Press the ‘softdrink’ button.

(iii) Get a softdrink.

• Positive scenario: Get Change

LSC: get change
AC: true
AM: invariant I: permissive

User Vend. Ma.

C50

E1

pSOFT

SOFT

chg-C50

We (only) accept the software if it

is possible to get change.

(i) Insert one 50 cent and one 1 euro coin.

(ii) Press the ‘softdrink’ button.

(iii) Get a softdrink.

(iv) Get 50 cent change.

• Requirement: Perform Self-Test on Power-on

LSC: power-on self test
AC: true
AM: initial I: permissive

User Vend. Ma.

ckWATER

ckSOFT

ckTEA

We (only) accept the software if it

always performs a self-test on power-on.

(i) Check water dispenser.

(ii) Check softdrink dispenser.

(iii) Check tea dispenser.

Content

–
9
–
2
0
19
-0
6
-0
3
–
S
co
n
te
n
t
–

37/59

• Live Sequence Charts

• TBA Construction

• LSCs vs. Software

• Full LSC (without pre-chart)

• Activation Condition & Activation Mode

• (Slightly) Advanced LSC Topics

• Full LSC with pre-chart

• LSCs in Requirements Engineering

• strengthening existential LSCs (scenarios)
into universal LSCs (requirements)

• LSCs in Quality Assurance

• Requirements Engineering Wrap-Up

• Requirements Analysis in a Nutshell

• Recall: Validation by Translation

(Slightly) Advanced LSC Topics

–
9
–
2
0
19
-0
6
-0
3
–
m
ai
n
–

38/59

Full LSC Syntax (with pre-chart)

–
9
–
2
0
19
-0
6
-0
3
–
S
ls
cp
c
–

39/59

LSC: buy water
AC: true
AM: invariant I: strict

User CoinValidator ChoicePanel Dispenser

C50

pWATER

water_in_stock

dWATER

OK

A full LSCL = (PC ,MC , ac0, am,ΘL) consists of

• pre-chart PC = ((LP ,�P ,∼P),IP ,MsgP ,CondP , LocInvP ,ΘP) (possibly empty),

• (non-empty)main-chartMC = ((LM ,�M ,∼M), IM ,MsgM ,CondM ,LocInvM ,ΘM),

• activation condition ac0 ∈ Φ(C),

• strictness flag strict (if false,L is permissive)

• activation mode am ∈ {initial, invariant},

• chart mode existential (ΘL = cold) or universal (ΘL = hot).

LSC Semantics with Pre-chart

–
9
–
2
0
19
-0
6
-0
3
–
S
ls
cp
c
–

40/59

LSC: buy water
AC: true
AM: invariant I: strict

User CoinValidator ChoicePanel Dispenser

C50

pWATER

water_in_stock

dWATER

OK

am = initial am = invariant

Θ
L

=
co
ld

∃w ∈ W ∃m ∈ N0 •

∧w0 |= ac∧¬ψexit (C
P
0)∧ψprog(∅, C

P
0)

∧ w/1, . . . , w/m ∈ Lang(B(PC))

∧ wm+1 |= ¬ψexit (C
M
0)

∧ wm+1 |= ψprog(∅, C
M
0)

∧ w/m + 2 ∈ Lang(B(MC))

∃w ∈ W ∃ k < m ∈ N0 •

∧wk |= ac∧¬ψexit (C
P
0)∧ψprog (∅, C

P
0)

∧ w/k + 1, . . . , w/m ∈ Lang(B(PC))

∧ wm+1 |= ¬ψexit (C
M
0)

∧ wm+1 |= ψprog(∅, C
M
0)

∧ w/m + 2 ∈ Lang(B(MC))

Θ
L

=
h
o
t

∀w ∈ W ∀m ∈ N0 •

∧w0 |= ac∧¬ψexit (C
P
0)∧ψprog(∅, C

P
0)

∧ w/1, . . . , w/m ∈ Lang(B(PC))

∧ wm+1 |= ¬ψexit (C
M
0)

=⇒ wm+1 |= ψprog (∅, C
M
0)

∧ w/m+ 2 ∈ Lang(B(MC))

∀w ∈ W ∀ k ≤ m ∈ N0 •

∧wk |= ac∧¬ψexit (C
P
0)∧ψprog (∅, C

P
0)

∧ w/k + 1, . . . , w/m ∈ Lang(B(PC))

∧ wm+1 |= ¬ψexit (C
M
0)

=⇒ wm+1 |= ψprog(∅, C
M
0)

∧ w/m+ 2 ∈ Lang(B(MC))

whereCP0 andCM0 are the minimal (or instance heads) cuts of pre- and main-chart.

Pre-Charts At Work

–
9
–
2
0
19
-0
6
-0
3
–
m
ai
n
–

41/59

Example: Vending Machine

–
9
–
2
0
19
-0
6
-0
3
–
S
p
ca
tw
o
rk
–

42/59

• Requirement: Buy Water
LSC: buy water
AC: true
AM: invariant I: strict

User CoinValidator ChoicePanel Dispenser

C50

pWATER

¬(C50 ! ∨ E1 ! ∨ pSOFT !

∨ pTEA! ∨ pFILLUP !)

water_in_stock

dWATER

OK

¬(dSoft ! ∨ dTEA!)

We (only) accept the software if,

(i) Whenever we insert 0.50 e,

(ii) and press the ‘water’ button
(and no other button),

(iii) and there is water in stock,

(iv) then we get water
(and nothing else).

• Negative scenario: A Drink for Free
LSC: only one drink
AC: true
AM: invariant I: permissive

User Vend. Ma.

E1

pSOFT

SOFT

SOFT

¬C50 ! ∧ ¬E1 !

false

We don’t accept the software if

it is possible to get a drink for free.

(i) Insert one 1 euro coin.

(ii) Press the ‘softdrink’ button.

(iii) Do not insert any more money.

(iv) Get two softdrinks.

Content

–
9
–
2
0
19
-0
6
-0
3
–
S
co
n
te
n
t
–

43/59

• Live Sequence Charts

• TBA Construction

• LSCs vs. Software

• Full LSC (without pre-chart)

• Activation Condition & Activation Mode

• (Slightly) Advanced LSC Topics

• Full LSC with pre-chart

• LSCs in Requirements Engineering

• strengthening existential LSCs (scenarios)
into universal LSCs (requirements)

• LSCs in Quality Assurance

• Requirements Engineering Wrap-Up

• Requirements Analysis in a Nutshell

• Recall: Validation by Translation

LSCs in Requirements Analysis

–
9
–
2
0
19
-0
6
-0
3
–
m
ai
n
–

44/59

LSCs vs. Quality Assurance

–
9
–
2
0
19
-0
6
-0
3
–
m
ai
n
–

47/59

How to Prove that a Software Satisfies an LSC?

–
9
–
2
0
19
-0
6
-0
3
–
S
ls
cq
a
–

48/59

LSC: buy softdrink
AC: true
AM: invariant I: permissive

User Vend. Mach.

E1

pSOFT

SOFT

LSC: get change
AC: true
AM: invariant I: permissive

User Vend. Ma.

C50

E1

pSOFT

SOFT

chg-C50

• Software S satisfies existential LSCL if there exists π ∈ JSK
such thatL acceptsw(π). Prove S |= L by demonstrating π.

• Note: Existential LSCs∗ may hint at test-cases for the acceptance test!
(∗: as well as (positive) scenarios in general, like use-cases)

requirements
fixed

requirements
fixed

acceptanceacceptance

system
specified
system
specified

system
delivered
system
delivered

architecture
designed
architecture
designed

system
integrated
system

integrated

modules
designed
modules
designed

system
realised
system
realised

verification & validation

How to Prove that a Software Satisfies an LSC?

–
9
–
2
0
19
-0
6
-0
3
–
S
ls
cq
a
–

48/59

LSC: buy softdrink
AC: true
AM: invariant I: permissive

User Vend. Mach.

E1

pSOFT

SOFT

LSC: get change
AC: true
AM: invariant I: permissive

User Vend. Ma.

C50

E1

pSOFT

SOFT

chg-C50

• Software S satisfies existential LSCL if there exists π ∈ JSK
such thatL acceptsw(π). Prove S |= L by demonstrating π.

• Note: Existential LSCs∗ may hint at test-cases for the acceptance test!
(∗: as well as (positive) scenarios in general, like use-cases)

requirements
fixed

requirements
fixed

acceptanceacceptance

system
specified
system
specified

system
delivered
system
delivered

architecture
designed
architecture
designed

system
integrated
system

integrated

modules
designed
modules
designed

system
realised
system
realised

verification & validation

How to Prove that a Software Satisfies an LSC?

–
9
–
2
0
19
-0
6
-0
3
–
S
ls
cq
a
–

48/59

LSC: buy softdrink
AC: true
AM: invariant I: permissive

User Vend. Mach.

E1

pSOFT

SOFT

LSC: get change
AC: true
AM: invariant I: permissive

User Vend. Ma.

C50

E1

pSOFT

SOFT

chg-C50

• Software S satisfies existential LSCL if there exists π ∈ JSK
such thatL acceptsw(π). Prove S |= L by demonstrating π.

• Note: Existential LSCs∗ may hint at test-cases for the acceptance test!
(∗: as well as (positive) scenarios in general, like use-cases)

requirements
fixed

requirements
fixed

acceptanceacceptance

system
specified
system
specified

system
delivered
system
delivered

architecture
designed
architecture
designed

system
integrated
system

integrated

modules
designed
modules
designed

system
realised
system
realised

verification & validation

LSC: only one drink
AC: true
AM: invariant I: permissive

User Vend. Ma.

E1

pSOFT

SOFT

SOFT

¬C50 ! ∧ ¬E1 !

false

LSC: buy water
AC: true
AM: invariant I: strict

User CoinValidator ChoicePanel Dispenser

C50

pWATER

¬(C50 ! ∨ E1 ! ∨ pSOFT !

∨ pTEA! ∨ pFILLUP !)

water_in_stock

dWATER

OK

¬(dSoft ! ∨ dTEA!)

• Universal LSCs (and negative/anti-scenarios!) in general need an exhaustive analysis!
(Because they require that the software never ever exhibits the unwanted behaviour.)

Prove S 6|= L by demonstrating one π such thatw(π) is not accepted byL .

Pushing Things Even Further

–
9
–
2
0
19
-0
6
-0
3
–
S
ls
cq
a
–

49/59

(Harel and Marelly, 2003)

Tell Them What You’ve Told Them. . .

–
9
–
2
0
19
-0
6
-0
3
–
S
tt
w
y
tt
–

50/59

• Live Sequence Charts (if well-formed)

• have an abstract syntax: instance lines, messages, conditions,
local invariants; mode: hot or cold.

• From an abstract syntax, mechanically construct its TBA.

• An LSC is satisfied by a software S if and only if

• existential (cold):

• there is a word induced by a computation path of S

• which is accepted by the LSC’s pre/main-chart TBA.

• universal (hot):

• all words induced by the computation paths of S

• are accepted by the LSC’s pre/main-chart TBA.

• Pre-charts allow us to

• specify anti-scenarios (“this must not happen”),

• contrain activation.

• Method:

• discuss (anti-)scenarios with customer,

• generalise into universal LSCs and re-validate.

Requirements Engineering Wrap-Up

–
9
–
2
0
19
-0
6
-0
3
–
m
ai
n
–

51/59

Topic Area Requirements Engineering: Content

–
9
–
2
0
19
-0
6
-0
3
–
S
b
lo
ck
co
n
te
n
t
–

52/59

• Introduction

• Definition: Software & SW Specification

• Requirements Specification

• Desired Properties

• Kinds of Requirements

• Analysis Techniques

• Documents

• Dictionary, Specification

• Specification Languages

• Natural Language

• Decision Tables

• Syntax, Semantics

• Completeness, Consistency, . . .

Vocabulary

Techniques

informal

semi-formal

formal

• Scenarios

• User Stories, Use Cases

• Live Sequence Charts

• Syntax, Semantics

• Wrap-Up

VL 5

...

VL 6

...

VL 7
...

VL 8

...

VL 9
...

–
9
–
2
0
19
-0
6
-0
3
–
S
w
ra
p
u
p
–

53/59

Risks Implied by Bad Requirements Speci�cations

–
5

–
2

0
19

-0
5

-1
3

–
S

re
in

tr
o

–

12/49

negotiationnegotiation

require-
ments
speci-
fication

design /
implemen-
tation

design /
implemen-
tation

quality
assurance
quality
assurance

acceptanceacceptance

docu-
mentation
docu-
mentation

re-usere-use

customer developer

negotiation
(with customer,

marketing

department, or

. . .)

design and implementation,

• without specification,
programmers may just “ask
around” when in doubt, possibly
yielding different interpretations
� difficult integration

documentation, e.g., the user’s manual,

• without specification, the user’s manual author can only
describe what the system does, not what it should do
(“every observation is a feature”)

preparation of tests,

• without a description of allowed outcomes, tests are
randomly searching for generic errors (like crashes)
� systematic testing hardly possible

acceptance by
customer,
resolving later
objections or regress
claims,

• without specification, it
is unclear at delivery
time whether behaviour
is an error (developer
needs to fix) or correct
(customer needs to
accept and pay) �
nasty disputes,
additional effort

re-use,

• without specification, re-use needs to be based on
re-reading the code � risk of unexpected changes

• later re-implementations.

• the new software may need to adhere to requirements of the old software; if not properly specified,
the new software needs to be a 1:1 re-implementation of the old � additional effort

Requirements Analysis in a Nutshell

–
9
–
2
0
19
-0
6
-0
3
–
S
w
ra
p
u
p
–

54/59

• Customersmay not know what they want.

• That’s in general not their “fault”!

• Care for tacit requirements.

• Care for non-functional requirements / constraints.

• For requirements elicitation, consider starting with

• scenarios (“positive use case”) and anti-scenarios (“negative use case”)

and elaborate corner cases.

Thus, use cases can be very useful — use case diagrams not so much.

• Maintain a dictionary and high-quality descriptions.

• Care for objectiveness / testability early on.

Ask for each requirements: what is the acceptance test?

• Use formal notations

• to fully understand requirements (precision),

• for requirements analysis (completeness, etc.),

• to communicate with your developers.

• If in doubt, complement (formal) diagrams with text
(as safety precaution, e.g., in lawsuits).

–
9
–
2
0
19
-0
6
-0
3
–
S
w
ra
p
u
p
–

56/59

Formalisation Validation

–
7
–
2
0
19
-0
5
-2
0
–
S
e
td
is
c
–

39/41

Two broad directions: • Option 1: teach formalism
(usually not economic).

• Option 2: serve as
translator / mediator.

T : room ventilation r1 r2 else

b button pressed? × ×

o� ventilation off? × �

on ventilation on? � ×

go start ventilation × � �

stop stop ventilation � × �

customer

FM expert

�

scenario S (�/�)

�

valuation �

�

|= / 6|=
�

�/�

�
6= : invalid
= : may be valid

� domain experts tell system scenario S (maybe keep back, whether allowed / forbidden),

� FM expert translates system scenario to valuation � ,

� FM expert evaluates DT on � ,

� FM expert translates outcome to “allowed / forbidden by DT”,

� compare expected outcome and real outcome.

• Recommendation: (Course’s Manifesto?)

• use formal methods for themost important/intricate requirements

(formalising all requirements is in most cases not possible),

• use themost appropriate formalism for a given task,

• use formalisms that you know (really) well.

LSC: buy water
AC: true
AM: invariant I: strict

User CoinValidator ChoicePanel Dispenser

C50

pWATER

water_in_stock

dWATER

OK

(Strong) Literature Recommendation

–
9
–
2
0
19
-0
6
-0
3
–
S
w
ra
p
u
p
–

57/59

(Rupp and die SOPHISTen, 2014)

References

–
9
–
2
0
19
-0
6
-0
3
–
m
ai
n
–

58/59

References

–
9
–
2
0
19
-0
6
-0
3
–
m
ai
n
–

59/59

Harel, D. and Marelly, R. (2003). Come, Let’s Play: Scenario-Based Programming Using LSCs and the Play-Engine.
Springer-Verlag.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Rupp, C. and die SOPHISTen (2014). Requirements-Engineering und -Management. Hanser, 6th edition.

