-9 -2019-06-03 - main —

Softwaretechnik / Software-Engineering

Lecture 9: Live Sequence Charts
& RE Wrap-Up

2019-06-03

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Topic Area Requirements Engineering: Content

~9-2019-06-03 - Sblockcontent -

VL5 e Introduction
o Definition: Software & SW Specification
e Requirements Specification
o Desired Properties
Vocabulary
o Kinds of Requirements

o Analysis Techniques Techniques

o Documents informal

VL
6 o Dictionary, Specification

o Specification Languages
semi-formal
o Natural Language
o Decision Tables

® Syntax, Semantics
VL7 4 formal

Ol T Coertoe

® Completeness, Consistency, ...

VL8 e Scenarios

® User Stories, Use Cases

® Live Sequence Charts

VL9 ® Syntax, Semantics

e Wrap-Up

2/59

~9-2019-06-03 - Scontent —

The Plan: A Formal Semantics for a Visual Formalism

>
©
e
o
-
g
3
B
5
3

does the software
satisfy the LSC?

concrgte syntax ((L"’ = "’)’ 7, Msg, apply construction
(diagram) Cond, Loclnv, ©) procedure
abstract syntax
@=X ’ ?
=
semantics
(Biichi automaton) E
3 software
2 b 2846
¢ 359
Content

e_Live Sequence Charts

e TBA Construction

e LSCs vs. Software

e Full LSC (without pre-chart)

® Activation Condition & Activation Mode

JU—— _ _— — — —

e (Slightly) Advanced LSC Topics
® Full LSC with pre-chart

e LSCs in Requirements Engineering

® strengthening existential LSCs (scenarios)
into universal LSCs (requirements)

‘e LSCs in Quality Assurance

¢ Requirements Engineering Wrap-Up

o Requirements Analysis in a Nutshell

o Recall: Validation by Translation

459

9-2019-06-03 - Scutfirerest

LSC Semantics: TBA Construction

LSC Semantics: It’s in the Cuts!

Definition. Let ((£,=<,~),Z, Msg, Cond, Loclnv, ©) be an LSC body.
A non-empty set) # C C Lis called a cut of the LSC body iff C

o is downward closed, i.e.
Vi,ll e Lol eCNI=I = l€C,
o is closed under simultaneity, i.e.
Vi,l'l ¢ Lol'! cCANI~I = l€C,and

e comprises at least one location per instance line, i.e.
VIeZeCNI#Q.

The temperature function is extended to cuts as follows:

hot if3leCe (Al €eCol=<1)AB()=hot
cold otherwise

o(C) = {

thatis, C'is hot if and only if at least one of its maximal elements is hot.

3946

5159

6159

9-2019-06-03 - Scutfirerest

Cut Examples

/ s/ J
’ 0 # C C L —downward closed — simultaneity closed — at least one loc. /p_gr instance line
@ @ &) ©

LSC: none
AM: invariant |:

| |

strict ‘

i 4046

Cut Examples

9-2019-06-03 - Scutfirerest

7159

| 0 # C C L —downward closed — simultaneity closed — at least one loc. per instance line

het cold
/

8/59

Cut Examples

—9-2019-06-03 - Scutfirerest—

‘ 0 # C C £ —downward closed — simultaneity closed — at least one loc. per instance line

Cut Examples

—9-2019-06-03 - Scutfirerest—

l’ Ky)’
“lio 120

“li ~ X
N
%1

v e

.

e a

/l ‘\]

0

859

‘ 0 # C C £ —downward closed — simultaneity closed — at least one loc. per instance line

I || A] A
; ST ST
“tvlin ~1°laq t-7ag
i
|
-t |
: £ e !
+ T : ._:\ :
“4)'171 |
T I
|
|
TN |
L £ RN
“t05,1
|
|
T G 7T |
! |
70 g }
|
|
|

859

Cut Examples

—9-2019-06-03 - Scutfirerest—

‘ 0 # C C £ —downward closed — simultaneity closed — at least one loc. per instance line

Cut Examples

859

‘ 0 # C C £ —downward closed — simultaneity closed — at least one loc. per instance line

—9-2019-06-03 - Scutfirerest—

859

Cut Examples

—9 -2019-06-03 — Scutfirerest —

| 0 # C C £ —downward closed — simultaneity closed — at least one loc. per instance line

Cut Examples

—9 -2019-06-03 - Scutfirerest—

859

| 0 # C C £ —downward closed — simultaneity closed — at least one loc. per instance line

859

Cut Examples

rest

—9-2019-06-03 - Scutfirer

| 0 # C C £ —downward closed — simultaneity closed — at least one loc. per instance line

)
4 _ S
\

859

A Successor Relation on Cuts

~9-2019-06-03 - Scutfirerest -

The partial order “<” and the simultaneity relation “~” of locations
induce a direct successor relation on cuts of an LSC body as follows:

Definition.
Let C' C L beta cut of LSCbody ((£, <, ~),Z, Msg, Cond, Loclnv, ©).

Aset() # F C L of locations is called fired-set of cut C'if and only if

e CNF =0andCU Fisacut,ie. F is closed under simultaneity,
o all locations in F are direct <-successors of the front of C, i.e.

VIieFIUl eCol' <INRBI" c Lol <" <),

e locations in F that lie on the same instance line are pairwise unordered, i.e.
Vil c Fe(@AI€To{l,I'} CI) = LAUAl £1,

for each asynchronous message reception in F,
the corresponding sending is already in C,

V(I,E,I')eMsgel' € F = L€ C.

The cut C’ = C U F is called direct successor of C' via F, denoted by C ~ = C".
——~——————

9159

Successor Cut Example

—9-2019-06-03 - Scutfirerest—

CNF =0—C U Fisacut—only direct <-successors —same instance line on front pairwise unordered —
sending of asynchronous reception already in

Successor Cut Example

—9-2019-06-03 - Scutfirerest—

CNF=0—C U ZFisacut—only direct <-successors — same instance line on front pairwise unordered —
sending of asynchronous reception already in

10s59

10s59

Language of LSC Body: Example

gl
1tz [
Ste730
|
¢ i
|
|
|
|
|

—9-2019-06-03 Slscsem —

59

Language of LSC Body: Example

Flats

T To, 0y o)1 ol
GID A Glh S(F2B v G v e

I2,1.
AnFpE Pl g (Gl Gl

~Flzls

Q@

(@ G

G!I"“ /\ng,h

true

The TBA B(.Z) of LSC £ over C and £ is (C, Q, qini, —, QF) With
= "0

o Cg=CUEL where €l = {EV EY | B cé€,ijeT},
o (isthe set of cuts of _?g%u is the instance heads cut,

o —» consists of loops, progress transitions (from ~- £), and legal exits (cold cond./local inv.),

—~

° _(%F ={Ceq]| /@\ng/:{olld \% 95\5} is the set of cold cuts and the maximal cut.

—9-2019-06-03 - Slscsem —

59

TBA Construction Principle

9-2019-06-03 - Slscsem

Recall: The TBA B(.¥) of LSC Zis (C, Q, qini, —, QF) with

o Qisthe set of cuts of .Z, g, is the instance heads cut,

e Cp=CUEE,

e — consists of loops, progress transitions (from ~ x), and legal exits (cold cond./localinv.),
e Qr ={C € Q| ©(C) =cold v C = L} is the set of cold cuts.

So in the following, we “only” need to construct the transitions’ labels:

== {(a, Y10y (0),9) | € Q} U {(q,M)yq') lg~7 ¢} U{(g,Veit(a), £) | q € Q}

Yioop (q): “what l I ‘ l I ‘ l Is ‘
allows us to stay at :
tq”
_— cu y A I
Year(@): SN T !
“what allows us to ¥ (a q/)' { caheg) }
legally ewit”™—| ‘char;é;geri;ati;)n of T »&%TC"
C:
firedset F,,” ! }
I
I
. D_—4 !
T e
true g [!

1259

TBA Construction Principle

Loclnv,
A(=Pe2q™® (g, q0) V=05t (q, 4i)))

9-2019-06-03 - Slscsem

“Only” construct the transitions’ labels:

—={(¢:Y100p(2), @) | 7 € QY U{(q, Yprog(a,d'),d") | 4 ~F ¢’} U{(aq, Yexie(a), L) | € Q}

=4 fosp (@)

e N
Wioop (@) = V(@) A" (9) AYESE™ (a)
-~ —~———

Yewit (q) =
(Whor, (@) A —ead™ (9))
/WW-\/

h
V' Vicicn (Vg (a5 40)

Yprog (¢, qn) = ="t (a,an)

M Cond Locl
P @) A Vgt (@4n) Athygr " (a5 an)

Loclnv,
AP (g, an) A Yed™* (a, an)

13159

Loop Condition

9-2019-06-03 - Slscsem

'Ll)looP(Q) = stg(q) A wrl:gtcln\/(q) A wlgglzln\/(q)

o PME(g) = _'VISiSn,weMsg(qi\Q)z_ﬂ/\ (strict = /\ —)
X __ .- peeLNMsg(L)
=Ystrict (a)

Loclnv —
e g (@) = /\[:(l,L,¢,l/,L/)ELOC|nV, O(£)=0, Lactiveat g ¢

A location [is called front location of cut C'ifand only if 31’ € C el < I'.

Local invariant (1o, to, ¢, l1,¢1) is active at cut (1) ¢
if and only if o < I < 11 for some front location [of cutgorl =13 At = e.

o Msg(F) = {B/VT | (1, B,1) e Msg, 1 € F}U{EIDIO) | (1B, 1) e Msg, I/ € F}

o e

o Msg(F1, - F) = Uy cscn Msg(F) |

[R—

14/59

Progress Condition

9-2019-06-03 - Slscsem

Loclnv,
Pt (@, a1) = V(g qn) A Yrr(a, an) A b ™® (gn)

M) —
o Y9, 0i) = Apemsga\a) ¥ N Niti Npe(Msg(a;\a)\Msg(ai\a)) 7Y
A (strict == /\ —@)

YE(EENMsg(L))\Msg(F;)

::d’strict(q’%)
* Y54 0:) = Ay=(L.¢)cCond, ©(v)=0, L(g;\a) %0 ?

Loclnv,e N
° Py (2,9) = Aa=(1,0,6,/ 1) ELoclnv, ©(A)=0, A e-active at q; ¢

Localinvariant (lo, to, ¢, 11, t1) is e-active at ¢ if and only if

o lg <1 =<lyo0r ‘
o l=1lyANto=e,0r

e l=liANt1 =9

,,,,,,

for some front location [of cut (1) q. e ey ﬂ\I

15/59

Example (without strictness condition)

—9 -2019-06-03 — Slscsemexa—

Example (without strictness condition)

—9 -2019-06-03 - Slscsemexa—

L5 L%)
v ?

1659

Iy,13
Ell,z

E’.{I’IQ/_‘(Z& (q2)t) E11,12

Iy,1 Io, 1
G!z, 1 /\Glz, 1
Iz,1.
/_\F‘z 3

1o, 1:
“szw 3

E711,12 N

12, I Ia, T
G!2 1/\G?2 1

true

1659

~9-2019-06-03 - Scontent —

-9 -2019-06-03 - main —

Content

e Live Sequence Charts

e TBA Construction

e LSCs vs. Software

e Full LSC (without pre-chart)

® Activation Condition & Activation Mode

e (Slightly) Advanced LSC Topics
® Full LSC with pre-chart

e LSCs in Requirements Engineering

® strengthening existential LSCs (scenarios)
into universal LSCs (requirements)

‘e LSCs in Quality Assurance

o Requirements Engineering Wrap-Up
o Requirements Analysis in a Nutshell

o Recall: Validation by Translation

17159

Excursion: Symbolic Biichi Automata

1859

From Finite Automata to Symbolic Biichi Automata

~9-2019-06-03 - Stba—

W=0(010/01017 .-
L(3)=030)*

A £={01) B: £={01)
0 Biichi 0

L(A)=0(10)*

infinite words

0010 v B’: = {0,1}
oy X \’ 1 '
QLO(‘l X
0
_ 2
symbolic chl) T

symbolic

f/:{a‘&;,c,.lf

Asym: 2= ({a,b,c,d} — B)
alAb

cvVd

W a
(EE) 600900 Vo,

A v

¥ = ({a,b,c,d} — B)

infinite words

19159

Symbolic Biichi Automata

~9-2019-06-03 - Stba—

Definition. A Symbolic Biichi Automaton (TBA) is a tuple

B= (CB7Q7qi7"Li)_>7QF)
where
e Cgis a set of atomic propositions,
e Qis afinite set of states,
o ¢ini € Q is the initial state,

* = C Q x 2(Cr) x Qis the finite transition relation.

Each transitions (g, 1, ¢’) € — from state q to state ¢’
is labelled with a propositional formula i € ®(Cg).

o Qr C Qs the set of fair (or accepting) states.

Biym: ¥ = ({a,b,c,d} - B)

Example: (@) e

evd 2059

Run of TBA

03 - Stba

019-06.

Definition. Let B = (C, Q, qini, —, Qr) be a TBA and
w = 01,02,03, - € (Cg — B)”

an infinite word, each letter is a valuation of Cx.

An infinite sequence
0=q0,q1,q2--- €Q”
of states is called run of 5 over w if and only if

® qo = Qini»

o foreach i € INg there is a transition (g;, Vi, gi+1) €— st. oi = ;.

Boym: ¥ =({a,b,c,d} — B)
alAb
Example:
cvd

w = {a — true, b — true, c — false, d — false}, {c}, {a, b}, ({d}, {a,b})*

{a,b} for short 2159

The Language of a TBA

2019-06-03 - Stba

Definition.
We say TBA B = (Cs, Q, qini, —, QF) accepts the word

w = (0;)ien, € (Cs8 — B)”

if and only if B has arun
0 = (gi)iew,
over w '

such that fair (or accepting) states are visited infinitely often by o, i.e.,

VieNodj>i:q; €Qr.

We call the set Lang(B) C (Cs — B)“ of words that are accepted by 5
the language of B.

Boym: ¥ = ({a,b,c,d} = B)

Example: (@) - ;

2259

LSCs vs. Software

2359

Software, formally

Definition. Software is a finite description S of a (possibly infinite)
set [[S] of (finite or infinite) computation paths of the form

Ch &2
Oy —> 01 —> Og """

where
e 0; € 3,1 € Ny, is called state (or configuration), and
o «a; € A, i € INy,is called action (or event).

The (possibly partial) function [-] : S +— [S] is called interpretation of S.

8/49

4
3
&
2
)
o
1

2459

Software Specification, formally

o 2
e
Customer Developer Cuslomer Developer Customer Developer Developer Customer
announcement software contract i
(Lastenheft) (Pﬂ,th'e"he") (incl. Pflichtenheft) ftware delivery

Definition. A software specification is a finite description .
of a (possibly infinite) set [.’] of softwares, i.e.

1= {60 [-10): (S2, [12), - - }-
The (possibly partial) function [-] : .7 — [.] is called interpretation of .7

Definition. Software (S, [-]) satisfies software specification ., denoted by S |=
., if and only if

—9-2019-06-03 - Sformalre —

e (51D € 1#1.
i /49
. 25/59
SOftW Satzsﬁg&&oftware Specification: Ex ¢ @
Needs!
A o)
B
T T e
Customer Developer Cuswmer Develcper Customer Developer Customer
el (Pfllch(enhefl) Sc?uf::lv e software delivery
Software Specification Software
% e Assume we have a program .S for the room
[T room ventilation IR ventilation controller.
b__| button pressed? xlxl- o Assume we can observe at well-defined
off | ventilation off? X | = | = . L e
o | ventilation or? —Tx = points in time the conditions b, off, on, go,
stop when the software runs.

‘ go ‘ start ventilation H X ‘ — ‘ — ‘
I -

Lstor |IETRETIA0, Lx |- o Then the behaviour [S] of S can be viewed as
computation paths of the form
Define: (S, [-]) € [] if and only if for all 00 > 01 Ly on -
0o Loy 22 5y € [S] where each o; is a valuation of b, off, on, go,
stop, i.e.o; : {b, off, on, go, stop} — B.
andforalli € INg,
e For example:
IreTeo; = F(r). b b
(oﬁ);(oﬁ>;(an);(on);(Oﬁ)
go stop

2659

~9-2019-06-03 — Sformalre —

~9-2019-06-03 - Slscussw

Soft\jzazg Satzsﬁg&é{oftware Specification: Another Examgl%

S S = R U G T ¥

Customer Developer Cmmmer Develcper Customer Developer Developer Customer
announcement software contract i
(Lastenheft) (Pfllch(enhefl) {incl. Plichtenheft) software delivery

Software Specification Software
S '
e Assume we can observe at well-defined
i points in time the observables relevant for the
. e b e L
e \ LSC (conditions and messages) when the soft-
/ ‘ User CoinValidator ‘ ‘ ChoicePanel ‘ ‘ Dispenser \
/ T ew ‘ : 5\ ware S runs.
/ 7 | | \ . .
\ z dreR ! | / o Then the behaviour [S] of S can be viewed
\ T i i / . !
\ st instok ! / as computation paths over the LSC's observ-
: ‘ 1 ! ables.
2 WAzen
é ok ! e For example:
7 ! !
2 ! i | - £V pSOFTY:Y T - T SOFTV:U
00— 0| ——— 2020320 T3 06— ...
. . . / user usTer »\,,ot,'fy
Define: (S,[-]) € [.] if and only if machine inserts 1€ presses user
switched buttons ‘SOFT" prepare drink
e tja... (in a minute) on lightup ~ button dispenser ready

e And then we canrelate S to ..

2759

The Plan: A Formal Semantics for a Visual Formalism

‘none
AM__invariant _I:__strict

does the software
satisfy the LSC?

LT i
DT
E 1 read out relevant
e e ! information
concrgte syntax ((£,=%,~),Z,Msg, apply construction
(diagram) Cond, Loclnv, ©) procedure

abstract syntax

semantics
(Biichi automaton)

software

? 2846

2859

LSCs as Software Specification

A software S is called compatible with LSC . over C and € is if and only if
AT
o X =(C — B),C C C,i.e.the states comprise valuations of the conditions in C,

o A= (B — B), &L C B,ie. the events comprise valuations of Ef’j, E;J

A computation path m = ’ = 0y - -+ € [S] of software S induces the word

w(m) = (o Uai), (01 Uag), (c2Uas),...,
we use W to denote the set of words induced by [ST, i.e.

Ws = {w(r) | € [S]}.

9-2019-06-03 - Slscussw

2959

LSCs vs. Software (or Systems)

(-3
o=
=4
e
=
s
=
p—
o

E1UV SoFTY.V. SOFT
:@@ 02&—/03;04%05—>~~6[[S]]
_—

W)= 5, 183, 1p50775, 84, 34 87, £F8, 3 L.)
- -0 - (s 7l

w={},{B1YV, E1TVY {pSOFTTY pSOFTT VY, {}, {}. {}. {SOFT)"Y, SOFTY Y}, {3}, ...
€ Lang(B(Z))

L A,

‘ User ‘ ‘ Vend. Mach. / v oy TBAoverCs = C U EF,
mELT ASBL whereC = 0 and
Bl DV ABIDY 5= {E1 v
UV
PSOFT ~pSOFTYY A —pSOFTY E1TY, gSVOFT,)
pSObT\./ A pSOFTYY pSOFQ;?L;)
SOFT ﬁSOFTVU _SOFTVU SOFT,>",

, SOFTYY, ...}
! | sorr¥"V A soFTYY ! }

E1: insert 1€ coin true
pSOFT: press ‘SOFT button %

SOFT: dispense soft drink

9 -2019-06-03 - Slscvssw

3059

LSCs vs. Softwa

re (or Systems)

9-2019-06-03 - Slscussw

9-2019-06-03 - Scontent

T E1UV pSOFTY.V
o2

sorTV:Y
03 504 5 05 5 0 s --- € [S]

(-3
o=
=4
oa
=
s
=
pu—
o

o) — 01

w(m) = o9, (01 U{E1 !U’V, Elg’v), (o2 U {pSOFT!U’V, pSOFTéJ‘V), 03,04,05,

(06 U{SOFTY, SOFTY'Y),. ..

w={},{E1)"Y, B1]

YV ApSOFTY pSOFTYV Y, {3, {}, {}, {SOFT"Y, SOFT;"Y},{},...
€ Lang(B(Z))

TBAoverCs = C U £,

User ‘El‘ Vend. Mach.] ;Ez !U'VU./:;EI BV W}%ef ore %?‘?d
B1"7 NEL, p={E1 ",
pSOFT -pSOFTYY A—psorTVV Bl oY, gSVOFT,U’Vv
pSOFTY A psOFTYY pSOFT," ",
SOFT ﬁSIOFT,V'U A ﬁS.OFT,‘,/’U SOFT"",

SOFTYY, ...}
! SOFTY"Y A SOFTYY 7

FE1: insert 1€ coin true

pSOFT: press ‘SOFT button
SOFT: dispense soft drink

Content

3059

e Live Sequence Charts

e TBA Construction
e LSCs vs. Software

BN
-l;ﬂo Full LSC (without pre-chart)

(® Activation Condition & Activation Mode

e (Slightly) Advanced LSC Topics
(® Full LSC with pre-chart

e LSCs in Requirements Engineering

(® strengthening existential LSCs (scenarios)
into universal LSCs (requirements)

‘e LSCs in Quality Assurance

e Requirements Engineering Wrap-Up

(e Requirements Analysis in a Nutshell

(e Recall: Validation by Translation

359

Activation Condition and Mode

Full LSC Syntax (without pre-chart)

9-2019-06-03 - Slscac

LSC: buy softdrink
C: rue
AM: __invariant I permissive

Al tr

i i
} ‘ User ‘ ‘ Vend. Mach. ‘ |

I
! El I
! |
! |
! pSOFT !
| |
| |
} SOFT |

|
| |

AfullLSC . = (MC, aco, am, © &) consists of

activation condition aco € ®(C),

o strictness flag strict (if false, 2 is permissive)

o activation mode am € {initial, invariant},
activation mode (

LSC: power-on self test
AC:

true -
AM: __initial I: permissive

User ‘ ‘ Vend. Ma. ‘

ckWATER

ckSOFT

lg— CROUZ L

ckTEA

chart mode existential (© ¢» = cold) or universal (© ¢» = hot).
— —_—

(non-empty) main-chart MC = ((Lar, <ars~nr)s g, Msgyy, Cond g, Loclnvpg, O),

3259

3359

Software Satisfies LSC

Let S be a software which is compatible with LSC ¢ (without pre-chart).
We say software S satisfies LSC ., denoted by S = .Z, if and only if

o

am = initial

am = invariant

cold

Jw € Ws e w® = ac A bzt (Co)
A WY = Yprog (B, Co) Aw/1 € Lang(B(Z))

Jw € Wg Ik € Ng e wF = ac A ezt (Co)
oA

AwWF = Pprog (B, Co) Aw/k + 1 € Lang(B(Z))
. —~—~————

hot

Yw € Ws ew? = ac A et (Co)

= ' | Yprog (0, Co) ANw/1 € Lang(B(£))
——

Ywe Ws Yk e Noew |= ac A =theqit (Co)
= wk = ¢, Co)Aw/k+1 € Lang(B(Z))
A~ T —

where and Cj is the minimal (or instance heads) cut of the main-chart.

LSC: buy softdrink

AC: rue

AM: invariant I: permissive
| |
| ‘ User ‘ ‘ Vend. Mach. ‘ |
| |
| £l |
| |
| |
| pSOFT |
| |
| |
} SOFT }
| |

Software Satisfies LSC

power-on self test ‘

b

rue
initial I: permissive

‘ User ‘ ‘ Vend. Ma. ‘
I ckWATER

| CRAAIBR

ckSOFT

ckTEA

Let S be a software which is compatible with LSC ¢ (without pre-chart).
We say software S satisfies LSC ., denoted by S = .7, if and only if

Oy am = initial am = invariant

o Jw € Ws e w® = ac A gt (Co) Jw € Ws Ik € Ny @ wk = ac A =it (Co)

8 A WO = Yprog (B, Co) Aw/1 € Lang(B(Z)) A WP = Pprog (B, Co) Aw/k + 1 € Lang(B(Z))
s Vw e Ws e w® = ac A =therit (Co) Yw € WsVk € Nog e wh |= ac A —theqit (Co)

<= = w' | Yprog (0, Co) ANw/1 € Lang(B(Z))

= wk = Cod((, Co)Aw/k+1 € Lang(B(.L))

hot

where and Cj is the minimal (or instance heads) cut of the main-chart.

Software S satisfies a set of LSCs .74, . ..

LSC: buy softdrink

AC: true

AM: invariant I: permissive _
| |
} ‘ User ‘ ‘ Vend. Mach. ‘ |

|

! El !
| |
! |
! pSOFT !
| |
| |
} SOFT }
| |

LSC: ?ower-on self test

AC: rue

AM: initial I: permissive

‘ User ‘ ‘ Vend. Ma. ‘
ckWATER
ckSOFT
ckTEA

,Znifandonlyif S | & foralll <i <n.

3459

3459

9-2019-06-03 - mair

LSCs At Work

Example: Vending Machine

9 -2019-06-03 - Slscatwork

o Positive scenario: Buy a Softdrink
We (only) accept the software if it
is possible to buy a softdrink.
(i) Insert one 1euro coin.
(i) Press the ‘softdrink’ button.
(iii) Get a softdrink.

o Positive scenario: Get Change
We (only) accept the software if it
is possible to get change.
(i) Insert one 50 cent and one 1 euro coin.
(i) Press the ‘softdrink’ button.
(iii) Get a softdrink.
(iv) Get 50 cent change.

o Requirement: Perform Self-Test on Power-on
We (only) accept the software if it
always performs a self-test on power-on.
(i) Check water dispenser.
(i) Check softdrink dispenser.
(iii) Check tea dispenser.

[SC: buy softdink
AC: true

AM: _invariant_I:__permissive

User Vend. Mach.

E1

pSOFT

[SC. getchange
AC Fue
AM: _invariant_I: _permissive

User Vend. Ma.

50

Jai)

PpSOFT

SOFT

chg-C50

LSC:

\C: true
AM: initial |: permissive

User Vend. Ma.

CckWATER

power-on self test

ckSOFT

ckTEA

3
P~
=
=
=
=Y
o

3559

36s59

~9-2019-06-03 - Scontent —

-9 -2019-06-03 - main —

Content

e Live Sequence Charts

e TBA Construction

e LSCs vs. Software

e Full LSC (without pre-chart)

® Activation Condition & Activation Mode

—_—

e (Slightly) Advanced LSC Topics
® Full LSC with pre-chart

e LSCs in Requirements Engineering

® strengthening existential LSCs (scenarios)
into universal LSCs (requirements)

‘e LSCs in Quality Assurance

o Requirements Engineering Wrap-Up
o Requirements Analysis in a Nutshell

o Recall: Validation by Translation

37159

(Slightly) Advanced LSC Topics

3859

Full LSC Syntax (with pre-chart)

9-2019-06-03 - Slscpe

@@/OWCE // 7

L oL |

wa - choct

LSC: buy water

AC: true

AM: invariant | strict
/
/ ‘ User

‘ ‘ CoinValidator ‘
T

‘ ChoicePanel ‘ ‘ Dispenser A
T T

AN

SN

W

water_in_stock

|
|
|
|
|
|
|
| /
|

ANSNNNNNNNN

AfullLSC.Z = (PC, MC, aco, am, © &) consists of

e pre-chart PC = ((Lp,=2p,~p),Zp,Msgp, Condp, Loclnvp, ©p) (possibly empty),

e (non-empty) main-chart MC = ((Lnr, <, ~M), Zar, Msgyr, Condpy, Loclnvay, ©),

o activation condition acy € ®(C),

o strictness flag strict (if false, . is permissive)

o activation mode am € {initial, invariant},

o chart mode existential (© ¢ = cold) or universal (© » = hot).

LSC Semantics with Pre-chart

9-2019-06-03 - Slscpc

TSC buy water
A b
AM: _invariant_L: _strict

e —

\
/ [_user | [Coinvalidator | [ChoicePanel | [Dispenser |\
/ 7 T T T \
/ 5 | \
/ —Cn__ ! | \
/ 7 | \
s 7 . !]
\ 7 g ! /

|
I
|
|
| /
I
|
|
|

AN

WATEe
|

am = initial

am = invariant

Oy = cold

JweWIme Nge
Aw® [ac A it (CF) Abprog (B, CF)
Aw/l,...,w/m € Lang(B(PC))
Aw™tt E ﬁwmt(C(ﬂW)
Aw™T? = wp'wy(@ﬂ Cé\l)
ANw/m + 2 € Lang(B(MC))

FJweWIk<meNge
Awk E ac A et (Cé’)/\wpmq(& C(I;)
Aw/k+1,...,w/m € Lang(B(RLC))
Aw™tt E ﬁwmt(Céw)
Aw™T? = wp'wy(@ﬂ Céw)
ANw/m+2¢€ Lang(BLI;/&))

O = hot

VweWVmeNge
Aw® = ac A et (CF) Adbyrog (8, CF)
Aw/l,...,w/m € Lang(B(PC))
Aw™ = e (CFF)
= wmt! = wpmg(wvcéu)
ANw/m +2 € Lang(B(MC))

VweWVk<meNge
AW = ac A et (CF) Abprog (0, CF)
Aw/k+1,...,w/m € Lang(B(PC))
Aw™ e e (C)F)
= W™ (8, C3)
Aw/m + 2 € Lang(B(MC))

where C’(f’ and C[’)M are the minimal (or instance heads) cuts of pre- and main-chart.

3959

4059

Pre-Charts At Work

. 41159

Example: Vending Machine

L
=
=
=
o Requirement: Buy Water =
T
We (only) accept the software if, / "\M e “ “‘"" ;"ﬂi ffffffff \"\ ffffffff "\
y e i e e

(i) Whenever we insert 0.50 €, % ‘ : !

! 7 | | |

(i) and press the ‘water button \ % L | !

(and no other button), \

AWy

(iii) and there is water in stock,

(iv) then we get water
(and nothing else).

AN

o Negative scenario: A Drink for Free
LS only one dink

We don't accept the software if AW imvariant 1 permissive
-

it is possible to get a drink for free. / User vendma. |\
\

(i) Insert one 1euro coin. // £)
(i) Press the ‘softdrink’ button. ! 1507 >
(iii) Do not insert any more money. \\ sort wz:/@
(iv) Get two softdrinks. \ sorr J

false

S
3]

4259

~9-2019-06-03 - Scontent —

-9 -2019-06-03 - main —

Content

e Live Sequence Charts

e TBA Construction

e LSCs vs. Software

e Full LSC (without pre-chart)

® Activation Condition & Activation Mode

e (Slightly) Advanced LSC Topics
® Full LSC with pre-chart

e LSCs in Requirements Engineering

® strengthening existential LSCs (scenarios)
into universal LSCs (requirements)

‘e LSCs in Quality Assurance

o Requirements Engineering Wrap-Up
o Requirements Analysis in a Nutshell

o Recall: Validation by Translation

4359

LSCs in Requirements Analysis

4459

Requirements Erggineering with Scenarios

NN

o 0 O
© o
® - '@ Ed
i - 14 - - kel
ff

Customer Developer Customer Developer Customer Developer Developer Customer
announcement offer software contract i
(Lastenheft) (Pflichtenheft) (incl. Pflichtenheft) software delivery

One quite effective approach:

(i) Approximate the software requirements: ask for positive / negative existential scenarios.

o Ask the customer to describe example usages of the desired system.
In the sense of: “If the system is not at all able to do this, then it's not what | want.”
(— positive use-cases, existential LSC)
o Ask the customer to describe behaviour that must not happen in the desired system.

In the sense of: “If the system does this, then it’s not what | want.”
(— negative use-cases, LSC with pre-chart and hot-false)

(ii) Refine result into universal scenarios (and validate them with customer).

o Investigate preconditions, side-conditions, exceptional cases and corne
(— extend use-cases, refine LSCs with conditions or local invariants)

o Generalise into universal requirements, e.g., universal LSCs.

o Validate with customer using new positive / negative scenarios.

4559

—9-2019-06-03 - Sstrengthen —

Strengthenjnga Scengrios Into Requirements ©

J 5T S T W = W NE

Customer Developer Customer_ Developer Customer Developer G e
announcement offer software contract i
{Lastenheft) {Pflichtenheft) {incL Pflichtenheft) iy

—9-2019-06-03 - Sstrengthen —

9-2019-06-03 - main

Strengthening Scengrios Into Requirements
o U

O

A

E

Customer ot Customer_ Developer Customer Developer Customer
announcement offer software contract i
Lastenheft) {Pflichtenheft) {incL Pflichtenheft) software delivery

o Ask customer for (pos./neg.) scenarios, note down as existential LSCs:
N

7] 7

1 muwon | [conoler [Moo] sensor | 1 1 muwon | [conoler [Moror Sensor

i i i

! down pressed ! ! down pressed]

| ! oosition £ bollorn i | osition £ bollom |

1 ! 1 1 !

| ! Tove down | | Tove down !

| e — | 1 I

I ! | i down released !

| ! stop i | | stop !

i ! ! i i !

/ Button ‘ ‘ Controller ‘ | Motor ‘ ‘ Sensor ‘ A
\
(/ down pressed \
\ ostion — bottom
Y ‘move down
N 7
. /
T
7 7 7 7
:]]]
o Strengthen into requirements, note down as universal LSCs:
~———
[SC move down 1 [SC move down 2
AM: invariant | strict AM: invariant | strict LSC dontmove
ittt ——— N Yttt ——— \ AM! _invariant_I: _ strict
/| euton | [controler | [Motor | [sensor | /| euton | [convoller [motor |
/
N | ‘position 7 bottom / N ‘position # bottom / down pressed /.
L T hm e N T ety NN ‘position — bottom
I Tove down, 7 ~down_released i movedown_| f -bottom_reached >
I [R T e e A
| l. bottomfeached B |down releaseg ek T
! ! ' down releaseg]
1 stop } } stop
|stp) [i

I I I I I I

o Re-Discuss with customer using example words of the LSCs’ language.

LSCs vs. Quality Assurance

move_down

4659

4759

How to Prove that a Software Satisfies an LSC?

9-2019-06-03 - Slscqa

LSC: get change
AC: Eue &

AM: _invariant_I: _permissive

| U Vend. M: i

i ser /end. Ma.

| |
LSC: buy softdrink | C50 !
AC true I |
AM:_invariant I permissive | }

-~ | .
I E1

| |
1 User Vend.Mach. || 1 |
| 3 |
I El | ! PSOFT |
| | I

|

| | | |
! PSOFT | ! SOFT |
| ! |
| | ! |
! SOFT | 1 chg-C50 |
! I
| | ! |

o Software S satisfies existential LSC . if there exists = € [S]
such that .# accepts w(r). Prove S |= % by demonstrating 7.

o Note: Existential LSCs* may hint at test-cases for the acceptance test!
(: as well as (positive) scenarios in general, like use-cases)

modules _ system
/ designed / - "/ realised

4859

How to Prove that a Software Satisfies an LSC?

o Software S satisfies existential LSC . if there exists = € [.S]
such that . accepts w(w). Prove S |= £ by demonstrating .

o Note: Existential LSCs* may hint at test-cases for the acceptance test!
(x: as well as (positive) scenarios in general, like use-cases)

9-2019-06-03 - Slscqa

4859

How to Prove that a Software Satisfies an LSC?

9-2019-06-03 - Slscqa

o Software S satisfies existential LSC . if there exists = € [S]
such that . accepts w(w). Prove S |= £ by demonstrating 7.

o Note: Existential LSCs* may hint at test-cases for the acceptance test!
(: as well as (positive) scenarios in general, like use-cases)

TSC by water
SC buyva

N et ¢ e |
/,‘ User | [Coinvalidator | [ChoicePanel | [Dispenser |
/ = \ : ; \
S e : o
{ / | | |
! p50FT \ \ G WAL i !
!) \ L
\ ; \ water_in_stock /
\‘, SOFT G > \ 2 T /
\ sorr 7 i G AT
\ / 7 0 |
‘ tfale ‘ 7 i !
A : !
o Universal LSCs (and negative/anti-scenarios!) in general need an !
(Because they require that the software exhibits the unwanted behaviour.)

Prove S £ £ by demonstrating one 7 such that w () is not accepted by .Z.
4859

Pushing Things Even Further

9-2019-06-03 - Slscqa

(Harel and Marelly, 2003)

4959

Tell Them What You’ve Told Them. . .

e Live Sequence Charts (if well-formed)
o have an abstract syntax: instance lines, messages, conditions,
local invariants; mode: hot or cold/
e From an abstract syntay(nechanically construct its TBA.

* AnLSCis satisfied by asoftware S f and only i

o existential (cold):

® there is a word induced by a computation path of .S
® which is accepted by the LSC's pre/main-chart TBA.

o universal (hot):

o all words induced by the computation paths of S
® are accepted by the LSC’s pre/main-chart TBA.

e Pre-charts allow us to
o specify anti-scenarios (“this must not happen’M
e contrain activatior\x./

e Method:

e discuss (anti-)scenarios with customer,
o generalise into universal LSCs and re-validate.

9-2019-06-03 - Sttwytt

Requirements Engineering Wrap-Up

9-2019-06-03 - main

5059

5759

Topic Area Requirements Engineering: Content

9 -2019-06-03 - Sblockcontent

~9-2019-06-03 - Swrapup —

VL5 e Introduction
o Definition: Software & SW Specification
o Requirements Specification
o Desired Properties
Vocabulary
o Kinds of Requirements

o Analysis Techniques Techniques

o Documents informal

VL
6 o Dictionary, Specification

o Specification Languages
semi-formal
o Natural Language
o Decision Tables

(® Syntax, Semantics
VF 7 formal

(® Completeness, Consistency, ...
VL8 e Scenarios

(® User Stories, Use Cases
(® Live Sequence Charts

VL9 (® Syntax, Semantics

e Wrap-Up

Risks Implied by Bad Requirements Specifications

preparation of tests,

o without a description of allowed outcomes, tests are
randomly searching for generic errors (like crashes)
— systematic testing hardly possible

design and implementation,

o without specification,
programmers may just “ask
around” when in doubt, possibly
yielding different interpretations

acceptance b
— difficult integration P Y

customer,
=" resolving later
objections or regress
claims,

negotiation
(with customer,
marketing

department, or

.

customer developer

without specification, it
is unclear at delivery

is an error (developer
needs to fix) or correct
(customer needs to
accept and pay) —
nasty disputes,
additional effort

documentation, e.g, the user’s manual,

o without specification, the user's manual author can only
describe what the system , not what it should do

(“every observation is a feature”) . L
o without specification, re-use needs to be based on

re-reading the code — risk of unexpected changes

o later re-implementations.

o the new software may need to adhere to requirements of the old software; if not properly specified,

3

time whether behaviour

the new software needs to be a 1:1 re-implementation of the old — additional effort 1249

5259

5359

Requirements Analysis in a Nutshell

o Customers may not know what they want.
e That's in general not their “fault”!
o Care for tacit requirements.
o Care for non-functional requirements / constraints.
o For requirements elicitation, consider starting with
o scenarios (“positive use case”) and anti-scenarios (“negative use case”)
and elaborate corner cases.
Thus, use cases can be very useful — use case diagrams not so much.
¢ Maintain a dictionary and high-quality descriptions.
o Care for objectiveness / testability early on.

Ask for each requirements: what is the acceptance test?

¢ Use formal notations
o to fully understand requirements (precision),
o for requirements analysis (completeness, etc.),
e to communicate with your developers.

e If in doubt, complement (formal) diagrams with text
(as safety precaution, e.g., in lawsuits).

Formalisation Validation

Two broad directions: o Option 1: teach formalism o Option 2: serve as
(usually not economic). translator / mediator.
Fcivalid
® I aybevlid -

/ g s vluation o

// ‘\ T @

[*

\ @ M

\ ‘\ vIx expert =/

. customer 4

@ domain experts tell system scenario S (maybe keep back, whether allowed / forbidden),
@ FM expert translates system scenario to valuation o,

® FM expert evaluates DT on o,

@ FM expert translates outcome to “allowed / forbidden by DT",

® compare expected outcome and real outcome.

o Recommendation: (Course’s Manifesto?)

o use formal methods for the most important/intricate requirements

(formalising all requirements is in most cases not possible),
o use the most appropriate formalism for a given task,

700 know (really) well >
G o baaivel >

o use formalisms |

394

5459

5659

(Strong) Literature Recommendation

Aus der Praxis
von klassisch bis agil

HANSER

SOPHIST)

(Rupp and die SOPHISTen, 2014)

~9-2019-06-03 - Swrapup -

References

~9-2019-06-03 - main—

5759

5859

References

-9 -2019-06-03 - main —

Harel, D. and Marelly, R. (2003). Come, Let’s Play: Scenario-Based Programming Using LSCs and the Play-Engine.
Springer-Verlag.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Rupp, C. and die SOPHISTen (2014). Requirements-Engineering und -Management. Hanser, 6th edition.

5959

