Softwaretechnik / Software-Engineering

Lecture 10: Structural Software Modelling

2019-06-17

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Vocabulary

Topic Area Architecture & Design: Content

vL10

L
o Principles of Design
W. modularity, separation of concerns
vL12
ating Finite Automata (CFA)
= Uppaal query language
VL1 | <o CFAvs. Software

« Unified Modelling Language (UML)
—H,o basic state-machines
(o an outlook on hierarchical state-machines

« Model-driven/-based Software Engineering

Content

« Vocabulary

Lo

(= Systemn, Architecture, Design

« Software Modelling

T views & viewpoints
(s the 4+1 view

 Class Diagrams

concrete syntax,

abstract syntax,
semantics: system states.
o class diagrams at work,

o Object Diagrams

 concrete syntax,

o dangling references,

« partial vs. complete,

= object diagrams at work.

Vocabulary

ecture— The fundamental oganizats bodicdnits a6

sheir rela-

o
SEEE 1471 (2000)

iErchiecture Smponents,interfaces,

and other characterisics of a ystem or component.

(2) The result of the process in (). IEEE 610,12 (1990)

Vocabulary
hi The fund: \ ofa their rela-
IEEE 1471 (2000)
design—
(1) The process of defining the architecture, components, interfaces,
and other characteristics of a system or component.
(2) The result of the process in (1). IEEE 610.12 (1990)

or structures of
those elements, and the relationships among them.
(Bass etal, 2003)

 ——

architectural descript . product ~to d
record a systers architecture. An architectural description conveys a set of views each of which
depicts the system by describing domain concerns.

etal, 1996)

Even More Vocabulary

module— (1) A program unit that s discrete and identifiable with respect to compiling, combining
with other units, and loading; for example, the input to, or output from an assembler, compiler,
linkage editor, or executive routine.

(2) Alogically separable part of a program. IEEE 610.12 (1990)

mode- e o e oemined

by the programmers. (Ludewig and Lichter, 2013)

Vocabulary Cont’d

system— A collection of components organized to accomplish a specific function or set of func-

tions. IEEE 1471 (2000)

software system—

Asetof g

This purpose s in general comple includes, next to providing one (or more) executable
(s). also the org . further

(Ludewig and Lichter, 2013)

Even More Vocabulary

‘module— (1) A program unit that s discrete and identifiable with respect to compiling, combining
with other units, and loading; for example, the input to, or output from an assembler, compler,
linkage editor, or executive routine.

(2) Alogically separable part of a program. IEEE 610.12 (1990)

module— A set of i i plicitly permit
by the programmers. (Ludewig and Lichter, 2013)
interface— A y two i i

with each other. (Bachmann etal, 2002)

interface (of component)— The boundary between two communicating components. The inter-
face of a component provides the services of the component to the components environment
nd/or the A€rtewig and Lichter, 2013)

Vocabulary Cont’d

system—A 8=53®5§ to accomplish a specific function or set of func-
tions. EEE 1471 (2000)

Software system—
Asetof , if they together
“This purpose s in general complex, it usually includes, next to providing one (or more) executable
) d further
(Ludewig and Lichter, 2013)
Oneof software

.a
and may be subdivided i IEEE 610,12 (1990)

software component— An architectural entity that

ibset of and/ ordats
nﬁ:aawaa:o.3_2325%3_5.;%5.2saasa
_.\,.\vv v

(Taylor etal, 2010)

Once Again, Please

Interface
has =
System Component Component Interface
Software System ——————— Software Component

e properts o has clement, and he reatonhip o e

Software Architecture

Architecture
s described by

g Architectural Description

Goals and Relevance of Design

« The structure of something is the set of relations between its parts.

. ing not built from (recognisable) parts i called

Topic Area Architecture & Design: Content

V10| Introduction and Vocabulary
© Software Modelling
Lie iodelbiews viewpoints; +1 view
© Modelling structure

W. (simplified) Class & Object diagrams

VLT L (simplified) Object Constraint Logic (OCL)
 Principles of Design
modulariy, separation of concerns
information hiding and data encapsulation
abstract data types, object orientation
L2

o Design Patterns
* Modelling behaviour
» Communicating Finite Automata (CFA)
+ Uppaal query language
VL13 |« CFAvs.Software

1 B W. basic state-machines
| : © an outlook on hierarchical state-machines

1 * Model-driven/-based Software Engineering

Goals and Relevance of Design

» The structure of something is the set of relations between its parts.
» Something not built from (recognisable) parts is called unstructured.

Design..
(i) structures a systeminto manageable units (yields software architecture),
(

determines the approach for realising the required software,

provides hierarchical structuring into a manageable number of units
at each hierarchy level.

Oversimplified process model “Desig

1 design implementation
: 10

Content

« Vocabulary
Liesystem, Architecture, Design
* Modelling

« Software Modelling

W. sms&sgvgam
o the 441 view
 Class Diagrams
« concrete syntax,
« abstract syntax,
© semantics: system states.
« class diagrams at work,
o Object Diagrams
« concrete syntax,
« dangling references,
 partial vs. complete,
« object diagrams at work.

$ =

Goals and Relevance of Design: An Analogy

Design...
(i) structures a system into manageable units [..],

determines the approach for realising the [system],

intoa

provides hierarchi
at each hierarchy level.

Regional Planning: Design a Quarter.

Modelling

number of units

Example: Design-Models in Construction Engineering

Model Model
Definition. (Folk) Amodel s an ab: formal, ical representation or description Definition. (Folk) A i formal, ion or description 1. Requirements
of structure or behaviour of a (software) system. of structure or behaviour of a (software) system. 3, System
+ Shllftonghen
piceot and
+ Eachroom shall s
havea door
« Fumiture shal it
Definition. (Glinz, 2008, 425) S
Amodel is a concrete or mental image (Abbild) of something have awindow.
ora concrete or mental archetype (Vorbild) for something. + Cosalten
Three properties are constituent:
(i) the image attribute (Abbildungsmerkmal) ie. there is an entity
(calld orgina) §3m image or archetype the model s,
he red: ie. only th ibutes of the original
that are relevant in n_ﬁ modelling context are represented,

the pragmatic attribute,
. the model i built in a specific context for a specific purpose.

3 1501 2 1501 2 16061
Example: Design-Models in Construction Engineering Example: Design-Models in Construction Engineering Example: Design-Models in Construction Engineering
2. Designmodel 2. Designmodel 2. Designmodel
1. Requirements 1. Requirements 1. Requirements
. 1 3. System i 3. System | V:!am'. 3. System
e DD ;@ e — e e
i i i i 0
“ : o : Hovie fri e .
.HM qm ; 4 * st * 7 _%r e
EH + Bathroom shall . TH + Bathroom shall
[[v : e B e
Cosrsllbeln _.x « Costshallbein « Costshallbein s il
S _m _ o s | u - |
o N Ul | -
Observation (1): Floorplan abstracts from certain system properties, g ... Observation (2): Floorplan preserves/determines certain system properties, e.g.
« house and room extensions (to scale), « placement of subsystems
(such as windows).

« presence/absence of windows and doors,

 water pipes

« kind, number, and placement of bricks,
« wall decoration

« subsystem detais (e.g, window style),
the system (e

N

N

1661

A Better Analogy is Maybe Regional Planning

Examples for (Software) Models?

From Process Model to Concrete Process

k

@noauomm &

« concretise .

Process

170

Software Modelling

Examples for (Software) Models?

1861

1961

Examples for (Software) Models?

Examples for (Software) Models?

191

Examples for (Software) Models? Examples for (Software) Models?

.wM@m uumm. .: 1 w.. i

Views and Viewpoints

¥ 4
b=t pododn

1961
Views and Viewpoints Views and Viewpoints An Early Proposal: The 4+1 View (x: 1995)
o o
e o
view — A representation of a whole system from the perspective of a related set of view — A representation of a whole system from the perspective of a related set of
concerns. T IEEE1471(2000) concerns. IEEE 1471 (2000)
iewpoi ification of th i i . Apat- point— ificati i ingaview. A pat-
tem or template from which to develop individual views by establishing the purposes tem or template from which to develop individual views by establishing the purposes
and audience for a view and the techniques forits creation and analysis. and audience for a view and the techniques for s creation and analysi
IEEE 1471 (2000) IEEE 1471 (2000)
“A ive is ined by concerns and i ion needs:
« team leader, e.g. needs to know which team is working on what component,
« operator, g, needs to know which component is running on which host,
« developer, e.g. needs to know interfaces of other components.
. etc
205 205

2ls

An Early Proposal: The 4+1 View (kwuchien, 1995)

e e
scalabity commurication

Newer proposals (Ludewig and Lichter, 2013):

system view: How is the system under development integrated into (or seen by) its environment? With
which other systerns finelud does it

static view (~ developer view): Components of the
architecture, their interfaces and relations. Possibly:
assignment of development, test, etc. onto teams.

_

dynamic view (~ process view):
how and when are components instantiated
and how do they work together at runtime.

deployment view (~ physical view):
How instances mapped d hardware units?

Deployment / Physical View

Example: modern cars

« large number of electronic control units (ECUs) spread all over the car,

« which part of the overall software s running on which ECU?

« which function s used when? Event triggered, time triggered, continuous, etc.?

For, eg. a simple smartphone app, process and physical view may be trivial or determined by the
eemployed framework (— later) — so no need for (extensive) particular documentation.

22

An Early Proposal: The 4+1 View (k

endser prgranmes.
Foncionlty sftuae management

gt system engnees,
peance, “opelopy.
et cammumenn

Newer proposals (Ludewig and Lichter, 2013):

system view: How is the system under development integrated into (or seen by) its environment? With
which other systems (including users) does it interact how?

static view (~ developer view): Components of the dynamic view (~ process view):
architecture, their interfaces and relations. Possibly: how and when are components instantiated
assignment of development, test, etc. onto teams. and how do they work together at runtime.

deployment view (~ physical view):
How are component instances mapped onto infrastructure and hardware units?

(“Purpose of upport ionalit ionality is not part of the archit ")

e

Structure vs. Behaviour / Constructive vs. Reflective

236

Deployment / Physical View

Example: modern cars

« large number of electronic control units (ECUs) spread all over the car,

« which part of the overall software is running on which ECU?

+ which function is used when? Event triggered, time triggered, continuous, etc.?

220

Structure vs. Behaviour / Constructive vs. Reflective

« Form of the states
structure of S
« Computation paths r of S:

behaviour of S

Definitc i
finite) st [5] of (fnte or infinite) computation paths of the
form

where

* 01 € %,i € Ny, is called state (or configuration), and
© @ € A,i € No,is called action (or even).

(possibly partial) [):8m
pretation of S.

23

Structure vs. Behaviour / Constructive vs. Reflective

« Form of the states in ¥ (and actions in A): Definition. Software is a finite description S of a (possibly in-
finite) set [] of (fiite or infinite) computation paths of the
structure of 5 B
« Computation paths of S: o oy By

behaviour of § dize

« 01 € 5. € No, is called state (or configuration), and

« a; € A,i € Ny, is called action (or event).

The (possibly partial) function [- | : § -+ [S] is called inter-
pretation of 5.

(Harel, 1997) proposes to distinguish

descriptions of behaviour:

Content

Vocabulary
Lie ystem, Achitcture, Design
© Modelling
« Software Modellin;
T. smsmwsms%

o the 441 view

+ Class Diagrams

(e concrete syntax,

1o abstract syntax,

(e semantics: system states.
(o class diagrams at work,
Object Diagrams
 concrete syntax,

o dangling references,

o partial vs. complete,

« object diagrams at work.

Structure vs. Behaviour / Constructive vs. Reflective

« Form of the states in & (and actions in A): Defi

structure of S e)set [5] of (finite orinfinite) computation paths of the
N form

« Computation paths of 5:

behaviour of § where

* 01 € X, € Ny,s called state (or configuration), and
* & € A4, € N, is called action (or event).

The (possibly partial) function || : § - [S] is called inter-
pretation of 5.

(Harel, 1997) proposes to distinguish
reflective and constructive
descriptions of behaviour:

o reflective (or assertive):
“[description used] to derive and present views of the model. statically or during execution,
or to set constraints on behavior in preparation for verification.”

— what should (or should not) be computed

o constructive:
“constructs [of description] contain information needed
in executing del orin ing it i ble code.”

— how things are computed.
oW T Tgs fre computed:

236

Structure vs. Behaviour / Constructive vs. Reflective

 Form of the states in %> (and actions in A):

Definti
finite) set [5] of (fnite orinfnite) computation paths of the
form

« Computation paths of S: o D Doy

where

structure of 5

behaviour of S

* 01 € %,i € No,is called state (or configuration), and
i € N, is called action (or even
ssibly partal) function [] : § - [S] s called inter-
pretation of S.

(Harel, 1997) proposes to distinguish
reflective and constructive
descriptions of behaviour:

reflective (or assertive):

“[description used] to derive and present views of the model, statically or during execution,
or to set constraints on behavior in preparation for verification.”

— what should (or should not) be computed.

« constructive:

“constructs [of description] contain information needed

in executing the model or in translating it into executable code.

— how things are computed.

Note: No sharp boundaries! (would be too easy...)
231

Class Diagrams

266

Class Diagrams: Concrete Syntax

class name
c
il
typed
attributes
typed
methods
where
 Ti,..., T € 7 U{Cb,1,Ca | Caclass name}

« 7 isasetof basic types, eg. Int, Bool, ..

Concrete Syntax: Example

class

[]

attributes
compartment

methods
compartment

Concrete Syntax: Example Concrete Syntax: Example

J(Tnt) - Bool
): Int

get_c() : Int

271 2861 28561

Concrete Syntax: Example Abstract Syntax: Object System Signature

(e
" M Definition. An (Object System) Signature is a 6-tuple

piCos

S = (Z,6,V, atr, F, mth)

where
Alternative notation for Cy , and C', typed attributes: * Tisasetof (basic) types,

« isafinite set of classes,

« Visafinite set of typed attributes v : .,eachv € V hastype T,

o atr: € — 2" maps each class to its set of attributes.

« Fisafinite set of typed behavioural features f : Ty,..., T, — T,
o mth : € — 2% maps each class to its set of behavioural features.

« Atype canbeabasic type 7 € 7, or o1, or C., where C € .

Note: Inspired by OCL 2.0 standard OMG (2006), Annex A.
And nothing else! This is the concrete syntax of class diagrams for the scope of the course.
28 28461 296

Object System Signature Example

Definition. An (Object System) Signature is a 6-tuple.
7= (56

where
« 7 Isasetof basi) types

Tiie eachu € VhastypeT,
of atrbutes.

+ Fisafinite setof typed behaviounl features £ : Ty .. T, T,

« i+ € 2" maps each dass o fs st of behavioural features.

+ Atypecanbeabasictype r € 7, or i1, or ., where O € 4.

Once Again: Concrete vs. Abstract Syntax

Object System Signature Example

Definition. An (Object System) Signature is a é-tuple

« Visafinite setof typed attibutes 1 T, e, each v € 1 hastype T,
= atr € - 2 maps each class o tssetof atrbutes,

afinite st of typed behavioural feaures £ : ..., T, - T
il € — 2" maps eachcassto s se of behavioura fatures.
« Atypecanbeabasicype r € 7,0rCi,

C.whereC €%

o = ({Int, Bool},
{¢.n},
{z: Int,p: Cop,

e AC= i} D= {pad),

{f : Int — Bool, get_c : Int},
{C = 0,D s {f, get_a}})

308

Once Again: Concrete vs. Abstract Syntax

3%

From Abstract to Concrete Syntax

(F,€,V, atr, F, mth)

— Dbt piCh,, nd,S
car=§lolnps, Desdnplf
cF={fi et 5 ol

emth={C g,

Once Again: Concrete vs. Abstract Syntax

Once Again: Concrete vs. Abstract Syntax

o = ({1nt, Bool)
(.0}
{r:Int,p: C oy,
(€ (pnh.D - (oo

(/' Int - Bool.
(Co 000 {1,

Visualisation of Implementation

« The class diagram syntax can be used to visualise code:
Provide rules which map (parts of) the code to class diagram elements.

pac

it
b

Once Again: Concrete vs. Abstract Syntax

{o:Int,p: Cosn
{Co {pn}. D (o),
{f + Int > Bool, get_z - In
{00 (1,

Visualisation of Implementation: (Useless) Example

open favourite IDE,
open favourite project,

press “generate class diagram
wait....

3%

34m

Visualisation of Implementation

The class diagram syntax can be used to visualise code:
Provide rules which map (parts of) the code to class diagram elements.

Visualisation of Implementation: (Useless) Example

open favourite IDE,
open favourite project,

press “generate class diagram”
wait...wait....

33

340

Visualisation of Implementation: (Useless) Example

« open favourite IDE,
= open favourite project,
o press “generate class diagram”

34,
Visualisation of Implementation: (Useful) Example
Ton
I55]]
« Adiagram is a good diagram if (and only if?) it servesits purpose!
35

Visualisation of Implementation: (Useless) Example

« open favourite IDE,
« open favourite project,
o press “generate class diagram”

D’ L]L_‘ﬂj o i

Visualisation of Implementation: (Useful) Example

« Adiagram s a good diagram if (and only if?) it serves its purpose!

« Note: aclass diagram for visualisation may be parti

» show only the most relevant classes and attributes (for the given purpose).
« Note: a signature can be defined by a set of class diagrams.

> use multiple class diagrams with a manageable number of classes for different purposes.

Visualisation of Implementation: (Useful) Example

 ca 35classes,
* ca 5000LOCC#

Render

w030
il S T

iy
e

Literature Recommendation

THE

Content

= Vocabulary
L. System, Architecture, Design
« Modelling

« Software Modelling

W Views & viewpoints
(s the 4+1 view

« Class Diagrams
concrete syntax,
abstract syntax,
semantics: system states.

(o class diagrams at work,

o Object Diagrams

concrete syntax,
dangling references,
partial vs. complete,
object diagrams at work.

Basic Object System Structure Example

Wanted: a structure for signature

Fo = ({Int, Bool}, {C, D}, {z : Int,p: Coz,n: C.}.AC 5 {p,n}. D > {p.a}},
{f : Int — Bool, get_x : Int},{C +— 0, D v {f, get_z}})

Astructure 7 maps
© 7€ 7 tosome (7),C € ¢ to some identities 7(C)
o C.andCy,1 forC € €10 %(Co,1) = 2(C) = 27(C).

) = Z
) = N xii=i¢z% 1
2(D) = N x [Dj={15,273,3
)
)

9(Con) = () = 27
9(Doy) = 2(D.) = 2P

System State

A More Abstract Class Diagram Semantics

0 DE) » (V% (9(7) U 2(%2)).
Thatis, for each u € 2(C), C € %, f u € dom(c)
« dom(o(u)) = atr(C)
.@5@ egm)ifvinres

.?EWE € P(D.)ifv: Doy orv: D, with D € ¢
-— @
We callu € 2(%) alivein o if and only if u € dom().

We use % to denote the set of all system states of . wrt. 2.

Object System Structure

I

38

on. An Object System Structure of signature
S = (F,%,V, atr, F, mth)

is a domain function 2 which assigns to each type a domai

« 7€ 7 ismappedto 7(7),
« ¢ ¢ismappedtoan

inite set 2(C) of (object) identities.

« object identities of different classes are disjoinf

VC,De%:C#D— 2(C)n2(D) =0
= on object identities, (only) comparison for equality *=" is defined.
st
« C.and Cp,) for C € ¢ are mapped to 27(<)
A 2

We use 7(%) to denote .., Z(C); analogously Z(.).

Note: We identify objects and object identities,

because both uniquely determine each other (cf. OCL 2.0 standard).
39

System State Examples

e

o= ({Int, Bool}, {C, DY, {a s Int,p: Cop,ns Cu},{C v {p,n}, D {pya}},
{f Int — Bool, get_z : Int}, {C v+ 0,D v {f, get_z}})
D(Int) =7, 7(C) ={lc,2c, b 2(D)={1p,2p,3p,.}

Asystem state is a partial function o : %(%) — (V = ((7) U 2(%.))) such that
« dom(a(u)) = atr(C). « o(w)(v) € 2(r)ifvimTE T,
o o(u)(v) € Z(Cu) ifv: Duorv: Doy with D €% .

Wi
——

o-{2m {pr el nwgf, @Iwnlwwﬁw}$@%w

L —_ .
DCE)
0,7

05§ Sc Lem {65 SINWM .\
_\|\|\|L

Visualisation of Implementation Visualisation of Implementation

o The class diagram syntax can be used to visualise code: o The class diagram syntax can be used to visualise code:
Provide rules which map (parts of) the code to class diagram elements. Provide rules which map (parts of) the code to class diagram elements.

Class Diagrams at Work

43 2 446 : 44
Visualisation of Implementation: (Useless) Example Visualisation of Implementation: (Useless) Example Visualisation of Implementation: (Useless) Example

« open favourite IDE, « open favourite IDE, « open favourite IDE,

« open favourite project, « open favourite project, « open favourite project,

o press “generate class diagram” « press “generate class diagram” « press “generate class diagram”

* wait... o wait...wait... .

456 45m 450

Visualisation of Implementation: (Useless) Example

« open favourite IDE,
= open favourite project,
o press “generate class diagram”

o ca.35classes,
* ca. 5000LOCC#

Visualisation of Implementation: (Useful) Example

Tron

]

« Adiagram s a good diagram if (and only if

it serves its purpose!

« Note: a class diagram for visualisation may be partial-
» show only the most relevant classes and attributes (for the given purpose).

» Note: a signature can be defined by a set of class diagrams.

— use multiple class diagrams with a manageable number of classes for different purposes.

Visualisation of Implementation: (Useful) Example

Opensiz
Render Lﬁ

Literature Recommendation

THE

Visualisation of Implementation: (Useful) Example

Render

« Adiagram s a good diagram f (and only if?) it serves its purpose!

Content

—

o Vocabulary
L« system, Achiecture, Design
 Modelling

o Software Mod

ing
T. views & viewpoints
o the 4+1 view

Class Diagrams

o concrete syntax,
o abstract syntax,
ics: system states.

W class diagrams at work,
Object Diagrams

 concrete syntax,

« dangling references,

« partial vs. complete,
o object diagrams at work.

o semar

486

Object Diagrams

Object Diagrams

o = ({Int, Bool}, {C, D} {x : Int,p: Co1,n: Co}{C = {p,n}, D = {p,z}},
{f : Int - Bool, get_z : Int},{C > 0,D v {f,get_z}}), Z(Int) =%

o ={lc = {p= 0,n = {5c}h5¢ = {p s n e 01,10 s {p = {50}, — 23}}

= We may represent o graphically as follows:

This s an object diagram.

 Alternative notation:

Object Diagrams

S0 = ({Int, Bool},{C, D}, {z : Int,p: Co,,n: Cu}, {C = {p,n}, D {p,x}},
{f : Int — Bool, get_z : Int},{C = 0,D v {f,get_z}}), Z(Int)=Z

o={1e s {prs On s Bel) e o fp o 0o 0 1o o fp o (Seba o 23))

50
Object Diagrams
o = ({Int, Bool},{C, D}, {w : Int,p : Cox,n: C:},{C = {p,n}, D~ {p,a}},
{f : Int = Bool, get_z : Int},{C v+ 0,D v+ {f, get_z}}), Z(Int)=1Z

o={lew {p= 0.n = {5c}}.50 = {prs O.n s 0}, 1p = {p = {5c}.x = 23}}
« We may represent o graphically as follows:

This is an object diagram.
« Alternative notation:

5051

Object Diagrams

o= ({Int, Bool},{C, D}, {w : Int,p: Coa,n: C:},{C = {p,n}, D = {p,x}},
{f : Int — Bool, get_z : Int}, {C = 0,D r {f,get_z}}), 9(Int) =7

o={lc—{p—0,nw {5c}},5¢ = {p—= 0.0 0}, 1p = {p > {5c}.a s 23}}

« We may represent o graphically as follows:

This is an object diagram.

501

Object Diagrams

o = ({Int, Bool}, {C, D}, {a : Int,p: Co.1,n: C-},{C = {p,n}, D = {p,}},
{f : Int — Bool, get_z : Int},{C v 0,D v {f,get_z}}), Z(Int)=Z

o={lc—{p—0. L5¢ =5 {p > 0,n = 0}, 1p = {p s {5}z — 23}

Concrete Syntax:

mandatory.

_, ‘compartment
_ optional

— optional

501

Special Case: Dangling Reference Special Case: Dangling Reference

Definition. Definition.
Lets € £ be a system state and u € dom(o) an alive object of class C'in . Leto € ©% be a system state and u € dom(0) an alive object of class C'in 0.
We say 7 € atr(C) is a dangling reference in if and only if We say 7 € atr(C) is a dangling reference in u if and only if
7 Conorr : C, and u refers to a non-alive object via v, ie. 7: Coorr: C. andurefers to a non-alive object via v,
o(u)(r) ¢ dom(c). o(u)(r) ¢ dom().
Example: Example:
e o={lc {p=0n {5c}},1p = {p— {5c} x> 23}} s o={lc—{prbne {5} 1p = {p= {5c
. » Object diagram representation:

51 Star

Partial vs. Complete Object Diagrams Partial vs. Complete Object Diagrams

By now we discussed “object diagram represents system state": « By now we discussed “object diagram represents system state":

{lc = {p= 0.0 {501},
5c o {prr 0, 0}, ~
1p = {p+~ {5cha s 231}

{lc = {p= 0,0 {501},
S {prs On s 0}, ~
1p = {pr+ {5c},@ - 23}}

What about the other way round...? What about the other way round...?

» Object diagrams can be partial, e.g. = Object diagrams can be partial, e.g.

—» we may omit information. —+ we may omit information.
 Is the following object diagram partial or complete? « Is the following object diagram partial or complete?
e | n
p=0

« If an object diagram
« has values for all attributes of all objects in the diagram, and
« if we say that it is meant to be complete

5% then we can uniquely reconstruct a system state o. 52

Partial vs. Complete Object Diagrams

« By now we discussed “object diagram represents system state:

{1c = {p+ 0,n > {5c}},
B¢+ {pr O,n s 0}, -~
1p = {p = {5c} @~ 23}}

‘What about the other way round,

« Object diagrams can be partial, e.g.

—» we may omit information.

Special Case: Anonymous Objects

If the object diagram

n=0
is considered as complete, then it denotes the set of all system states

{le={p0n—{c}tem{p=0n—0}d— {p-{c
where ce 2(C), de 2(D), c#lc.

Intuition: different boxes represent different objects.

e 231}

52

536

Object Diagrams at Work

Example: Illustrative Object Diagram s

N begit i
Therator Forest iterator
1=

node node
nensh

| A:Node aH@.A E:Node | end: BaseNode |

prevst. prevsis
frscnid
i puent g || | s

e F:Node

Example: Data Structure (

Object Diagrams for Analysis

M

Example: Illustrative Object Diagram s

tal., 2008)

 Iterator | bt + Forest ot Iterator

nests

_F EiNode """ | end: BaseNode
et

s

paren
bl

F:Node

i

5561 56161

Content

o Vocabulary
L« system, Achiecture, Design
* Modelling

o Software Modelling

T. <_ms;<as€_2m
(o the 4+1view

« Class Diagrams

« concrete syntax,

o abstract syntax,
« semantics: system states.

o class diagrams at work,

o Obiject Diagrams

concrete syntax,
dangling references,
partial vs. complete,
object diagrams at work.

57m 58

Tell Them What You’ve Told Them. ..

Design structures a system

to manageable units.
(Software) Model: a concrete or mental image or archetype with
o image /reduction / pragmatics property.

Towards Software Modelling:

« Views and Viewpoints, e.g. 4+1,

* Structure vs. Behaviour

Class Diagrams can be used

to describe system structures graphically
« visualise code,

« define an object system structure ..

An Object System Structure .

(together with a structure 7)

 defines a set of system states %;

« asystem stateis structured according to ..

ASystem State s € %

o canbe visualised by an object diagram.

References

606

References

Ambler, . W. (2005). The Elements of UML 20 Style. Cambridge University Press.
Bachmann, F, Bass, L, Clements, P, Garlan, D, vers,], Litle, R, Nord, R, and Stafford, . (2002). Documenting software
architecture: D Technical Report ., CMU/SEL

Bass, L, Clements, P, and Kazman, R. (2003). Softw The SEI Engineering.
Addison-Wesley, 2nd edition.

Broaddus, A. (2010). A tale of two eco-suburbs in Freiburg, Germany: Parking provision and car use. Transportation Research
Record, 2187:114-122.

Ellis, W. .1l R.F. H, Saunders, T. F, Poon, P. T, Rayford, D, Sherlund, B., and Wade, R. L. (1996). Toward a recommended
practice for architectural description. In ICECCS, pages 408-413. IEEE Computer Society.

Glinz, M. (2008). Modellierung n der Lehre an Hochschulen: Thesen und Erfahrungen. Informatik Spektrum, 31(5):425-434
Harel,D. (1997). Some thoughts on statecharts, 3 years later. In Grumberg, O.,editor, CAV, volume 1254 of LNCS, pages
226-231. Springer-Verlag.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-19900.

IEEE (2000) i Std 1471,

Kruchten, P (1995). The *4+1" view model of software architecture. IEEE Software, 12(6):42-50.

Ludewig, | and Lichter, H. (2013). Software Engineering. dpunktverlag, 3. edition.

OMG (2006). Object Constraint Language, version 2.0. Technical Report formal/06-05-O1.

Schumann, M. Steinke. . Deck, A, and Westphal, B. (2008). version 1.0.
Carl von Ossietzky Universitat Oldenburg und OFFIS.

Taylor, R N., Medvidovic, N., and Dahofy, E. M. (2010). Software Architecture Foundations, Theory, and Practice. John Wiley and
Sons.

6ler

