
–
4

–
2

0
19

-0
5

-0
6

–
m

ai
n

–

Softwaretechnik / Software-Engineering

Lecture 4: Procedure & Process Models

2019-05-06

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Topic Area Project Management: Content
–

4
–

2
0

19
-0

5
-0

6
–

S
b

lo
ck

co
n

te
n

t
–

2/59

•VL 2 Software Metrics

• Metrics, Properties of Metrics

• Software Metrics

• Software Metrics Issues

• Cost Estimation

• (Software) Economics in a Nutshell

• Software Cost Estimation

• Expert’s / Algorithmic Estimation

• Project Management

• Project

• Process and Process Modelling

• Procedure Models

• Process Models

•
..
.

Process Metrics

• CMMI, Spice

.

..

VL 3

.

..

VL 4

–
4

–
2

0
19

-0
5

-0
6

–
S

p
m

re
ca

ll
–

3/59

From Process Model to Concrete Process
–

3
–

2
0

19
-0

5
-0

2
–

S
p

to
p

m
–

41/62

new
local
post

escalate?escalate? handle
issue, loc.

handle
issue, loc.

no

tutor

response
in local
forum

response time:
1 work day

(after orig./int. post)

new
local
post

escalate?escalate? escalate
issue

escalate
issue

yes

tutor

internal
forum
post

response
in local
forum

response time:
1 work day

(after orig./int. post)

handle
issue, int.
handle

issue, int.

tutor

response
in internal
forum

response
in internal
forum

internal
forum
post

handle
issue,
glob.

handle
issue,
glob.

lecturer assistant
tutor

response
in global
forum

or

response time:
1 work day

(after orig. post)

Building Blockscompose

new
local
post

escalate?escalate?

handle
issue, loc.

handle
issue, loc.

no

tutor

response
in local
forum

response time:
1 work day

(after orig./int. post)

handle
issue, int.
handle

issue, int.

tutor

response
in internal
forum

escalate
issue

escalate
issue

yes

tutor

internal
forum
post

handle
issue,
glob.

handle
issue,
glob.

lecturer assistant
tutor

response
in global
forum

or

response time:
1 work day

(after orig. post)

Planconcretise

Process

’Did
you
upload
...?’

escalate?escalate? handle
issue, loc.

handle
issue, loc.

no

Tutor A

local
forum:
’Sorry ...’

’Is that
a
typo?’

escalate?escalate? escalate
issue

escalate
issue

yes

Tutor B

internal
forum
post

handle
issue,
glob.

handle
issue,
glob.

lecturer assistant

Tutor B

global
forum:
’New
version ...’

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Content
–

4
–

2
0

19
-0

5
-0

6
–

S
co

n
te

n
t

–

4/59

• Procedure and Process Models

• Vocabulary:

• linear / non-linear

• evolutionary, iterative, incremental

• prototyping

• Procedure Model Examples

• The (in)famous Waterfall model

• The famous Spiral model

• Process Model Examples

• Code-and-Fix, Phase Model

• V-Modell XT

• Agile

• Extreme Programming (XP)

• Scrum

• Process Metrics

• CMMI, Spice

Process vs. Procedure Models

–
4

–
2

0
19

-0
5

-0
6

–
m

ai
n

–

5/59

Process vs. Procedure Model
–

4
–

2
0

19
-0

5
-0

6
–

S
p

m
vs

p
m

–

6/59

(Ludewig and Lichter, 2013) propose to distinguish: process model and procedure model.

• A Process model (‘Prozessmodell’) comprises

(i) Procedure model (‘Vorgehensmodell’)

Example: “Waterfall Model” (70s/80s).

(ii) Organisational structure — comprising requirements on

• project management and responsibilities,

• quality assurance,

• documentation, document structure,

• revision control.

Examples: V-Modell, RUP, XP (90s/00s).

• Note: In the literature, process model and procedure model are often used as synonyms;
there are (again) no universally agreed terms. . .

• Anticipated benefits of using process models:

• “economy of thought”

• clear responsibilities

• fewer errors

• quantification, reproducibility

westphal
Bleistift

Content
–

4
–

2
0

19
-0

5
-0

6
–

S
co

n
te

n
t

–

7/59

• Procedure and Process Models

• Vocabulary:

• linear / non-linear

• evolutionary, iterative, incremental

• prototyping

• Procedure Model Examples

• The (in)famous Waterfall model

• The famous Spiral model

• Process Model Examples

• Code-and-Fix, Phase Model

• V-Modell XT

• Agile

• Extreme Programming (XP)

• Scrum

• Process Metrics

• CMMI, Spice

Procedure Model Examples

–
4

–
2

0
19

-0
5

-0
6

–
m

ai
n

–

8/59

Linear vs. Non-Linear Procedure Models
–

4
–

2
0

19
-0

5
-0

6
–

S
lin

e
ar

–

9/59

• linear: basically the strict Waterfall Model

(without feedback between activities)

• non-linear: basically everything else

(with feedback between activities)

Iterative, Incremental, Evolutionary
–

4
–

2
0

19
-0

5
-0

6
–

S
e

vo
in

ci
te

r
–

10/59

• Iterative Development:

req.

planplan

spec. 1

...

spec. n

iteration 1iteration 1 I1
· · · In−1 iterationniterationn S

iterative software development — software is devel-
oped in multiple iterative steps, all of them planned
and controlled.

Goal: each iterative step, beginning with the second,
corrects and improves the existing system based on de-
fects detected during usage.

Each iterative steps includes the characteristic activities

analyse, design, code, test. Ludewig & Lichter (2013)

• Incremental Development:

req. 1

project 1project 1 S1
· · ·

req. n

project nproject n Sn

incremental software development — The total exten-
sion of a system under development remains open; it
is realised in stages of expansion. The first stage is the
core system.

Each stage of expansion extends the existing system

and is subject to a separate project. Providing a new

stage of expansion typically includes (as with iterative

development) an improvement of the old components.

Ludewig & Lichter (2013)

• Evolutionary Development:

req.

evolution 1evolution 1 I1
. . . In−1 evolutionnevolutionn S

evolutionary software development — an approach
which includes evolutions of the developed software
under the influence of practical/field testing.

New and changed requirements are considered by de-

veloping the software in sequential steps of evolution.

Ludewig & Lichter (2013), flw. (Züllighoven, 2005)

westphal
Bleistift

westphal
Bleistift

Iterative, Incremental, Evolutionary
–

4
–

2
0

19
-0

5
-0

6
–

S
e

vo
in

ci
te

r
–

10/59

• Iterative Development:
req.

planplan

spec. 1

...

spec. n

iteration 1iteration 1 I1
· · · In−1 iterationniterationn S

• Incremental Development:
req. 1

project 1project 1 S1
· · ·

req. n

project nproject n Sn

• Evolutionary Development:
req.

evolution 1evolution 1 I1
. . . In−1 evolutionnevolutionn S

• Note: (to maximise confusion) IEEE calls our “iterative” incremental:

incremental development — A software development technique in which requirements definition,

design, implementation, and testing occur in an overlapping, iterative (rather than sequential) man-

ner, resulting in incremental completion of the overall software product. IEEE 610.12 (1990)

• One difference (in our definitions):

• iterative: steps towards fixed goal,

• incremental: goal extended for each step; next step goals may already be planned.

Prototyping
–

4
–

2
0

19
-0

5
-0

6
–

S
p

ro
to

ty
p

–

11/59

req.

prototypeprototype

P

results

developdevelop S

prototype — A preliminary type, form, or instance of a system that serves as a model for later stages

or for the final, complete version of the system. IEEE 610.12 (1990)

prototyping — A hardware and software development technique in which a preliminary version of

part or all of the hardware or software is developed to permit user feedback, determine feasibility,

or investigate timing or other issues in support of the development process. IEEE 610.12 (1990)

rapid prototyping — A type of prototyping in which emphasis is placed on developing prototypes

early in the development process to permit early feedback and analysis in support of the develop-

ment process. IEEE 610.12 (1990)

• classification by usage:

• demonstration prototype

• functional prototype

• lab sample

• pilot system, etc.

• classification by supported activity:

• explorative p. (analysis)

• experimental p. (design)

• evolutionary p. (product is last proto-
type)

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Prototyping Procedure Model
–

4
–

2
0

19
-0

5
-0

6
–

S
p

ro
to

ty
p

–

12/59

question
prototype

specification

operation
environment

prototype
assessment

prototype

determines

developbasis of
modify

assess

influences

(Ludewig and Lichter, 2013)

Questions towards ‘definition of done’:

• Which purpose does the prototype have?

What are the open questions?

• Which persons (roles) participate in development?

And, most important, who participates in assessment of the prototype?

• What is the time/cost budget for prototype development?

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Content
–

4
–

2
0

19
-0

5
-0

6
–

S
co

n
te

n
t

–

13/59

• Procedure and Process Models

• Vocabulary:

• linear / non-linear

• evolutionary, iterative, incremental

• prototyping

• Procedure Model Examples

• The (in)famous Waterfall model

• The famous Spiral model

• Process Model Examples

• Code-and-Fix, Phase Model

• V-Modell XT

• Agile

• Extreme Programming (XP)

• Scrum

• Process Metrics

• CMMI, Spice

westphal
Bleistift

westphal
Bleistift

The (In)famous Waterfall Model (Rosove, 1967)
–

4
–

2
0

19
-0

5
-0

6
–

S
w

at
e

rf
al

l–

14/59

Waterfall or Document-Model— Software devel-
opment is seen as a sequence of activities cou-
pled by (partial) results (documents).
These activities can be conducted concurrently or
iteratively.

Apart from that, the sequence of activities is fixed

as (basically) analyse, specify, design, code, test,
install, maintain. Ludewig & Lichter (2013)

system
analysis

software
specification

architecture
design

refined design
and coding

integration
and testing

installation and
acceptance

operation and
maintenance

westphal
Bleistift

The (In)famous Waterfall Model (Rosove, 1967)
–

4
–

2
0

19
-0

5
-0

6
–

S
w

at
e

rf
al

l–

14/59

Waterfall or Document-Model— Software devel-
opment is seen as a sequence of activities cou-
pled by (partial) results (documents).
These activities can be conducted concurrently or
iteratively.

Apart from that, the sequence of activities is fixed

as (basically) analyse, specify, design, code, test,
install, maintain. Ludewig & Lichter (2013)

system
analysis

software
specification

architecture
design

refined design
and coding

integration
and testing

installation and
acceptance

operation and
maintenance

req. M

spec. M

arch. M

code M

test M

inst. M

S

The Waterfall Model: Discussion
–

4
–

2
0

19
-0

5
-0

6
–

S
w

at
e

rf
al

l–

15/59

system
analysis

software
specification

architecture
design

refined design
and coding

integration
and testing

installation and
acceptance

operation and
maintenance

(In)famous?!

• The waterfall model has been subject of heated discussions:

• Original model without feedback not realistic.

• Gives room for many interpretations; very abstract;
hardly usable as a “template” for planning real projects.

• Cycles (and the lack of milestones) makes it
hard for project management to assess a project’s process.

• Maybe best appreciated in the context of its time:

“Dear people (of the 60’s), there is more in software development than coding;
and there are (obvious) dependencies.”

That may have been news to some software people back then. . . (cf. “software crisis”).

• Everybody knows it (at least the name. . .).

westphal
Bleistift

The Spiral Model (Boehm, 1988)
–

4
–

2
0

19
-0

5
-0

6
–

S
sp

ir
al

–

16/59

Barry W. Boehm

Quick Excursion: Risk and Riskvalue

–
4

–
2

0
18

-0
4

-3
0

–
S

m
gm

t
–

10/49

risk — a problem, which did not occur yet, but on occurrence threatens important
project goals or results. Whether it will occur, cannot be surely predicted.

Ludewig & Lichter (2013)

riskvalue = p ·K

p: probability of problem occurrence,

K : cost in case of problem occurrence.

10
5

10
6

10
7

10
8

cost in
case of
incidence /
e

10
�5

10
�4

10
�3 0.01 0.1 0.5

incidence
probability
p

acceptable risks

inacceptable

risks

extreme

risks

• Avionics requires: “Average Probability per Flight Hour for Catastrophic Failure Conditions
of 10�9 or ‘Extremely Improbable”’ (AC 25.1309-1).

• “problems with p = 0.5 are not risks, but environment conditions to be dealt with”

Risks in the software development process can have various forms and counter-measures, e.g.,

• open technical questions (→ prototype?),

• lead developer about to leave the company (→ invest in documentation?),

• changed market situation (→ adapt appropriate features?),

• . . .

westphal
Bleistift

The Spiral Model (Boehm, 1988) Cont’d
–

4
–

2
0

19
-0

5
-0

6
–

S
sp

ir
al

–

17/59

Idea of the Spiral Model: iteratively address the (currently) highest risk
(instead of planing ahead everything).

Repeat until end of project (successful completion or failure):

(i) determine the set R of risks which are threatening the project;
if R = ∅, the project is successfully completed

(ii) assign each risk r ∈ R a risk value v(r)

(iii) for the risk r0 with the highest risk value, r0 = max{v(r) | r ∈ R},
find a way to eliminate this risk, and go this way;

if there is no way to eliminate the risk, stop with project failure

Advantages:

• We know early if the project goal is unreachable.

• Knowing that the biggest risks are eliminated gives a good feeling.

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Wait, Where’s the Spiral?
–

4
–

2
0

19
-0

5
-0

6
–

S
sp

ir
al

–

18/59

A concrete process using the Spiral Model could look as follows:

t (cost, project progress)

t0 t1 t2 t3

- investigate goals, alternatives, side conditions - conduct risk analysis,

- develop and test the next product part, - plan the next phase,

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Content
–

4
–

2
0

19
-0

5
-0

6
–

S
co

n
te

n
t

–

19/59

• Procedure and Process Models

• Vocabulary:

• linear / non-linear

• evolutionary, iterative, incremental

• prototyping

• Procedure Model Examples

• The (in)famous Waterfall model

• The famous Spiral model

• Process Model Examples

• Code-and-Fix, Phase Model

• V-Modell XT

• Agile

• Extreme Programming (XP)

• Scrum

• Process Metrics

• CMMI, Spice

westphal
Bleistift

Process Model Examples

–
4

–
2

0
19

-0
5

-0
6

–
m

ai
n

–

20/59

From Procedure to Process Model
–

4
–

2
0

19
-0

5
-0

6
–

S
p

ro
ce

ss
e

s
–

21/59

A process model may describe:

• steps to be conducted during development,
their sequential arrangement,
their dependencies
(the procedure model)

• organisation, responsibilities, roles

• structure and properties of documents

• methods to be used,
e.g., for gathering requirements or checking intermediate results

• project phases, milestones, testing criteria

• notations and languages

• tools to be used
(in particular for project management).

Process models typically come with their own terminology (to maximise confusion?),
e.g. what we call artefact is called product in V-Model terminology.

Trivial Example: Code & Fix
–

4
–

2
0

19
-0

5
-0

6
–

S
co

d
e

an
d

fi
x

–

22/59

(req.)

code
and fix
code
and fix

S

developer

• Code & Fix denotes an approach where coding (programming) or fixing (repairing defects) in
alternation with ad-hoc testing are the only consciously conducted activities.

• Advantages:

• corresponds to the impulse to proceed quickly and solve the problem

• yields executable programs early

• simple activities

• Disadvantages:

• project not plannable

• hard to distribute project over multiple persons or groups

• often comes without serious requirements and proplem analysis

• ad-hoc testing lacks expected values (‘Soll-Wert’)

• resulting programs often badly structured and hard to maintain

• high effort (and cost) for corrections; issues often detected late

• important concepts and decisions usually not documented

→ sabotages quality, overall too expensive

westphal
Bleistift

westphal
Bleistift

The Phase Model: Phases, Milestones
–

4
–

2
0

19
-0

5
-0

6
–

S
d

e
ad

lin
e

s
–

23/59

A phase is a continuous, i.e. not interrupted range of time in which certain works are
carried out and completed. At the end of each phase, there is a milestone.

A phase is successfully completed if the criteria defined by the milestone are satisfied.
Ludewig & Lichter (2013)

• Phases (in this sense) do not overlap!

Yet there may be different “threads of development” running in parallel,
structured by different milestones.

• Splitting a project into phases makes controlling easier;
milestones may involve the customer (accept intermediate results) and trigger payments.

• The granularity of the phase structuring is critical:

• very short phases may not be tolerated by a customer,

• very long phases may mask significant delays longer than necessary.

If necessary:
define internal (customer not involved) and external (customer involved) milestones.

Milestones, Deadlines
–

4
–

2
0

19
-0

5
-0

6
–

S
d

e
ad

lin
e

s
–

24/59

A phase is a continuous, i.e. not interrupted range of time in which certain works are
carried out and completed. At the end of each phase, there is a milestone.

A phase is successfully completed if the criteria defined by the milestone are satisfied.
Ludewig & Lichter (2013)

• Whether a milestone is reached (or successfully completed) must be assessable by

• clear,

• objective, and

• unambiguous

criteria.

• The definition of a milestone often comprises:

• a definition of the results which need to be achieved,

• the required quality properties of these results,

• the desired time for reaching the milestone (the deadline), and

• the instance (person or committee) which decides whether the milestone is reached.

• Milestones can be part of the development contract;
not reaching a defined milestone as planned can lead to legal claims.

The Phase Model
–

4
–

2
0

19
-0

5
-0

6
–

S
p

h
as

e
–

25/59

req.

Phase 1Phase 1

Prod. 1

Milestone 1Milestone 1 Phase 2Phase 2

Prod. 2

Milestone 2Milestone 2 Phase 3Phase 3 S Milestone 3Milestone 3

• The project is planned by phases,
delimited by well-defined milestones.

• Each phase is assigned a time/cost budget.

• Phases and milestones may be part of the development contract;
partial payment when reaching milestones.

• Roles, responsibilities, artefacts defined as needed.

• By definition, there is no iteration of phases.

• But activities may span (be active during) multiple phases.

• Not uncommon for small projects
(few software people, small product size), and small companies.

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Content
–

4
–

2
0

19
-0

5
-0

6
–

S
co

n
te

n
t

–

26/59

• Procedure and Process Models

• Vocabulary:

• linear / non-linear

• evolutionary, iterative, incremental

• prototyping

• Procedure Model Examples

• The (in)famous Waterfall model

• The famous Spiral model

• Process Model Examples

• Code-and-Fix, Phase Model

• V-Modell XT

• Agile

• Extreme Programming (XP)

• Scrum

• Process Metrics

• CMMI, Spice

V-Model XT

–
4

–
2

0
19

-0
5

-0
6

–
m

ai
n

–

27/59

–
4

–
2

0
19

-0
5

-0
6

–
S

vx
t

–

28/59

���������	
���
�����������������

���������	
�

V-Modell XT
–

4
–

2
0

19
-0

5
-0

6
–

S
vx

t
–

29/59

requirements
fixed

requirements
fixed

acceptanceacceptance

system
specified
system

specified
system

delivered
system

delivered

architecture
designed

architecture
designed

system
integrated

system
integrated

modules
designed
modules
designed

system
realised
system
realised

verification & validation

• There are different “V-shaped” process models, we discuss the (German) “V-Modell”.

• “V-Modell”:

• developed by company IABG in cooperation with the Federal Office for Defence Technology and
Procurement (‘Bundesministerium für Verteidigung’), released 1998

• (German) government as customer often requires usage of the V-Modell

• 2012: “V-Modell XT” Version 1.4 (Extreme Tailoring) (V-Modell XT, 2006)

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

V-Modell XT: Procedure Building Blocks
–

4
–

2
0

19
-0

5
-0

6
–

S
vx

t
–

30/59

a discipline
comprises one or
more product(s)a product may be

external (‘E’) or initial
(‘I’), i.e. created always
and exactly once (e.g.

project plan);

a product may
depend on

other products an activity creates a
product and belongs

to a discipline

a product may consist of topics an activity may consist of steps

a step works on a topic

a role may be
responsible for a

product or
contribute

each product
has at most one
responsible role

our course V-Modell XT explanation

role role (‘Rolle’)

activity activity (‘Aktivität’)

- step (‘Arbeitsschritt’) parts of activities

artefact product (‘Produkt’)

- topic (‘Thema’) parts of products

our course V-Modell XT explanation

- discipline (‘Disziplin’)
set of related prod-
ucts / activities

phase project segment (?)
(‘Projektabschnitt’)

westphal
Bleistift

V-Modell XT: Decision Points
–

4
–

2
0

19
-0

5
-0

6
–

S
vx

t
–

31/59

V-Modell XT: Example Building Block & Product State
–

4
–

2
0

19
-0

5
-0

6
–

S
vx

t
–

32/59

SW-Development (‘SW-Entwicklung’)

5-150 Part 5: V-Modell Reference Work Products

3.10.4.6 Hardware Elements to be Specified

The preparation of a specification for a hardware element is expensive and not always required. In

order to adapt the specification effort to the requirements of individual projects, the »Hardware Ar-

chitect can - based on the specifications in the Project Manual and the requirements - determine

which hardware elements need a »Hardware Specification.

Critiera for the necessity of a specification may include the following: criticality of the hardware el-

ment, complexity of the requirements posed on the hardware element, test requirements specified in

the »Hardware Implementation, Integration and Evaluation Concept. In any case, a hardware speci-

fication shall be prepared for hardware elements to be tested, since this specification will be the ba-

sis for the »Evaluation Specification System Element. If hardware elements are classified as not to

be specified, a rationale shall be included.

3.10.5 Software Architecture

Process module: Software Development

Responsible: Software Architect (when using process module Software Develop-

ment)

Activity: Preparing Software Architecture

Participating: Software Developer, System Architect, System Integrator

Purpose

For every software unit identified in the system architecture, a »Software Architecture will be deve-

loped. Based on the functional and non-functional requirements posed on a »Software Unit, the

»Software Architect is tasked with designing a suitable »Software Architecture. The Product Soft-

ware Architecture will be used as design guide and for documenting the design decisions.

As in the system architecture development, significant architectural principles will be specified, and

possible design alternatives will be examined. In accordance with the selected design alternative,

the software unit will be decomposed into »Software Component, »Software Modules and products

of the type External Software Module. Relations and interfaces between the elements and to the en-

vironment will be identified and summarized. A »Data Catalog of the data structures exchanged at

the interfaces will be prepared.

The suitability of the selected architecture for the system to be developed will be assessed. Open

questions may be answered, e.g., within the scope of a prototype development.

The software architecture design may lead to changes in the system architecture. Depending on the

specifications in the Project Manual, the »System Architect will examine the change and integrate it

immediately, if required. In individual cases, an explicit change request may be necessary.

The main responsibility for the design of the software architecture will be vested in the Software

Architect who will be supported by the »Software Developer and various specialists for individual

subjects, e.g., logistics, safety and security, and ergonomics.

The software architecture is the central document for the preparation of additional products. It spe-

cifies all software components and software modules of the software unit. The individual elements

and their specifications will be developed in accordance with these architectural requirements.

V-Modell® XT, Version 1.3

3 Products 5-151

Is generated by

System Implementation, Integration and Evaluation Concept, System Architecture (see product de-

pendency 4.15)

System Implementation, Integration and Evaluation Concept, Enabling System Architecture (see

product dependency 4.16)

Generates

Evaluation Report Usability, Evaluation Specification Usability, Software Component, Software

Specification, Evaluation Report System Element, Evaluation Procedure System Element, Evaluati-

on Specification System Element, Data Protection Concept, Information Security Concept, Safety

and Security Analysis (see product dependency 4.17)

Evaluation Report Usability, Evaluation Specification Usability, Market Survey for Off-the-Shelf

Products, External Software Module, External Software Module Specification, Make-or-Buy Deci-

sion, Evaluation Report System Element, Evaluation Procedure System Element, Evaluation Speci-

fication System Element, Data Protection Concept, Information Security Concept, Safety and Secu-

rity Analysis (see product dependency 4.18)

Evaluation Report Usability, Evaluation Specification Usability, Software Module, Software Speci-

fication, Evaluation Report System Element, Evaluation Procedure System Element, Evaluation

Specification System Element, Data Protection Concept, Information Security Concept, Safety and

Security Analysis (see product dependency 4.19)

Example Work Products

»FWD:Software Architecture ECU-SW

3.10.5.1 Architectural Principles and Design Alternatives

The description of the Subject Architectural Principles and Design Alternatives is similar to the

Subject Architectural Principles and Design Alternatives of the system architecture.

The architectural principles at software level include, e.g., the decision for a programming paradigm

(object-oriented, procedureal), the decision fo a technology (CORBA, EJB) or specifications for a

special system type (distributed internet application, desktop application). Design alternatives for

software development are supported, e.g., by design patterns, sample designs and design heuristics.

3.10.5.2 Software Unit Decomposition

The decomposition specifies the static structure of the »Software Unit. The static structure describes

the dissection of the software unit into »Software Components and »Software Modules. The design

result will be documented as graph depicting the software elements to be realized and their interre-

lations. It may also be presented by component and/or class diagrams.

The decomposition is based on the requirements posed in the »Software Specification for the soft-

ware unit or a higher system element. The framework conditions will be specified by the architectu-

ral principles defined in the »Software Architecture and the design decisions.

V-Modell® XT, Version 1.3

5-152 Part 5: V-Modell Reference Work Products

3.10.5.3 Interface Overview

The summary of interfaces of the »Software Architecture provides a survey of the interfaces of the

»Software Unit and the interfaces of the corresponding elements. For the summary of interfaces,

only the communication at one level will be described :

� At the level of the software unit, the interfaces to other units and to the environment will be

described.

� At the level ot the»Software Components, the interfaces between the component within the

unit will be described.

� At the level of the»Software Modules, the interfaces between the process modules within the

component will be described.

Interfaces to the environment may exist between a software element and the user, logistic systems

or various »Enabling Systems. The interfaces are described in detail in the specification of the re-

spective software element.

3.10.5.4 Data Catalog

The »Data Catalog of the »Software Architecture decribes the data structures exchanged at the inter-

faces of the »Software Unit, including attributes, data types and range of values. Every program-

ming language and platform has its own solutions which must be taken into account during the defi-

nition phase.

3.10.5.5 Design Evaluation

If an architectural design for the »Software Unit has been selected and developed down to unit le-

vel, it must be ensured that the selected design implements the requirements in a suitable manner.

Various methods are available for securing the design of the »Software Architecture. Two frequently

used methods are the architecture evaluation by scenario-based methods and the prototype develop-

ment of system parts. Execution and results of the design securing process will be documented.

They may lead to a re-evaluation of the design decisions and a review of the architecture.

3.10.5.6 Software Elements to be Specified

The preparation of a specification for a software element is expensive and not always required. In

order to adapt the specification effort to the requirements of individual projects, the »Software Ar-

chitect can - based on the specifications in the Project Manual and the requirements - determine

which software elements need a »Software Specification.

Critiera for the necessity of a specification may include the following: criticality of the software ele-

ment, complexity of the requirements posed on the software element, test requirements specified in

the software implementation, integration and evaluation concept. In any case, a software specificati-

on shall be prepared for software elements to be tested, since this specification will be the basis for

the »Evaluation Specification System Element. If software elements are classified as not to be spe-

cified, a rationale shall be included.

3.10.6 Database Design

Process module: Software Development

V-Modell® XT, Version 1.3

%''����
���#��1
����������
��	�����

V-Modell XT: Example Building Block & Product State
–

4
–

2
0

19
-0

5
-0

6
–

S
vx

t
–

32/59

SW-Development (‘SW-Entwicklung’)

vs. codingcoding

M

spec. of M

programmer

%''����
���#��1
����������
��	�����

V-Modell XT: (Lots of) Disciplines and Products
–

4
–

2
0

19
-0

5
-0

6
–

S
vx

t
–

33/59

5
�����L
��
������

V-Modell XT: (Lots of) Disciplines and Products
–

4
–

2
0

19
-0

5
-0

6
–

S
vx

t
–

33/59

5
�����L
��
������

V-Modell XT: Activities (as many?!)
–

4
–

2
0

19
-0

5
-0

6
–

S
vx

t
–

34/59

V-Modell XT: Activities (as many?!)
–

4
–

2
0

19
-0

5
-0

6
–

S
vx

t
–

34/59

V-Modell XT: Roles (even more?!)
–

4
–

2
0

19
-0

5
-0

6
–

S
vx

t
–

35/59

Project Roles:

Änderungssteuerungsgruppe (Change Control Board), Änderungsverantwortlicher,

Anforderungsanalytiker (AG), Anforderungsanalytiker (AN), Anwender, Assessor,
Ausschreibungsverantwortlicher, Datenschutzverantwortlicher, Ergonomieverantwortlicher,

Funktionssicherheitsverantwortlicher, HW-Architekt, HW-Entwickler,
Informationssicherheitsverantwortlicher, KM-Administrator, KM-Verantwortlicher, Lenkungsausschuss,

Logistikentwickler, Logistikverantwortlicher, Projektkaufmann, Projektleiter, Projektmanager,

Prozessingenieur, Prüfer, QS-Verantwortlicher, SW-Architekt, SW-Entwickler,
Systemarchitekt, Systemintegrator, Technischer Autor, Trainer

Organisation Roles:

Akquisiteur, Datenschutzbeauftragter (Organisation), Einkäufer,
IT-Sicherheitsbeauftragter (Organisation), Qualitätsmanager

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

What About the Colours?
–

4
–

2
0

19
-0

5
-0

6
–

S
vx

t
–

36/59

V-Modell XT: Project Types
–

4
–

2
0

19
-0

5
-0

6
–

S
vx

t
–

37/59

V-Modell XT considers four different project types:

• AG: project from the perspective of the customer
(create call for bids, choose developer, accept product)

• AN: project from the perspective of the developer
(create offer, develop system, hand over system to customer)

• AG/AN: customer and developer from same organisation

• PM: introduction or improvement of a process model

Project type variants: one/many customer(s); development/improvement/migration; maintenance

project
role

customer
‘Auftraggeber’

developer
‘Auftragnehmer’

customer/developer
‘Auftragg.’/‘Auftragn.’

customer/developer
‘Auftragg.’/‘Auftragn.’

project
type

system development
project (AG)

system development
project (AN)

system development
project (AG/AN)

introduction and
maintenance of specific

process model

project
subject

HW system SW system HW-SW sys-
tem/embedded

System integration introduction and
maintenance of specific

process model

V-Modell XT: Customer/Developer Interface
–

4
–

2
0

19
-0

5
-0

6
–

S
vx

t
–

38/59

westphal
Bleistift

V-Modell XT: Tailoring Instance
–

4
–

2
0

19
-0

5
-0

6
–

S
vx

t
–

39/59

Building Blocks

Plan

V-Modell XT: Development Strategies
–

4
–

2
0

19
-0

5
-0

6
–

S
vx

t
–

40/59

V-Modell XT mainly supports three strategies,
i.e. principal sequences between decision points,
to develop a system:

incremental component based prototypical

westphal
Bleistift

V-Modell XT: Discussion
–

4
–

2
0

19
-0

5
-0

6
–

S
vx

t
–

41/59

Advantages:

• certain management related building block are part of each project,
thus they may receive increased attention of management and developers

• publicly available, can be used free of license costs

• very generic, support for tailoring

• comprehensive, low risk of forgetting things

Disadvantages:

• comprehensive, tries to cover everything; tailoring is supported, but may need high effort

• tailoring is necessary, otherwise a huge amount of useless documents is created

• description/presentation leaves room for improvement

Needs to prove in practice, in particular in small/medium sized enterprises (SME).

westphal
Bleistift

Agile

–
4

–
2

0
19

-0
5

-0
6

–
m

ai
n

–

42/59

The Agile Manifesto
–

4
–

2
0

19
-0

5
-0

6
–

S
ag

ile
–

43/59

“Agile — denoting ‘the quality of being agile; readiness for motion; nimbleness, activity,
dexterity in motion’ — software development methods are attempting to offer an answer
to the eager business community asking for lighter weight along with faster and nimbler
software development processes.

This is especially the case with the rapidly growing and volatile Internet software industry
as well as for the emerging mobile application environment.” (Abrahamsson et al., 2002)

The Agile Manifesto (2001):

We are uncovering better ways of developing software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

that is, while there is value in the items on the right, we value the items on the left more.

westphal
Bleistift

Agile Principles
–

4
–

2
0

19
-0

5
-0

6
–

S
ag

ile
–

44/59

• “continous / sustainable delivery”

• Our highest priority is to satisfy the customer
through early and continuous delivery of
valuable software.

• Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

• Agile processes promote sustainable
development.
The sponsors, developers, and users should be
able to maintain a constant pace indefinitely.

• “simplicity”

• Simplicity — the art of maximizing the amount
of work not done — is essential.

• Working software is the primary measure of
progress.

• “changes”

• Welcome changing requirements,
even late in development.
Agile processes harness change for the
customer’s competitive advantage.

• “people”

• The best architectures, requirements,
and designs emerge from
self-organizing teams.

• Build projects around motivated
individuals.
Give them the environment and support they
need, and trust them to get the job done.

• Business people and developers must
work together daily throughout the project.

• The most efficient and effective method of
conveying information to and within a
development team is face-to-face
conversation.

• “retrospective”

• Continuous attention to technical
excellence and good design
enhances agility.

• At regular intervals, the team reflects on
how to become more effective, then tunes
and adjusts its behavior accordingly.

Similarities of Agiles Process Models
–

4
–

2
0

19
-0

5
-0

6
–

S
ag

ile
–

45/59

• iterative: cycles of a few weeks, at most three months.

• Work in small groups (6–8 people) proposed.

• Dislike the idea of large, comprehensive documentation (radical or with restrictions).

• Consider the customer important;
recommend or request customer’s presence in the project.

• Dislike dogmatic rules.

(Ludewig and Lichter, 2013)

westphal
Bleistift

westphal
Bleistift

Agile

— Extreme Programming (XP) —

–
4

–
2

0
19

-0
5

-0
6

–
m

ai
n

–

46/59

Extreme Programming (XP) (Beck, 1999)
–

4
–

2
0

19
-0

5
-0

6
–

S
xp

–

47/59

XP values:

• simplicity, feedback, communication, courage, respect.

XP practices:

• management

• integral team
(including customer)

• planning game
(→ Delphi method)

• short release cycles

• stand-up meetings

• assess in hindsight

• team:

• joint responsibility for the code

• coding conventions

• acceptable workload

• central metaphor

• continuous integration

• programming

• test driven development

• refactoring

• simple design

• pair programming

. . .

✘
codingcoding

. . .

tests for . . .spec. of . . .

programmerprogrammer

westphal
Bleistift

westphal
Bleistift

Agile

— Scrum —

–
4

–
2

0
19

-0
5

-0
6

–
m

ai
n

–

48/59

Scrum
–

4
–

2
0

19
-0

5
-0

6
–

S
sc

ru
m

–

49/59

• First published 1995 (Schwaber, 1995), based on ideas of Takeuchi and Nonaka.

• Inspired by Rugby (yes, the “hooligan’s game played by gentlemen”):
get the ball in a scrum, then sprint to score.

• Role-based; iterative and incremental;
in contrast to XP no techniques proposed/required.

Three roles:

• product owner:

• representative of customer,

• maintains requirements in the
product backlog,

• plans and decides which
requirement(s) to realise in
next sprint,

• (passive) participant of
daily scrum,

• assesses results of sprints

• scrum team:

• members capable of
developing autonomously,

• decides how and how many
requirements to realise in
next sprint,

• distribution of tasks
self-organised, team decides
who does what when,

• environment needs to
support communication and
cooperation, e.g. by spatial
locality

• scrum master:

• helps to conduct scrum
the right™ way,

• looks for adherence to
process and rules,

• ensures that the team is not
disturbed from outside,

• moderates daily scrum,
responsible for keeping
product backlog up-to-date,

• should be able to assess
techniques and approaches

Scrum Process
–

4
–

2
0

19
-0

5
-0

6
–

S
sc

ru
m

–

50/59

Product Backlog
sprint

planning

release
planning

Release Plan

Release Burn.

Sprint Backlog sprint

realisation
daily scrum Sprint Burndown

review
retrospective Sprint Report

requirements
workshop

Product Increment

• product backlog
(maintained by product owner)

• comprises all requirements to be realised,

• priority and effort estimation for
requirements,

• collects tasks to be conducted,

• release plan

• based on initial version of product backlog,

• how many sprints, which major
requirements in which sprint,

• release-burndown report

• see sprint-burndown report

• sprint backlog

• requirements to be realised in next sprint,
taken from product backlog,

• more precise estimations,

• daily update (tasks done, new tasks, new estimations)

• sprint-burndown report

• completed/open tasks from sprint backlog,

• should decrease linearly,
otherwise remove tasks from sprint backlog,

• sprint report

• which requirements (not) realised in last sprint,

• description of obstacles/problems during sprint

Scrum Process
–

4
–

2
0

19
-0

5
-0

6
–

S
sc

ru
m

–

50/59

Product Backlog
sprint

planning

release
planning

Release Plan

Release Burn.

Sprint Backlog sprint

realisation
daily scrum Sprint Burndown

review
retrospective Sprint Report

requirements
workshop

Product Increment

• daily scrum:

• daily meeting, 15 min.

• discuss progress, synchronise day plan, discuss and document new obstacles

• team members, scrum master, product owner (if possible)

• sprint:

• at most 30 days, usually shorter (initially longer)

• sprint review:

• assess amount and quality of realisations; product owner accepts results

• sprint retrospective:

• assess how well the scrum process was implemented;
identify actions for improvement (if necessary)

Scrum: Discussion
–

4
–

2
0

19
-0

5
-0

6
–

S
sc

ru
m

–

51/59

• Has been used in many projects, experience in majority positive.

• Team size bigger 7–10 may need scrum of scrums.

• Competent product owner necessary for success.

• Success depends on motivation, competence,
and communication skills of team members.

• Team members are responsible for planning,
and for adhering to process and rules,
thus intensive learning and experience necessary.

• Can (as other process models) be combined with techniques from XP.

Process Metrics

–
4

–
2

0
19

-0
5

-0
6

–
m

ai
n

–

52/59

Assessing Process Quality
–

4
–

2
0

19
-0

5
-0

6
–

S
p

ro
cm

e
t

–

53/59

• A good process, in general, does not stop us from creating bad products,

• (the hope is, that) bad products are less likely when using a good process,
i.e. that there is a correlation like:

process quality
low high

pr
od

uc
tq

ua
lit

y high

false positive

×

true positive

× ×

× × ×

× ×

low

true negative

× ×

×

× ×

false negative

×

× ×

• Some customers would like to only work with contractors with good processes.

• But how to measure the quality of a process?

SPICE (Hörmann et al., 2006) and CMMI (Team, 2010)
–

4
–

2
0

19
-0

5
-0

6
–

S
p

ro
cm

e
t

–

54/59

• SPICE / ISO 15504 (Software Process Improvement and Capability Determination)

• can be seen as a specification for process pseudo-metrics;
ISO/IEC 15504 Part 5 gives one example implementation

• idea:

• define considered process areas

• assess each process for
so-called process attributes

• map results to maturity level

assessment conducted by specially
trained assessors (→ subjective metrics)

B
y

A
re

n
au

lt
6

6
-

C
C

B
Y

-S
A

4
.0

,c
o

m
m

o
n

s.
w

ik
im

e
d

ia
.o

rg
,c

u
ri

d
=

3
5

4
0

74
6

7

• CMMI (Capability Maturity Model Integration)

• considers 5 process categories (project magmt., support, engineering, process mgmt.),

• each consisting of 5–7 process areas,

• each process area can be assigned a capability level
(0: incomplete, 1: performed, 2: managed, 3: defined)

• capability levels can be aggregated to organisation’s maturity level
(1: initial, 2: managed, 3: defined, 4: quantitatively managed, 5: optimizing)

• flavours: CMMI-DEV, CMMI-ACQ, CMMI-SVC

Content
–

4
–

2
0

19
-0

5
-0

6
–

S
co

n
te

n
t

–

55/59

• Procedure and Process Models

• Vocabulary:

• linear / non-linear

• evolutionary, iterative, incremental

• prototyping

• Procedure Model Examples

• The (in)famous Waterfall model

• The famous Spiral model

• Process Model Examples

• Code-and-Fix, Phase Model

• V-Modell XT

• Agile

• Extreme Programming (XP)

• Scrum

• Process Metrics

• CMMI, Spice

Discussion
–

4
–

2
0

19
-0

5
-0

6
–

S
d

is
c

–

56/59

Recall: Anticipated Benefits of Process Modelling:

• “economy of thought”

• quantification, reproducibility

• fewer errors

• clear responsibilities

• Process model-ing is easily overdone — the best process model
is worthless if your software people don’t “live” it.

• Before introducing a process model

• understand what you have, understand what you need.

• process-model as much as needed, not more (→ tailoring).

• assess whether the new/changed process model makes matters
better or worse (→ metrics).

• Note: customer may require a certain process model.

westphal
Bleistift

Tell Them What You’ve Told Them. . .
–

4
–

2
0

19
-0

5
-0

6
–

S
tt

w
y

tt
–

57/59

• Classification of processes

• linear, non-linear

• evolutionary, iterative, incremental

• prototyping: needs purposes and questions

• Procedure Models

• Waterfall (very well-known, very abstract, of limited practical use)

• Spiral (iterated risk assessment, e.g., for very innovative projects)

• V-Model XT

• slightly different vocabulary,

• quite comprehensive,

• may serve as inspiration for, e.g., definition of roles,

• can be tailored in various ways

• Agile approaches

• Extreme Programming (XP) (proposes methods and approaches)

• Scrum (focuses on management aspects)

• Measure process quality: CMMI, Spice

westphal
Bleistift

References

–
4

–
2

0
19

-0
5

-0
6

–
m

ai
n

–

58/59

References
–

4
–

2
0

19
-0

5
-0

6
–

m
ai

n
–

59/59

Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J. (2002). Agile software development methods. review
and analysis. Technical Report 478.

Beck, K. (1999). Extreme Programming Explained – Embrace Change. Addison-Wesley.

Boehm, B. W. (1988). A spiral model of software development and enhancement. IEEE Computer, 21(5):61–72.

Hörmann, K., Dittmann, L., Hindel, B., and Müller, M. (2006). SPICE in der Praxis: Interpretationshilfe für Anwender
und Assessoren. dpunkt.verlag.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Rosove, P. E. (1967). Developing Computer-based Information Systems. John Wiley and Sons.

Schwaber, K. (1995). SCRUM development process. In Sutherland, J. et al., editors, Business Object Design and
Implementation, OOPSLA’95 Workshop Proceedings. Springer-Verlag.

Team, C. P. (2010). Cmmi for development, version 1.3. Technical Report ESC-TR-2010-033, CMU/SEI.

V-Modell XT (2006). V-Modell XT. Version 1.4.

Züllighoven, H. (2005). Object-Oriented Construction Handbook - Developing Application-Oriented Software with
the Tools and Materials Approach. dpunkt.verlag/Morgan Kaufmann.

	Topic Area Project Management: Content
	
	Content
	Process vs. Procedure Models
	Process vs. Procedure Model
	Content

	Procedure Model Examples
	Linear vs. Non-Linear Procedure Models
	Iterative, Incremental, Evolutionary
	Prototyping
	Prototyping Procedure Model
	Content
	The (In)famous Waterfall Model Rosove1967
	The Waterfall Model: Discussion
	The Spiral Model Boehm1988
	The Spiral Model Boehm1988 Cont'd
	Wait, Where's the Spiral?
	Content

	Process Model Examples
	From Procedure to Process Model
	Trivial Example: Code & Fix
	The Phase Model: Phases, Milestones
	Milestones, Deadlines
	The Phase Model
	Content

	V-Model XT
	
	V-Modell XT
	V-Modell XT: Procedure Building Blocks
	V-Modell XT: Decision Points
	V-Modell XT: Example Building Block & Product State
	V-Modell XT: (Lots of) Disciplines and Products
	V-Modell XT: Activities (as many?!)
	V-Modell XT: Roles (even more?!)
	What About the Colours?
	V-Modell XT: Project Types
	V-Modell XT: Customer/Developer Interface
	V-Modell XT: Tailoring Instance
	V-Modell XT: Development Strategies
	V-Modell XT: Discussion

	Agile
	The Agile Manifesto
	Agile Principles
	Similarities of Agiles Process Models

	Agile— Extreme Programming (XP) —
	Extreme Programming (XP) Beck1999

	Agile— Scrum —
	Scrum
	Scrum Process
	Scrum: Discussion

	Process Metrics
	Assessing Process Quality
	SPICE Hoermann2006 and CMMI CMMI-DEV2010
	Content
	Discussion
	Tell Them What You've Told Them…

	References
	References

