Softwaretechnik / Software-Engineering

Lecture 9: Live Sequence Charts
& RE Wrap-Up

2019-06-03

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Content

o_Live Sequence Charts

« TBA Construction

@ LSCs vs. Software

{e Full LSC (without pre-chart)

L. Activaton Condltion & Activation Mode

» (Slightly) Advanced LSC Topics
© FullLSC with pre-chart

(o LSCs in Requirements Engineering
L. srengthening existentalSCs scenarios)
into universal LSCs (requirements)

(o LSCsin Quality Assurance

lequirements Engineering Wrap-Up

« Requirements Analysis in a Nutshell

« Recall: Validation by Translation

Topic Area Requirements Engineering: Content

VL5 e Introduction
ion: Software & SW Specification
Requirements Spe

|-te Desired Properties

Lo Kinds of Requirements e
Lo Analysis Techniques Techniques
« Documents informal
VL6 | bictonary, Specifcation “
Specification Languages
semi-formal

{-te Natural Language
s Decision Tables

ws W Synta, Semantice
. @ Completeness, Consistency. ...

g E3ss
VL8 s Scenarios

User Stories, Use Cases

VL9 1< Syntax,Semantis
i e Wrap-Up

LSC Semantics: TBA Construction

|

Zop—formal _y =

Coeploe

The Plan: A Formal Semanti

for a Visual Formalism

565
O+
~
(XS
concrete syntax ((£,%,~), T, Msg,
(diagram) Cond, Loclnv, ©)

abstract syntax

. ?
semantics

(Biichiautomaton)

o~~~

software

LSC Semantics: It’s in the Cuts!

on. Let (£, <, ~), . Msg, Cond, Loclnv, ©) be an LSC body.

Anon-empty set() # C C Lis called a cut of the LSC body iff ¢
« is downward closed, i.e.
v,

€Ll ECAIZN = IEC,
« s closed under simultanei
VLU €ELel eCAL~I = L€C,and

ie.

« comprises at least one location per instance line, ie.
YIETeCNT#£D.

The temperature function is extended to cuts as follows:

hot if3l€Co(Al' € Col <I') AO(L) = hot
cold otherwise

o(0) = ﬁ

thatis, C'is hot if and only if at least one of its maximal elements is hot.

Cut Examples

/ 7/ /
7 0#CCL—d rd i y perinstance ne
@) &) ©

40me

Cut Examples

0# C C £—downward closed — simultaneity closed — at least one loc. per instance line

Cut Examples

0 # C C £— downward closed — simultaneity closed — at least one loc. per instance line.

Cut Examples

0 # C C £—downward closed — simultaneity closed — at least one loc. per instance line.

Cut Examples

0 # C C £—downward closed — simultaneity closed —at least one loc. per instance line.

Cut Examples

07 C C £ — downward closed — simultaneity closed —at least one loc. per instance ine.

Cut Examples Cut Examples Cut Examples

7 0#CCL—d d closed —si ity closed — loc. per i i _ 0#C CL—d rd closed —si ity closed loc. peri I _ 0#CCL—d rd closed —si i atl loc. peri li

A Successor Relation on Cuts Successor Cut Example Successor Cut Example

The partial order “<" and the simultaneity relation “~" of locations
induce a direct successor relation on cuts of an LSC body as follows:

CNF=0-CU Fisacut—only direct b

CAF=0-CUFi oly i i i irwi i
sending of asynchronous reception already in sending of asynchronous reception already in

Definition.
LetC C £ beta cut of LSC body (£, <, ~), Z, Msg, Cond, Loclnv, ©).

Aset () # F C L of locations is called fired-set F of cut C if and only if
— e
* CNF=0andCU Fisacutie. Fis closed under simultaneity,

« alllocations in F are direct <-successors of the front of C,
YIeFIl eCol' <IN(#I"ELS

=<1" =<1),

« locations in F that lie on the same instance
ViU cFe(3IcTe

YCI) = 1ZUAU 2L,

« for each asynchronous message reception in .,
the corresponding sending is already in C,
V(B l)EMsgel' € F = L€ C.

The cut C’ = C'U F i called direct successor of C'via , denoted by C ~ 5 C".
AL S LSOOI G

]

950 ¢ 1050 : 1055

Language of LSC Body: Example

Tiso

TBA Construction Principle

“Only” construct the transitions’ labels:

== (0 Yio0p (4),9) | 4 € QYU (4, Yproa(:4),4") | 4 7 ¢’} U (0, e (0). £) | 0 € QY

" (@) A vha™ (a) AVEE™ (2)
Vo (W Meis ()

Plaon (4) =

() =
a) A 9L (@)

Wprog (9, Gn) =

g 0) AU (a0 0n) AU (0.00)
AU (4, an) A Y™ (0, 40)

a.an)

@)V USSR (g, a)))

1359

Language of LSC Body: Example

The TBA B(.Z) of LSC % over C and £ is (Ci, Q. Gini, —+, Q) with
o Cs=CUEE where €L = (E/7 EY) |E€&,i,jeT),
c‘%_m the set of cuts of .7, giy,; is the instance heads cut,

« %, consists of loops, progress transitions (from ~), and legal exits (cold cond./local inv.),
© Qr={C€Q|O(C) =coldV C = L} is the set of cold cuts and the maximal cut.
R L ZCIVESL
Mo

Loop Condition

Diaup (@) = 9M(a) AU (g) A VL™ (a)

U9 = ~Vicizn pemsgang LA (strict = A
R weehnMsg(£)
—
)

UE(@) = =00 eLocins, 6(0)=0, Eactiveaty
Alocation [is called front location of cut C'if and only if # 1/ € C el < I'.

Local invariant (lo, t0, ¢, 11, 11) is active at cut () ¢
if and only f Ly < 1 < I, for some front location | of cut gorl = 1y A1y = ».

Msg(F) = {E] ¢ | (LE,) € Msg, L € Fyu {EI"

Fa) = Urcucn Mss(7)

| (LE.l') € Msg, I € F}

o Msg(Fi

TBA Construction Principle

Recall: The TBA B(.%) of LSC .2 is (C, Q, ¢ini, —, QF) with

. Qi L Qun e
. C5=CUER,
© — consists of loops, progress (from ~), and legal flocal inv),

© Qr={C€Q|O(C) = cold v C = L}isthe set of cold cuts.

So in the following, we “only” need to construct the transitions’ labels:

),a) 14 € QPUA(4: bpry(a,4),d') a5 '} U

—={(a

Yioop(4): “what
allows us to stay at

@ cutq

Yprog (4:0'):
characterisation of
firedset Fp”

Progress Condition

Uty (0, 00) = WM(q,00) AR (@, an) A VR (00)

M _
@ V0 40) = Nyemsglana) ¥ A Nji Avevssa; o) \wisg(ai\a) ™%
A (strict = A -y)
WE(ESNMsg(£))\Msg(F;)
- o weemmE

=striet (2

Y50 0) = Ay=(L.)econs, ©(1)=6, Lo(ai\0)£0 ¢

Loclnv.e

* Y (@:a:) = As=(

Localinvariant (lo, to. 6, 11, 1) is e-active at q if and only if

1" 1")ELoclnv, O(A)=0, A e-activeat g; 4

o lo<1<lLor
e l=lgnug=sor
el=hinu=e

for some front location [of cut (1) g.

Excursion: Symbolic Biichi Automata

16559

1859

Example (without strictness condition)

From Finite Automata to Symbolic Biichi Automata

W=00000/010/
L(3)=000)*
5 s= (o)

s .
i OISV WV PR O ailis O

infinite words T

L.(4)=0(1a)*
01010 v
oy X
Qo %

[)
%= ({a.be,d) - B)

Biichi

infinite words
a

u Sl Gy)

1959

Content

o Live Sequence Charts
{ TBA Construction
o LSCs vs. Software
(s Full LSC (without pre-chart)
T- Activation Condition & Activation Mode

(s (lightly) Advanced LSC Topics

Full LSC with pre-chart

s LSCs in Requirements Engineering

L strengthening existential LSCs (scenarios)
into universal LSCs (requirements)

{ LSCsin Quality Assurance
* Requirements Engineering Wrap-Up

= Requirements Analysis in a Nutshell
o Recall: Val

tion by Translation

759

Symbolic Biichi Automata

n. A Symb

Biichi Automaton (TBA) is a tuple
=, Qr)

B = (Cs,Q, Gin

where

o Cp is a set of atomic propositions,
o Qisafinite set of states,
 gini € Qis theinitial state,
o = CQxd(Cy) x Qisthe

Each transitions (¢, ¥, ¢') € — from state g to state g’
is labelled with a propositional formula ¢ € ®(Cis).

* Qr C Qis the set of fair (or accepting) states.

o= ({abe.d) — B)

209

Run of TBA

Definition. Let B = (Cs, Q, quns, — @r) bea TBAand
w = 01,02,03, - € (Cs = B)”
an infinite word, each letter is a valuation of Cis.

An infinite sequence
0=10,q1,02,--- €Q°
of states is called run of 5 over w if and only if

oo

® 4o = Gini,

« foreachi € Ny there is a transition (gi, v, gi+1) €~ St. 07 |= .

Example:

w = {ar> true,b — true, ¢ v false, d — false}, {c}, {a, b}, ({d}, {a, b})*

{a.b)} forshort

Software, formally

Definition. Software is a finite description S of a (possibly infinite)

set [5] of (finite or infinite) computation paths of the form

02 03 2 g
where

« 0, € £,i € Ny, is called state (or configuration), and

* a; € A,i € Ny, is called action (or event).

function [-] : § > [5] s called interpretation of S.

The (possibly p

2= ({ab.c.d} — B)

25

2459

The Language of a TBA

Definition.
We say TBA B = (Cs, Q, guns, =, Q) accepts the word

w = (vi)ien, € (Cs = B)*

if and only if B 1,25 arun

T 0= (d:)ieny
overw =

such that fair (or accepting) states are visited infinitely often by o, i.e.,

VieNo3j>i:g €Qr.

We call the set Lang(8) C (Cs — IB)* of words that are accepted by B
the language of 5.

By == ({abcd) = B)

Example:

Software Specification, formally
? T

description .7
of a (possibly infinite) set [.#'] of softwares, ie.

171 = {8, [-10), (S2, [2)s - }-
The (possibly partial) function [-] : .+ [.#] is called interpretation of ..

software specification 7. denoted by § (=
7. ifand only if
S el

25059

LSCs vs. Software

235

Software Satisfies-Software Specification: Ex, ? S~
o, ERe = o
- ol
il - A - -
Pl feetift cmma o i
" i et Softwaredelvery.
Software Specification Software

Assume we have a program S for the room
ventilation controller.

Assume we can observe at well-defined
points in time the conditions b, off, on, go,
stop when the software runs.

Define: (S, [-]) € [#]if and only if for all
0oy “2 gy e [S]
andforalli € No,
3reTeo; = Fr)

157 of S can be viewed as
computation paths of the form

a0 Trar Do

where each o is a valuation of b, off, on. go.
stop.ie.o: : {b, off, on, go, stop} — B.
For example:

b b
E:y?vr:iwﬁ .T::
o

2659

,we\ﬂu\mﬁm mE:\N\TM:\EEE Specification: Another M\SS.:\ e

zﬁ&

Pt

Software

« Assume we can observe at well-defined
points in time the observables relevant for the

Define: (5.-) € [#]if and only if

* tja... (ina minute)

LSCs vs. Software (or Systems)

pSOFTUY.
QCP;Z‘S B

LscC
ware S runs.

« Then the behaviour [S] of S can be viewed
as computation paths over the LSC's observ-
ables.

« For example:

lghrup buton

» And then we can relate Sto ./,

270

v
o6 2 e8]

2

wln)= g, 128, 1273, 8, 35 3 1970 4, €LO) e

w={}(B1]"Y, B1{"} {pSOFT"Y pSOFTY

User Vend. Mach.

E1

pSOFT

SOFT

El:insert1€ coin
PpSOFT: press 'SOFT button
SOFT: dispense soft drink

G mEL

b A 0 0, {SOFTY SOFTYV}, {3,
€ Lang(B(£))

The Plan: A Formal Semantics for a Visual Formalism

concrete syntax ((£,%,~), T, Msg,
(diagram) Cond, Loclnv, ©)
abstract syntax

?

semantics
(Biichi automaton)

software

LSCs vs. Software (or Systems)

VY PpSOFTY"V SOFTV'V
o0 Do 0y BT oy Ty Doy Tros ST e (5]

w(x) = 0, (01 U {E-
(06 U{SOFTY

SOFTY"Y), 03,04, 05,

w={} B BV} {pSOFT!Y pSOFTYV Y, {},{}, {3} {SOFTY"Y [SOFTY 'V}, {}, ...
€ Lang(B(2))

TBAoverC = CUEF,

User Vend. Mach.

E1

PSOFT

SOFT

EI:insert1€ coin
PSOFT: press'SOFT button
SOFT: dispense soft drink

309

LSCs as Software Specification

Asoftware 5 is called compatible with LSC . over C and € is if and only if
compativle!
= (C = B),C C C.ie. the states comprise valuations of the conditions n C,

o A= (B — B),EE C B, ie. the events comprise valuations of £}/, ;7.

A computation path = = ‘ % - € [S] of software S induces the word

=(00Ua),(01Uaz),(02Uas),...,

we use W to denote the set of words induced by []

Ws = {w(x) | = € [S]}-

2959

Content

Live Sequence Charts

« TBA Construction

* LSCs vs. Software

» Full LSC (without pre-chart)

L. Actvation Conditon & Activation Mode

htly) Advanced LSC Topics
® Full LSC with pre-chart

LSCs in Requirements Engineering

o strengthening existential LSCs (scenarios)
into universal LSCs (requirements)

« LSCs in Quality Assurance

* Requirements Engineering Wrap-Up

= Requirements Analysis in a Nutshell

* Recall: Validation by Translation

3150

Activation Condition and Mode

Software Satisfies LSC

Let S be a software which is compatible with LSC .2 (without pre-chart).
We say software § satisfies LSC %, denoted by S (= ., if and only if

Oz am = initial

am = invariant

cold

(Co)
e+ 1 € Lang(5(.

hot

Aw/1€ Lang(B(2,

Ve Ws vk e N
= kb

where and C [cutof

Software S satisfies a set of LSCs .73,

andonly if § |- % forall 1 < i < n.

Full LSC Syntax (without pre-ch

activation condition aco € #(C).

AfUllLSC_Z = (MC, aco, am, ©) consists of

(non-empty) main-chart MC' = ((Las, <ar,~ar). Zar, Msg ., Cond g, Locln

lostrictness flag strict (i false, is permissive)

| activation mode am € {initil, invariant}.,

chart mode existential (6 ¢ = cold) or universal (€. = hot).

LSCs At Work

Software Satisfies LSC

Let S be a software which is compatible with LSC & (without pre-chart).

We say software S satisfies LSC ., denoted by § = ., if and only if
O am = invariant
= 2weWs2keN = ac A
8 Awk = 0,Co) Aw/k+1 € Lang(B(.
PN it
. Ywe Ws ¥k Nowuk = ac A e
2 — wk Aw/k+1 € L
where and

ivarant . _pemissie

pemissie

Vo] [vmor

ser

R
[

] [ewra

o)

sor

Example: Vending Machine

« Positive scenario: Buy a Softdrink
We (only) accept the software f it
le to buy a softdrink.

Insert one 1 euro coin.
Press the softdrink' button.
Getasoftdrink.

ive scenario: Get Change

We (only) accept the software f it

is possible to get change.

Insert one 50 cent and one 1 euro coin.
Press the ‘softdrink’ button.

Get a softdrink.

) Get 50 cent change.

« Requirement: Perform Self-Test on Power-on
We (only) accept the software f it
always performs a self-test on power-on.

Check water dispenser.

Check softdrink dispenser.

Checktea dispenser.

345

3659

Content

o Live Sequence Charts
e TBA Construction
(e LSCs vs. Software
(e Full LSC (without pre-chart)

L. Activaton Condition & Actvation Mode

e (Slightly) Advanced LSC Topics
L Full LSC with pre-chart

LSCs in Requirements Engineering

L. strengthening exitentalSCs (scenarios)
into universal LSCs (requirements)

(o LSCsin Quality Assurance
Requirements Engineering Wrap-Up

ﬁ. Requirements Analysis in a Nutshell
« Recall: Validation by Translation

3759
LSC Semantics with Pre-chart
am = invariant
3
- (CF) A Yprog (0,
3 m € Lang(B(PC))
I
5
@ Aw/m+2 € Lang(B(MC)) Aw/m +2 € Lang(B(AC))
VweWvmeNoe VeeWvksme
5
s
[Sy S
S D e
Aw/m+2 € Lang(B(MC)) Aw/fm+2 € Lang(B(MC))
where CJ” and ' (ori f pre- 4059

(Slightly) Advanced LSC Topics

Pre-Charts At Work

Full LSC Syntax (with pre-chart)

wign = oot

ARUllLSC.Z = (PC, MC, aco, am, ©) consists of

o prechart PC = ((Lp,<p,~p), Ip,Msgp, Condp, Loclnv, © p) (possibly empty),

 (non-empty) main-chart MC = ((Lar, =ar, ~ar), Zar, Msg g, Condar, Loclnvag, ©1r),
« activation condition aco € (C),

o strictness flag strict (if false, £ is permissive)

o activation mode am € {initial, invariant},

« chart mode existential (€ ¢ = cold) or universal (8 & = hot).

3859 39

Example: Vending Machine

« Requirement: Buy Water
We (only)

(i) Whenever weinsert 0.50 €,

(i) and press the ‘water button
(and no other button).

i) and there is water in stock,

(v) then we get water
(and nothing else).

« Negative scenario: A Drink for Free
We don't accept the software if
itis possible to get a drink for free.

(i) Insert one 1 euro coin.
i) Press the ‘softdrink’ button.

i) Do not insert any more money.
(iv) Get two softdrinks.

A1

o Live Sequence Charts

(s TBA Construction

(e LSCs vs. Software

(s Full LSC (without pre-chart)
Lo activation Condion & Activation Mode

s (Slightly) Advanced LSC Topics
Lo Rulisc withpre-chart

(o LSCs in Requirements Engineering
Le strengthening existential LSCs (scenarios)

into universal LSCs (requirements)
(o LSCsin Quality Assurance
« Requirements Engineering Wrap-Up

W- »mﬁ_aaaa;a_ﬁ_ﬂ:sz;a:
o Recall: Validation by Translation

4359

Strengthenjng Scengrigs Into Requirements &
LR (R N 25}

~

Requirements Engineering with Scenarios B

LSCs in Requirements Analysis

Strengthening Scengrios Into Requirements

[T U

« Ask customer for (pos./neg.) scenarios, note down as existential LSCs:

« Re-Discuss with customer using example words of the LSCS language.

ot) Shoert) G)
L, L& _ S
— 0
b - 4 - H - B
TEEE DT EREE Cmees
One quite effective approach:
[0} i the software requi ask for positive / negative existential scenarios.

o Askthe customer to describe example usages of the desired system.
Inthe sense of: “If the system is not at all able to do this, then it's not what | want!
(— positive use-cases, existential LSC)

o Askthe customer to describe behaviour that must not happen in the desired system.
In the sense of: “If the system does this, then it's not what | want.
(= negz . LSC with pr

Refine result into universal scenarios (and validate them with customer).

ns, exceptional cases and

« Investigate preconditions, side-cond
d refine LSCs with condi

« Generalise into universal requirements, e.g, universal LSCs.
« Validate with customer using new positive / negative scenarios.

LSCs vs. Quality Assurance

How to Prove that a Software Satisfies an LSC?

« Software S satisfies existential LSC . if there exists = € [S]

such that .2 accepts w(r). Prove S |= . by demonstrating .
« Note: Existential LSCs* may hint at test-cases for the acceptance test!
/e) scenarios in general, like use-cases)

ETH@,HE S [==]

Pushing Things Even Further

4955

How to Prove that a Software Satisfies an LSC?

 Software S satisfies existential LSC . if there exists 7 € [S]

such that .2 accepts w(r). Prove S |= % by Ex
« Note: Existential LSCs* may hint at test-cases for the acceptance test!
wellas (positive) scenarios in general,like use-cases)

Tell Them What You've Told Them. ..

« Live Sequence Charts (if well-formed)

+ have an abstract syntax: instance lines, messages, conditions,
local invariants; mode: hot or old. ,~

» From an abstract w<=.mwv\m._mnrmanw__< construct its TBA.

« AnLSCis satisfied by a software 5 if and only if

« existential (cold):

o there is a word induced by a computation path of

© which is accepted by the LSC's pre/main-chart TBA. ,\
o universal (hot):

© all words induced by the computation paths of

© are accepted by the LSCs pre/main-chart T8, ,\

« Pre-charts allow us to

+ specify anti-scenarios (‘this must not happert),”
* contrain activation, -
© Method:

o discuss (anti-)scenarios with customer,

into universal LSCs and re-validate.

=

« generali

50159

How to Prove that a Software Satisfies an LSC?

such that . accepts w(r). Prove S |- by demonstrating 7.
« Note: Existential LSCs* may hint at test-cases for the acceptance test!
(= as well as (positive) scenarios in general, ke use-cases)

* Universal LSCs (and negative/anti-scenarios!) in general need an exhau

(Because they require that the software never ever exhibits the unwanted behaviour.
Prove S | by demonstrating one such that u(r) is not accepted by .
4859
Requirements Engineering Wrap-Up
Slso

Topic Area Requirements Engineering: Content

Requirements Analysis in a Nutshell
VL5 e Introduction Risks Implied by Bad Requirements Specifications « Customers may not know what they want.
jon: Software & SW Specification preparation of tests, « Thatsin general not their “fault’!
designand! : ey semcing ot genen s e cached) * Carefor tacit requirements.
L« Desied properties bl o W - P « Care for non-functional requirements / constraints.
Vi) Slound when'n doubt possbly .)) _
i~ Kinds of Requirements yielding different interpretations. acceptance by « For requirements elici n, consider starting with
by
Le Analysis Techniques Techniques o scenarios (‘positive use case”) and anti-scenarios (‘negative use ca:
negotiation
o Documents (el foith customer, and elaborate comer cases.
markety
i . Dictionary, Specification eparoment or Thus, use cases can be very useful — use case diagrams not so much.
Specification Languages ! iy . ionary and high-quality descriptions.
semi-formal
|-(e Natural Language « Care for objectiveness / testability early on.
Decision Tables h Ask for each requirements: what is the acceptance test?
we T Syntax, Semantics documentation eg. e vsers el “‘
: (e Completeness, Consistency, .. formal oE.y._S on. g the users manual. « Use formal notations
: + i
VL8 Scenarios q,ﬁ:_x”r :r:ﬁsqn” ; o to fully understand requirements (precision),
i W User Stories, Use Cases. * wihou spedicaon e v peeds o b basedon o for requirements analysis (completeness, et
1] Live Sequence Charts * later re-implementations. « to communicate with your developers.
] Lo Syntax, Semantics " e new sotware e 1 be a1 re-mplementation of the od s actonal fort) e « Ifin doubt, complement (formal) diagrams with text
1 « Wrap-Up (as safety precaution, e.g. in lawsuits).
: 5259 5359 5455
(Strong) Literature Recommendation
Formalisation Validation
Two broad directions: = Option 1: teach formalism « Option 2: serve as
(usually not economic). translator / mediator.
e
o tE—
oSO s
References

e <x__.:.:o§ai.
@ FM expert translates system scenarioto valuation .

@ FM expert evaluates DT on o,

@ “allowed Y

© compare expected outcome and real outcome.

Recommendation: (Course’s Manifesto?)

o G

« use formal

N t possibl

(Rupp and die SOPHISTen, 2014)

39

5759 L 5850

References

Harel, D. and Marelly, R. (2003). Come, Let’ Play: Scenario-Based Programming Using LSCs and the Play-Engine.
Springer-Verlag.
Ludewig, . and Lichter, H. (2013). Software Engineering. dpunktverlag, 3. ed

n
Rupp, C. and die SOPHISTen (2014). Requirements-Engineering und -Management. Hanser, 6th edition.

5959

