
–
6
–
2
0
19
-0
5
-1
6
–
m
ai
n
–

Softwaretechnik / Software-Engineering

Lecture 6: Formal Methods for

Requirements Engineering

2019-05-16

Prof. Dr. Andreas Podelski, Dr. BerndWestphal

Albert-Ludwigs-Universität Freiburg, Germany

Topic Area Requirements Engineering: Content

–
6
–
2
0
19
-0
5
-1
6
–
S
b
lo
ck
co
n
te
n
t
–

2/62

• Introduction

• Requirements Specification

• Desired Properties

• Kinds of Requirements

• Analysis Techniques

• Documents

• Dictionary, Specification

• Specification Languages

• Natural Language

• Decision Tables

• Syntax, Semantics

• Completeness, Consistency, . . .

Vocabulary

Techniques

informal

semi-formal

formal

• Scenarios

• User Stories, Use Cases

• Live Sequence Charts

• Syntax, Semantics

• Definition: Software & SW Specification

• Wrap-Up

VL 5

...

VL 6

...

VL 7
...

VL 8

...

VL 9...

Content

–
6
–
2
0
19
-0
5
-1
6
–
S
co
n
te
n
t
–

3/62

• Documents

• Dictionary, Specification

• Requirements Specification Languages

• Natural Language

• (Basic) Decision Tables

• Syntax, Semantics

• . . . for Requirements Specification

• . . . for Requirements Analysis

• Completeness, Useless Rules,

• Determinism

• Domain Modelling

• Conflict Axiom,

• Relative Completeness, Vacuous Rules,

• Conflict Relation

• Collecting Semantics

• Discussion

Logic

Requirements Documents

–
6
–
2
0
19
-0
5
-1
6
–
m
ai
n
–

4/62

Requirements Specification

–
6
–
2
0
19
-0
5
-1
6
–
S
re
d
o
cs
–

5/62

specification — A document that specifies,

• in a complete, precise, verifiable manner,

the

• requirements, design, behavior,
or other characteristics of a system or component,

and, often, the procedures for determining whether these provisions have
been satisfied. IEEE 610.12 (1990)

software requirements specification (SRS) — Documentation of the es-
sential requirements (functions, performance, design constraints, and at-
tributes) of the software and its external interfaces. IEEE 610.12 (1990)

–
6
–
2
0
19
-0
5
-1
6
–
S
re
d
o
cs
–

6/62

The Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street, New York, NY 10017-2394, USA

Copyright © 1998 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 1998. Printed in the United States of America.

ISBN 0-7381-0332-2

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

IEEE Std 830-1998

(Revision of

IEEE Std 830-1993)

IEEE Recommended Practice for
Software Requirements
SpeciÞcations

Sponsor

Software Engineering Standards Committee
of the
IEEE Computer Society

Approved 25 June 1998

IEEE-SA Standards Board

Abstract:

 The content and qualities of a good software requirements specification (SRS) are de-

scribed and several sample SRS outlines are presented. This recommended practice is aimed at

specifying requirements of software to be developed but also can be applied to assist in the selec-

tion of in-house and commercial software products. Guidelines for compliance with IEEE/EIA

12207.1-1997 are also provided.

Keywords:

 contract, customer, prototyping, software requirements specification, supplier, system

requirements specifications

Structure of a Requirements Document: Example

–
6
–
2
0
19
-0
5
-1
6
–
S
re
d
o
cs
–

7/62

1 INTRODUCTION

1.1 Purpose
1.2 Acronyms and Definitions
1.3 References
1.4 User Characteristics

2 FUNCTIONAL REQUIREMENTS

2.1 Function Set 1
2.2 etc.

3 REQUIREMENTS TO EXTERNAL INTERFACES

3.1 User Interfaces
3.2 Interfaces to Hardware
3.3 Interfaces to Software Products / Software / Firmware
3.4 Communication Interfaces

4 REQUIREMENTS REGARDING TECHNICAL DATA

4.1 Volume Requirements
4.2 Performance
4.3 etc.

5 GENERAL CONSTRAINTS AND REQUIREMENTS

5.1 Standards and Regulations
5.2 Strategic Constraints
5.3 Hardware
5.4 Software
5.5 Compatibility
5.6 Cost Constraints
5.7 Time Constraints
5.8 etc.

6 PRODUCT QUALITY REQUIREMENTS

6.1 Availability, Reliability, Robustness
6.2 Security
6.3 Maintainability
6.4 Portability
6.5 etc.

7 FURTHER REQUIREMENTS

7.1 System Operation
7.2 Customisation
7.3 Requirements of Internal Users

(Ludewig and Lichter, 2013) based on (IEEE, 1998)

Dictionary

–
6
–
2
0
19
-0
5
-1
6
–
S
re
d
o
cs
–

8/62

• Requirements analysis should be based on a dictionary.

• A dictionary comprises definitions and clarifications of terms that are relevant to the project
and of which different people (in particular customer and developer)
may have different understandings before agreeing on the dictionary.

• Each entry in the dictionary should provide the following information:

• term and synonyms (in the sense of the requirements specification),

• meaning (definition, explanation),

• deliminations (where not to use this terms),

• validness (in time, in space, . . .),

• denotation, unique identifiers, . . . ,

• open questions not yet resolved,

• related terms, cross references.

Note: entries for terms that seemed “crystal clear” at first sight are not uncommon.

• All work on requirements should, as far as possible,
be done using terms from the dictionary consistently and consequently.

The dictionary should in particular be negotiated with the customer
and used in communication (if not possible, at least developers should stick to dictionary terms).

• Note: do not mix up real-world/domain terms with ones only “living” in the software.

–
6
–
2
0
19
-0
5
-1
6
–
S
re
d
o
cs
–

9/62

Example: Wireless Fire Alarm System

–
5

–
2

0
19

-0
5

-1
3

–
S

re
an

a
–

31/49

The loss of the ability of the system to transmit a signal from a
component to the central unit is

• detected in less than 300 seconds and

• displayed at the central unit within 100 seconds thereafter.

Dictionary Example

–
6
–
2
0
19
-0
5
-1
6
–
S
re
d
o
cs
–

10/62

(Arenis et al., 2014)

Example:Wireless Fire Alarm System

• During a project on designing a highly reliable, EN-54-25
conforming wireless communication protocol, we had to
learn that the relevant components of a fire alarm system are

• terminal participants
(heat/smoke sensors and manual indicators),

• repeaters (a non-terminal participant),

• and a central unit (not a participant).

• Repeaters and central unit are technically very similar, but
need to be distinguished to understand requirements.
The dictionary explains these terms.

Excerpt from the dictionary (ca. 50 entries in total):

Part A part of a fire alarm system is either a participant or a central unit.

Repeater A repeater is a participantwhich acceptsmessages for the central unit from other participants,
or messages from the central unit to other participants.

Central Unit A central unit is a part which receives messages from different assigned participants, as-
sesses the messages, and reacts, e.g. by forwarding to persons or optical/acustic signalling devices.

Terminal Participant A terminal participant is a participant which is not a repeater. Each terminal partic-
ipant consists of exactly one wireless communication module and devices which provide sensor and/or
signalling functionality.

Content

–
6
–
2
0
19
-0
5
-1
6
–
S
co
n
te
n
t
–

11/62

• Documents

• Dictionary, Specification

• Requirements Specification Languages

• Natural Language

• (Basic) Decision Tables

• Syntax, Semantics

• . . . for Requirements Specification

• . . . for Requirements Analysis

• Completeness, Useless Rules,

• Determinism

• Domain Modelling

• Conflict Axiom,

• Relative Completeness, Vacuous Rules,

• Conflict Relation

• Collecting Semantics

• Discussion

Logic

Requirements Specification Languages

–
6
–
2
0
19
-0
5
-1
6
–
m
ai
n
–

12/62

Requirements Specification Language

–
6
–
2
0
19
-0
5
-1
6
–
S
sp
e
cl
an
g
–

13/62

specification language—A language, often amachine-processible combinationof nat-
ural and formal language, used to express the requirements, design, behavior, or other
characteristics of a system or component.

For example, a design language or requirements specification language. Contrast with:
programming language; query language. IEEE 610.12 (1990)

requirements specification language — A specification language with special con-
structs and, sometimes, verification protocols, used to develop, analyze, and docu-
ment hardware or software requirements. IEEE 610.12 (1990)

Natural Language Specification (Ludewig and Lichter, 2013) based

on (Rupp and die SOPHISTen, 2009)

–
6
–
2
0
19
-0
5
-1
6
–
S
sp
e
cl
an
g
–

14/62

rule explanation, example

R1 State each requirement
in active voice.

Name the actors, indicate whether the user or the system does
something. Not “the item is deleted”.

R2
Express processes by
full verbs.

Not “is”, “has”, but “reads”, “creates”; full verbs require information
which describe the process more precisely. Not “when data is
consistent” but “after program P has checked consistency of the data”.

R3
Discover incompletely
defined verbs.

In “the component raises an error”,
ask whom the message is addressed to.

R4
Discover incomplete
conditions.

Conditions of the form “if-else”
need descriptions of the if- and the then-case.

R5
Discover universal
quantifiers.

Are sentences with “never”, “always”, “each”, “any”, “all” really
universally valid? Are “all” really all or are there exceptions.

R6
Check nominalisations. Nouns like “registration” often hide complex processes that need

more detailed descriptions; the verb “register” raises appropriate
questions: who, where, for what?

R7
Recognise and refine
unclear substantives.

Is the substantive used as a generic term or does it denote something
specific? Is “user” generic or is a member of a specific classes meant?

R8
Clarify responsibilities. If the specification says that something is “possible”, “impossible”, or

“may”, “should”, “must” happen,
clarify who is enforcing or prohibiting the behaviour.

R9
Identify implicit
assumptions.

Terms (“the firewall”) that are not explained further often hint to
implicit assumptions (here: there seems to be a firewall).

Natural Language Patterns

–
6
–
2
0
19
-0
5
-1
6
–
S
sp
e
cl
an
g
–

15/62

Natural language requirements can be (tried to be) written as an instance of
the pattern “〈A〉 〈B〉 〈C〉 〈D〉 〈E〉 〈F 〉.” (German grammar) where

A clarifies when and under what conditions the activity takes place

B is MUST (obligation), SHOULD (wish), or WILL (intention);
also: MUST NOT (forbidden)

C is either “the system” or the concrete name of a (sub-)system

D one of three possibilities:

• “does”, description of a system activity,
• “offers”, description of a function offered by the system to somebody,
• “is able if”,
usage of a function offered by a third party, under certain conditions

E extensions, in particular an object

F the actual process word (what happens)

(Rupp and die SOPHISTen, 2009)

Example:

After office hours (= A), the system (= C) should (= B) offer to the operator (= D)
a backup (= F) of all new registrations to an external medium (= E).

Other Pattern Example: RFC 2119

–
6
–
2
0
19
-0
5
-1
6
–
S
sp
e
cl
an
g
–

16/62

Network Working Group S. Bradner

Request for Comments: 2119 Harvard University

BCP: 14 March 1997

Category: Best Current Practice

 Key words for use in RFCs to Indicate Requirement Levels

Status of this Memo

 This document specifies an Internet Best Current Practices for the

 Internet Community, and requests discussion and suggestions for

 improvements. Distribution of this memo is unlimited.

Abstract

 In many standards track documents several words are used to signify

 the requirements in the specification. These words are often

 capitalized. This document defines these words as they should be

 interpreted in IETF documents. Authors who follow these guidelines

 should incorporate this phrase near the beginning of their document:

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL

 NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in

 RFC 2119.

 Note that the force of these words is modified by the requirement

 level of the document in which they are used.

1. MUST This word, or the terms "REQUIRED" or "SHALL", mean that the

 definition is an absolute requirement of the specification.

2. MUST NOT This phrase, or the phrase "SHALL NOT", mean that the

 definition is an absolute prohibition of the specification.

3. SHOULD This word, or the adjective "RECOMMENDED", mean that there

 may exist valid reasons in particular circumstances to ignore a

 particular item, but the full implications must be understood and

 carefully weighed before choosing a different course.

4. SHOULD NOT This phrase, or the phrase "NOT RECOMMENDED" mean that

 there may exist valid reasons in particular circumstances when the

 particular behavior is acceptable or even useful, but the full

 implications should be understood and the case carefully weighed

 before implementing any behavior described with this label.

Bradner Best Current Practice [Page 1]

RFC 2119 RFC Key Words March 1997

5. MAY This word, or the adjective "OPTIONAL", mean that an item is

 truly optional. One vendor may choose to include the item because a

 particular marketplace requires it or because the vendor feels that

 it enhances the product while another vendor may omit the same item.

 An implementation which does not include a particular option MUST be

 prepared to interoperate with another implementation which does

 include the option, though perhaps with reduced functionality. In the

 same vein an implementation which does include a particular option

 MUST be prepared to interoperate with another implementation which

 does not include the option (except, of course, for the feature the

 option provides.)

6. Guidance in the use of these Imperatives

 Imperatives of the type defined in this memo must be used with care

 and sparingly. In particular, they MUST only be used where it is

 actually required for interoperation or to limit behavior which has

 potential for causing harm (e.g., limiting retransmisssions) For

 example, they must not be used to try to impose a particular method

 on implementors where the method is not required for

 interoperability.

7. Security Considerations

 These terms are frequently used to specify behavior with security

 implications. The effects on security of not implementing a MUST or

 SHOULD, or doing something the specification says MUST NOT or SHOULD

 NOT be done may be very subtle. Document authors should take the time

 to elaborate the security implications of not following

 recommendations or requirements as most implementors will not have

 had the benefit of the experience and discussion that produced the

 specification.

8. Acknowledgments

 The definitions of these terms are an amalgam of definitions taken

 from a number of RFCs. In addition, suggestions have been

 incorporated from a number of people including Robert Ullmann, Thomas

 Narten, Neal McBurnett, and Robert Elz.

Content

–
6
–
2
0
19
-0
5
-1
6
–
S
co
n
te
n
t
–

17/62

• Documents

• Dictionary, Specification

• Requirements Specification Languages

• Natural Language

• (Basic) Decision Tables

• Syntax, Semantics

• . . . for Requirements Specification

• . . . for Requirements Analysis

• Completeness, Useless Rules,

• Determinism

• Domain Modelling

• Conflict Axiom,

• Relative Completeness, Vacuous Rules,

• Conflict Relation

• Collecting Semantics

• Discussion

Logic

–
6
–
2
0
19
-0
5
-1
6
–
m
ai
n
–

18/62

Formal Methods (in the Software Development Domain)

–
6
–
2
0
19
-0
5
-1
6
–
S
fm
gl
im
p
se
–

19/62

Definition. [Bjørner and Havelund (2014)]
Amethod is called formal method
if and only if its techniques and tools can be explained in mathematics.

Example:
If a method includes a specification language (as a tool), then that language has

• a formal syntax,

• a formal semantics, and

• a formal proof system.

Formal, Rigorous, or Systematic Development

–
6
–
2
0
19
-0
5
-1
6
–
S
fm
gl
im
p
se
–

20/62

“The techniques of a formal method help

• construct a specification, and/or

• analyse a specification, and/or

• transform (refine) one (or more) specification(s) into a program.

The techniques of a formal method, (besides the specification languages) are
typically software packages that help developers use the techniques and other tools.

The aim of developing software, either

• formally (all arguments are formal) or

• rigorously (some arguments are made and they are formal) or

• systematically (some arguments are made on a form that can be made formal)

is to (be able to) reason in a precise manner about properties of what is being
developed.” (Bjørner and Havelund, 2014)

Decision Tables

–
6
–
2
0
19
-0
5
-1
6
–
m
ai
n
–

21/62

Decision Tables: Example

–
6
–
2
0
19
-0
5
-1
6
–
S
co
re
e
t
–

22/62

T r1 r2 r3

c1 × × −

c2 × − ∗

c3 − × ∗

a1 × − −

a2 − × −

Decision Table Syntax

–
6
–
2
0
19
-0
5
-1
6
–
S
co
re
e
t
–

23/62

• LetC be a set of conditions andA be a set of actions s.t. C ∩A = ∅.

• A decision table T overC and A is a labelled (m+ k)× nmatrix

T : decision table r1 · · · rn

c1 description of condition c1 v1,1 · · · v1,n
..
.

..

.
..
.

. . .
..
.

cm description of condition cm vm,1 · · · vm,n

a1 description of action a1 w1,1 · · · w1,n

.

..
.
..

.

..
. . .

.

..

ak description of action ak wk,1 · · · wk,n

• where
• c1, . . . , cm ∈ C ,

• a1, . . . , ak ∈ A,

• v1,1, . . . , vm,n ∈ {−,×, ∗} and

• w1,1, . . . , wk,n ∈ {−,×}.

• Columns (v1,i, . . . , vm,i, w1,i, . . . , wk,i), 1 ≤ i ≤ n, are called rules,

• r1, . . . , rn are rule names.

• (v1,i, . . . , vm,i) is called premise of rule ri ,

(w1,i, . . . , wk,i) is called effect of ri.

Decision Table Semantics

–
6
–
2
0
19
-0
5
-1
6
–
S
co
re
e
t
–

24/62

Each rule r ∈ {r1, . . . , rn} of table T

T : decision table r1 · · · rn

c1 description of condition c1 v1,1 · · · v1,n
..
.

..

.
..
.

. . .
..
.

cm description of condition cm vm,1 · · · vm,n

a1 description of action a1 w1,1 · · · w1,n

.

..
.
..

.

..
. . .

.

..

ak description of action ak wk,1 · · · wk,n

is assigned to a propositional logical formula F(r) over signature C ∪̇ A as follows:

• Let (v1, . . . , vm) and (w1, . . . , wk) be premise and effect of r.

• Then
F(r) := F (v1, c1) ∧ · · · ∧ F (vm, cm)

︸ ︷︷ ︸

=:Fpre(r)

∧F (w1, a1) ∧ · · · ∧ F (wk, ak)
︸ ︷︷ ︸

=:Feff (r)

where

F (v, x) =






x , if v = ×

¬x , if v = −

true , if v = ∗

Decision Table Semantics: Example

–
6
–
2
0
19
-0
5
-1
6
–
S
co
re
e
t
–

25/62

F(r) := F (v1, c1) ∧ · · · ∧ F (vm, cm)

∧ F (v1, a1) ∧ · · · ∧ F (vk, ak)
F (v, x) =











x , if v = ×

¬x , if v = −

true , if v = ∗

T r1 r2 r3

c1 × × −

c2 × − ∗

c3 − × ∗

a1 × − −

a2 − × −

• F(r1) = c1 ∧ c2 ∧ ¬c3 ∧ a1 ∧ ¬a2

• F(r2) = c1 ∧ ¬c2 ∧ c3 ∧ ¬a1 ∧ a2

• F(r3) = ¬c1 ∧ true ∧ true ∧ ¬a1 ∧ ¬a2

Decision Tables as Requirements Specification

–
6
–
2
0
19
-0
5
-1
6
–
m
ai
n
–

26/62

Yes, And?

–
6
–
2
0
19
-0
5
-1
6
–
S
e
ta
ss
p
e
c
–

27/62

We can use decision tables tomodel (describe or prescribe) the behaviour of software!

Example:
Ventilation system of
lecture hall 101-0-026.

T : room ventilation r1 r2 r3

b button pressed? × × −

off ventilation off? × − ∗

on ventilation on? − × ∗

go start ventilation × − −

stop stop ventilation − × −

• We can observe whether button is pressed and whether room ventilation is on or off,
and whether (we intend to) start ventilation of stop ventilation.

• We can model our observation by a boolean valuation σ : C ∪ A → B, e.g., set

σ(b) := true, if button pressed now and σ(b) := false, if button not pressed now.

σ(go) := true, we plan to start ventilation and σ(go) := false, we plan to stop ventilation.

• A valuation σ : C ∪A → B can be used to assign a truth value to a propositional formula ϕ overC ∪A.

As usual, we write σ |= ϕ iff ϕ evaluates to true under σ (and σ 6|= ϕ otherwise).

• Rule formulaeF(r) are propositional formulae overC ∪A

thus, given σ, we have either σ |= F(r) or σ 6|= F(r).

Yes, And?

–
6
–
2
0
19
-0
5
-1
6
–
S
e
ta
ss
p
e
c
–

27/62

We can use decision tables tomodel (describe or prescribe) the behaviour of software!

Example:
Ventilation system of
lecture hall 101-0-026.

T : room ventilation r1 r2 r3

b button pressed? × × −

off ventilation off? × − ∗

on ventilation on? − × ∗

go start ventilation × − −

stop stop ventilation − × −

• We can observe whether button is pressed and whether room ventilation is on or off,
and whether (we intend to) start ventilation of stop ventilation.

• We can model our observation by a boolean valuation σ : C ∪ A → B, e.g., set

σ(b) := true, if button pressed now and σ(b) := false, if button not pressed now.

σ(go) := true, we plan to start ventilation and σ(go) := false, we plan to stop ventilation.

• A valuation σ : C ∪A → B can be used to assign a truth value to a propositional formula ϕ overC ∪A.

As usual, we write σ |= ϕ iff ϕ evaluates to true under σ (and σ 6|= ϕ otherwise).

• Rule formulaeF(r) are propositional formulae overC ∪A

thus, given σ, we have either σ |= F(r) or σ 6|= F(r).

• Let σ be a model of an observation ofC andA.

We say, σ is allowed by decision table T if and only if there exists a rule r in T such that σ |= F(r).

Example

–
6
–
2
0
19
-0
5
-1
6
–
S
e
ta
ss
p
e
c
–

28/62

T : room ventilation r1 r2 r3

b button pressed? × × −

off ventilation off? × − ∗

on ventilation on? − × ∗

go start ventilation × − −

stop stop ventilation − × −

F(r1) = b ∧ off ∧ ¬on ∧ go ∧ ¬stop

F(r2) = b ∧ ¬off ∧ on ∧ ¬go ∧ stop

F(r3) = ¬b ∧ true ∧ true ∧ ¬go ∧ ¬stop

(i) Assume: button pressed, ventilation off, we (only) plan to start the ventilation.

• Corresponding valuation: σ1 = {b 7→ true, off 7→ true, on 7→ false, start 7→ true, stop 7→ false}.

• Is our intention (to start the ventilation now) allowed by T ? Yes! (Because σ1 |= F(r1))

(ii) Assume: button pressed, ventilation on, we (only) plan to stop the ventilation.

• Corresponding valuation: σ2 = {b 7→ true, off 7→ false, on 7→ true, start 7→ false, stop 7→ true}.

• Is our intention (to stop the ventilation now) allowed by T ? Yes. (Because σ2 |= F(r2))

(iii) Assume: button not pressed, ventilation on, we (only) plan to stop the ventilation.

• Corresponding valuation:

• Is our intention (to stop the ventilation now) allowed by T ?

Decision Tables for Requirements Analysis

–
6
–
2
0
19
-0
5
-1
6
–
m
ai
n
–

30/62

Completeness

–
6
–
2
0
19
-0
5
-1
6
–
S
e
ta
n
a
–

32/62

Definition. [Completeness] A decision table T is called complete if and only if the
disjunction of all rules’ premises is a tautology, i.e. if

|=
∨

r∈T

Fpre(r).

Tell Them What You’ve Told Them. . .

–
6
–
2
0
19
-0
5
-1
6
–
S
tt
w
y
tt
–

60/62

• Decision Tables: one example for a formal
requirements specification language with

• formal syntax,

• formal semantics.

• Requirements analysts can use DTs to

• formally (objectively, precisely)

describe their understanding of requirements.
Customers may need translations/explanation!

• DT properties like

• (relative) completeness, determinism,

• uselessness,

can be used to analyse requirements.

The discussed DT properties are decidable,
there can be automatic analysis tools.

• Domain modelling formalises assumptions
on the context of software; for DTs:

• conflict axioms, conflict relation,

Note: wrong assumptions can have serious consequences.

References

–
6
–
2
0
19
-0
5
-1
6
–
m
ai
n
–

61/62

References

–
6
–
2
0
19
-0
5
-1
6
–
m
ai
n
–

62/62

Arenis, S. F., Westphal, B., Dietsch, D., Muñiz, M., and Andisha, A. S. (2014). The wireless fire alarm system:
Ensuring conformance to industrial standards through formal verification. In Jones, C. B., Pihlajasaari, P., and Sun,
J., editors, FM 2014: Formal Methods - 19th International Symposium, Singapore, May 12-16, 2014. Proceedings,
volume 8442 of LNCS, pages 658–672. Springer.

Balzert, H. (2009). Lehrbuch der Softwaretechnik: Basiskonzepte und Requirements Engineering. Spektrum, 3rd
edition.

Bjørner, D. (2006). Software Engineering, Vol. 3: Domains, Requirements and Software Design. Springer-Verlag.

Bjørner, D. and Havelund, K. (2014). 40 years of formal methods. talk.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

IEEE (1998). IEEE Recommended Practice for Software Requirements Specifications. Std 830-1998.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Rupp, C. and die SOPHISTen (2009). Requirements-Engineering und -Management. Hanser, 5th edition.

Wikipedia (2015). Lufthansa flight 2904. id 646105486, Feb., 7th, 2015.

