
Formal Methods for Java
Lecture 1: Introduction

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

October 23, 2012

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 23, 2012 1 / 20

Organisation

Dates

Lecture is Tuesday 16–18 and Friday 10–11.

Tutorial is on Friday 11–12.

Exercise sheets are available on the website on Tuesday.

Solution must be mailed to the tutor until next Tuesday.

To successfully participate, you must

do the exercises,

actively participate in the tutorial,

pass an oral examination.

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 23, 2012 2 / 20

Motivations

Why are formal methods interesting?

improve code quality,

improve productivity.

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 23, 2012 3 / 20

Motivations

Quality

Leads to better understood code.

Different view point reveals bugs.

A formal proof can rule out bugs entirely.

Productivity

Error detection in early stages of development.

Modular specifications allow reuse of components.

Documentation, maintenance.

Automatic test case generation.

Clearer specification leads to better software.

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 23, 2012 4 / 20

Is Program Correct?

public static int factorial(int n) {
int result = n;
while (--n > 0)

result *= n;
return result;

}

We need a specification!

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 23, 2012 5 / 20

Adding Pre- and Postcondition

/*@ requires n >= 0;
@ ensures \result == n! ;
@*/

public static int factorial(int n) {
int result = n;
while (--n > 0)

result *= n;
return result;

}

Is program correct?
No: case n=0 gives wrong result.

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 23, 2012 6 / 20

JML – Java Modelling Language

JML is an Extension of Java for Design by Contract.

http://www.jmlspecs.org/

Release can be downloaded from
http://sourceforge.net/projects/jmlspecs/files

JML compiler (jmlc)

JML runtime assertion checker (jmlrac)

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 23, 2012 7 / 20

http://www.jmlspecs.org/
http://sourceforge.net/projects/jmlspecs/files

JML Syntax (Method specification)

In JML the specification precedes the method in /*@ . . . @*/.

requires formula: The specification only applies if formula holds when
function called.
Otherwise behaviour of method is undefined.

ensures formula: If the function exits normally formula has to hold.

assigns variables: The function only changes values of variables

signals (exception) formula: If the function signals exception then
formula holds.

signals only exceptions: The function may only throw exceptions that
are a subtype of one of the exceptions.
If omitted function can signal only exceptions that appear in throws
clause.

diverges formula: The function may only diverge if formula holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 23, 2012 8 / 20

JML Formula Syntax

A JML formula is a Java Boolean expression. The Java language is
extended by some JML operators:

\old(expression): The value of expression before the method was
called (used in signal and ensures clause)

\result: The return value (used in ensures clause).

F ==> G : States that F implies G . This is an abbreviation for
!F || G .

\forall Type t; condition; formula: States that formula holds for all t
of type Type that satisfy condition.

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 23, 2012 9 / 20

JML Syntax (Class specification)

In JML class invariants are also in /*@ . . . @*/.

invariant formula: Whenever a method is called or returns, the
invariant has to hold.

constraint formula: A relation between the pre-state and the
post-state that has to hold for each method invokation.

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 23, 2012 10 / 20

If factorial is not a builtin operator

Solutions (1): Weakening of specification
/*@ requires n >= 0;
@ ensures \result >= 1;
@*/

public static int factorial(int n) {
int result = n;
while (--n > 0)

result *= n;
return result;

}

+ Simple Specification

+ Catches the bug

− Cannot find all bugs

− Gives no hint, what the function computes

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 23, 2012 11 / 20

If factorial is not a builtin operator

Solutions (2): JML: Pure java functions.
/*@ requires n >= 0;
@ ensures (n == 0 ==> \result == 1)
@ && (n > 0 ==> \result == n*fact(n-1)); */

public static @pure int fact(int n) {
return n <= 0 ? 1 : n*fact(n-1);

}

Pure functions must not have side-effects and must always terminate.
The pure function can be used in specification:
/*@ requires n >= 0;
@ ensures \result == fact(n);
@*/

public static int factorial(int n) {
int result = 1;
while (n > 0)

result *= n--;
return result;

}

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 23, 2012 12 / 20

Partial specifications

Giving a full specification is not always practical.

Code is repeated in the specification.

Bugs in the code may also be in the specification
⇒ bugs are not always detected.

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 23, 2012 13 / 20

Example for Partial Specifications

Factorial example:
/*@ requires n>= 0;
@ ensures \result > 0; @*/

Documenting when it throws exceptions:
/*@ requires true;
@ signals (java.lang.IllegalArgumentException) n < 0;
@ ensures n >= 0 && \result > 0; @*/

Incomplete list of expected behaviour:
/*@ requires true;
@ ensures \result.contains(e)
@ && (\forall Elem f; this.contains(f); \result.contains(f)); @*/

List add(Elem e);

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 23, 2012 14 / 20

Semantics for Java

The Java Language Specification (JLS) 3rd edition gives semantics for
Java

The document has 684 pages.

118 pages to define semantics of expression.

42 pages to define semantics of method invocation.

Semantics are only defined by prosa text.

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 23, 2012 15 / 20

Example: What does this program print?

class A {
public static int x = B.x + 1;

}

class B {
public static int x = A.x + 1;

}

class C {
public static void main(String[] p) {
System.err.println("A: " + A.x + ", B: " + B.x);

}
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 23, 2012 16 / 20

Example: What does this program print?

JLS, chapter 12.4.1 “When Initialization Occurs”:
A class T will be initialized immediately before the first occurrence of any
one of the following:

T is a class and an instance of T is created.

T is a class and a static method declared by T is invoked.

A static field declared by T is assigned.

A static field declared by T is used and the field is not a constant
variable.

T is a top-level class, and an assert statement lexically nested within
T is executed.

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 23, 2012 17 / 20

Example: What does this program print?

JLS, chapter 12.4.2 “Detailed Initialization Procedure”:
The procedure for initializing a class or interface is then as follows:

1. Synchronize on the Class object that represents the class or interface
to be initialized. This involves waiting until the current thread can
obtain the lock for that object.

2. . . .

3. If initialization is in progress for the class or interface by the current
thread, then this must be a recursive request for initialization.
Release the lock on the Class object and complete normally.

4.–8. . . .

9. Next, execute either the class variable initializers and static initializers
of the class, or the field initializers of the interface, in textual order,
as though they were a single block, except that final class variables
and fields of interfaces whose values are compile-time constants are
initialized first.

10.– . . .

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 23, 2012 18 / 20

Example: What does this program print?

class A {
public static int x = B.x + 1;

}

class B {
public static int x = A.x + 1;

}

class C {
public static void main(String[] p) {
System.err.println("A: " + A.x + ", B: " + B.x);

}
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 23, 2012 19 / 20

Example: What does this program print?

If we run class C :

1 main-method of class C first accesses A.x.

2 Class A is initialized. The lock for A is taken.

3 Static initializer of A runs and accesses B.x.

4 Class B is initialized. The lock for B is taken.

5 Static initializer of B runs and accesses A.x.

6 Class A is still locked by current thread (recursive initialization).
Therefore, initialization returns immediately.

7 The value of A.x is still 0 (section 12.3.2 and 4.12.5), so B.x is set
to 1.

8 Initialization of B finishes.

9 The value of A.x is now set to 2.

10 The program prints “A: 2, B: 1”.

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 23, 2012 20 / 20

