Formal Methods for Java
Lecture 6: The Java Virtual Machine

Jochen Hoenicke

g Software Engineering
-gg— Albert-Ludwigs-University Freiburg

November 9, 2012

Jochen Hoenicke (Software Engineering) FM4J November 9, 2012

1/21

Java and the Virtual Machine

@ Programs are written in Java or
some other language

@ Compiler translates this to Java
Bytecode.

o Platform-specific Java Virtual
Machine executes the code.

Java source files
(.java)

}

class Foo
0 ooo b

{
/

.
javac

Java bytecode files
(.class/.jar)

iconst 0
iaload

iload 1

\

Python source files
(py)

def f(x):
print x

!
jython

Java bytecode files
(.class/.jar)

istore 1

iaload

N

I
ARM VM Y Y

Intel x86 JyMY Y
Bytecode Bytecode
verifier verifier
Memory Memory
manager manager
JRE (garbage | Interpreter / JRE (garbage | Interpreter /
collection)| JIT compiler collection)f JIT compiler

Jochen Hoenicke (Software Engineering) FM4J

Java APIs

PC Operating system

Java APIs

Mobile Operating system

November 9, 2012

2/21

Java Virtual Machine (JVM)

JVM interprets .class files
.class files contain

e a description of classes (name, fields, methods, inheritance
relationships, referenced classes, . ..)

o a description of fields (name, type, attributes (visibility, volatile,
transient, ..))

o bytecode for the methods

Stack machine

°
@ Integer stack

@ Typed instructions
°

Bytecode verifier to ensure type safety

Jochen Hoenicke (Software Engineering) FM4J November 9, 2012 3/21

Calling Methods

Activation Frame contains:
@ Variables local to the called method

@ Stack space for instruction execution (Operand Stack)

Operand Stack

Locals

One activation frame per method call: z. fo00
© pushes new activation frame
@ calls the method foo

© pops the activation frame

Jochen Hoenicke (Software Engineering) FM4J November 9, 2012 4/21

Executing Instructions

@ Arguments are on the operand stack

@ Most instructions pop the topmost arguments from the stack and
push result onto the stack

@ Some instructions read/write local variables or object fields.

Jochen Hoenicke (Software Engineering) FM4J November 9, 2012 5/21

Example: isub

Subtract two int values i1 and 2.

int 42 = popInt();
int i1 = popInt();
push(il - 12);

2

11

isub

i1 - 12

Jochen Hoenicke (Software Engineering)

FM4)

November 9, 2012

6/21

JVM Instructions

@ Most instructions are typed,

@ JVM bytecode distinguishes between
int, long, float, double, and Object type
Indicated by i,l,f,d, and a, respectively.

@ Instructions can be grouped

Jochen Hoenicke (Software Engineering) FM4J November 9, 2012 7/21

Instruction Group “Local Variable Instructions”

@ aload, iload, lload, fload, dload
Stores local variable on the operand stack

@ astore, istore, lstore, fstore, dstore
Stores top of operand stack into a local variable
@ iinc
Increments a local variable (does not touch the operand stack).

Let z, y be the first and second integer variables.
Then z=y is compiled to the bytecode

iload_2
istore_1

Jochen Hoenicke (Software Engineering) FM4J November 9, 2012 8/21

Instruction Group “Conversion Instructions”

These operations take a value from the operand stack and
put the converted value back onto the operand stack.

e i2t where t € {b,c,s,/,f,d}
Convert int to byte,char,short,long,float,double, respectively

e 12t where t € {i,f,d}
Convert long tO int,float,double, respectively

o f2t where t € {i,/,d}
Convert float to int,long,double, respectively

e d2t where t € {i,/,f}
Convert double to int,long,float, respectively

Jochen Hoenicke (Software Engineering) FM4J November 9, 2012 9/21

Example

Let z be double and y a byte variable.
Then y = (byte) z; is compiled to the bytecode

dload_1
d2i

i2b
istore_3

On the other hand z = y; is compiled to the bytecode
iload_3
i2d
dstore_1

Jochen Hoenicke (Software Engineering) FM4J November 9, 2012 10 /21

Instruction Group “Branching Instructions”

o if _acmpeq, if_acmpne
Compare two references and jump on success
@ if _icmpeq, if_icmpgt, if_icmpge,
Compare two ints and jump on success

@ ifeq, ifne, iflt,
Compare against 0 and jump on success

e tcmp where t € {/,f,d}
Compare two long or floating point numbers (don’t jump)

@ ifnull, ifnonnull
Jump if reference is (not) nu11

@ goto
Unconditional jump

Jochen Hoenicke (Software Engineering) FM4J November 9, 2012 11/21

Example

The code
if (z > y && obj !'= null)

T =Y,

is translated as

iload_1
iload_2
if_icmple 11
aload_3
if_null 11
iload_2
istore_1
11:

Jochen Hoenicke (Software Engineering) FM4J

November 9, 2012

12/21

Instruction Group “Switch Instructions”

@ lookupswitch,tableswitch
Takes an integer operand from the stack.
Based on its value it jumps to another instruction.

The instructions only differ in the way they store the value to jump
address map.

Jochen Hoenicke (Software Engineering) FM4J November 9, 2012 13 /21

Instruction Group “Return Instructions”

e treturn where t € {a,/,/,f,d}
Return a value from a method
@ return
Return from a void method

Jochen Hoenicke (Software Engineering) FM4J November 9, 2012 14 /21

Instruction Group “Arithmetic Instructions”

These operations take one or two values from the operand stack and put
the result of the operation onto the operand stack.

e tneg with t € {i,/,f,d}
Negate a number

e tadd with t € {i,/,f,d}
Add two numbers

e tsub with t € {/,/,f,d}
Subtract two numbers

e tmul with t € {i,/,f,d}
Multiply two numbers

e tdiv with t € {i,/,f,d}
Divide two numbers

e trem with t € {i,/,f,d}
Compute the remainder of a division (result = value; — (value; * q))

Jochen Hoenicke (Software Engineering) FM4J November 9, 2012 15 /21

Instruction Group “Logic Instructions”

These operations take one or two values from the operand stack and
put the result of the operation onto the operand stack.

o tand where t € {/, [}
Bitwise and
e tor where t € {i,/}
Bitwise or
e txor where t € {i,/}
Bitwise xor
o tshr where t € {/, [}
Logical shift right with sign extension
o tushr where t € {/,/}
Logical shift right with zero extension

o tshl where t € {i,/}
Logical shift left

Jochen Hoenicke (Software Engineering) FM4J November 9, 2012 16 / 21

Instruction Group “Object Creation Instructions”

@ new
Create a new object on the heap

@ newarray, anewarray, multianewarray
Takes a number from the stack and creates a new array containing
that many elements.

Jochen Hoenicke (Software Engineering) FM4J November 9, 2012 17 /21

Instruction Group “Array Instructions”

e taload where t € {a,b,s,i, I, f,d}
Takes the array a and an index i from the operand stack and
puts the element a[i] on the operand stack
e tastore where t € {a, b,s,i, [, f,d}
Takes the array a, an index i and a value e from the operand stack
and stores e into the array a[i].
@ arraylength
Takes the array a from the operand stack and
puts its length on the operand stack

Jochen Hoenicke (Software Engineering) FM4J November 9, 2012 18 /21

The code
alj] = al<];

is translated as

aload_1 // load a

iload_3 // load j

aload_1 // load a

iload_2 // load i

iaload // read ali]
iastore // store into aljl

Jochen Hoenicke (Software Engineering) FM4J November 9, 2012 19 /21

Instruction Group “Stack Manipulation”

@ pop and pop2

Remove the topmost (2) elements from the operand stack
@ dup, dup2, dup-x1 ...

Duplicate the top element(s) of the stack
@ swap

Exchange the topmost two elements on the operand stack

Jochen Hoenicke (Software Engineering) FM4J November 9, 2012

20 / 21

The code

return alz] += 1;

is translated as

aload_1 //
iload_2 //
dup2 //
iaload //
iconst_1

iadd //
dup_x2 //

iastore //
ireturn //

load a

load i

duplicate, stack contains a,i,a,i
read al[i], stack now contains a,i,al[i]

add omne

duplicate, stack contains al[i]+1,a,i,ali]+1
store al[il+1 into ali].

return duplicated result.

Jochen Hoenicke (Software Engineering) FM4J November 9, 2012 21 /21

