
Formal Methods for Java
Lecture 7: Explicit State Model Checking and JVM

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

Nov 13, 2012

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 1 / 30



Java and the Virtual Machine

Programs are written in Java or
some other language

Compiler translates this to Java
Bytecode.

Platform-specific Java Virtual
Machine executes the code.

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 2 / 30



Java Virtual Machine (JVM)

JVM interprets .class files

.class files contain

a description of classes (name, fields, methods, inheritance
relationships, referenced classes, . . . )
a description of fields (name, type, attributes (visibility, volatile,
transient, . . . ))
bytecode for the methods

Stack machine

Integer stack

Typed instructions

Bytecode verifier to ensure type safety

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 3 / 30



Executing Instructions

Arguments are on the operand stack

Most instructions pop the topmost arguments from the stack and
push result onto the stack

Some instructions read/write local variables or object fields.

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 4 / 30



Instruction Group “Local Variable Instructions”

aload, iload, lload, fload, dload

Stores local variable on the operand stack

astore, istore, lstore, fstore, dstore

Stores top of operand stack into a local variable

iinc

Increments a local variable (does not touch the operand stack).

Example

Let x, y be the first and second integer variables.
Then x=y is compiled to the bytecode

iload_2

istore_1

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 5 / 30



Instruction Group “Constant value Instructions”

iconst, lconst, fconst, dconst, aconst null

Pushes a fixed constant value on the operand stack

bipush, sipush

Pushes a byte or short constant value (given as parameter of the
instruction) on the operand stack

ldc, ldc w, ldc2 w

Pushes a constant value from the constant pool (part of the class file)
on the operand stack.

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 6 / 30



Example

Let x, y, z be integer variables.
Then x=5, y=10000, z=1000000 is compiled to the bytecode

iconst_5

istore_1

sipush 10000

istore_2

ldc #2; //int 1000000

istore_3

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 7 / 30



Instruction Group “Stack Manipulation”

pop and pop2

Remove the topmost (2) elements from the operand stack

dup, dup2, dup x1 . . .
Duplicate the top element(s) of the stack

swap

Exchange the topmost two elements on the operand stack

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 8 / 30



Example

The code
return a[i] += 1;

is translated as

aload_1 // load a

iload_2 // load i

dup2 // duplicate, stack contains a,i,a,i

iaload // read a[i], stack now contains a,i,a[i]

iconst_1

iadd // add one

dup_x2 // duplicate, stack contains a[i]+1,a,i,a[i]+1

iastore // store a[i]+1 into a[i].

ireturn // return duplicated result.

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 9 / 30



Instruction Group “Field Access Instructions”

getfield

Takes the object o from the operand stack and
puts the value of an instance field of o onto the stack.

getstatic

Puts the value of a static field onto the stack.

putfield

Takes an object o and a value from the stack and
writes the value of into the instance field of o.

putstatic

Takes a value from the stack and
writes it into a static field.

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 10 / 30



Instruction Group “Method Invocation”

invokespecial

Invoke method without polymorphic resolution.
Object and parameters are taken from the stack.

invokestatic

Invoke a static method. Parameters are taken from the stack.

invokevirtual

Invoke method with polymorphic resolution.
Object and parameters are taken from the stack.

invokeinterface

Like invokevirtual but used for interface methods.

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 11 / 30



Example

The code
return new Integer(this.value);

is translated as

new java.lang.Integer

dup

aload_0 // load this

getfield MyClass.value

invokespecial java.lang.Integer.<init>(int)

areturn

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 12 / 30



Instruction Group “Monitor Instructions”

monitorenter

Enter a critical section

monitorexit

Leave a critical section

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 13 / 30



Instruction Group “Miscellaneous”

checkcast

Check a cast and throw a ClassCastException if cast fails

instanceof

Check if reference points to an instance of the specified class

athrow

Throw an exception or an error

nop

Do nothing

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 14 / 30



Transition Systems (TS)

Definition (Transition System)

A transition system (TS) is a structure TS = (Q,Act,→), where

Q is a set of states,

Act a set of actions,

→⊆ Q × Act × Q the transition relation.

q0start

q1

q2

q3

iinc x 1

iinc y 1

iinc y 1

iinc x 1

Q = {q0, q1, q2, q3}
I = {q0}
→ = {(q0, iinc x 1, q1),

(q1, iinc y 1, q3),
(q0, iinc y 1, q2),
(q2, iinc x 1, q3)}

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 15 / 30



Operational semantics for the JVM

State consists of heap and sequence of activation frames.

An action is the execution of a single bytecode instruction.

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 16 / 30



Explicit State Model Checking



Model checking

Idea: exhaustively check the system

Try all possible paths/all possible input values.

Use search strategies to find errors fast.

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 18 / 30



Runtime checking vs. Model checking vs. Verification

Runtime Checking

JML Tools

Verification

ESC/Java2

KeY

Jahob

Model Checking

JPF

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 19 / 30



Now: Explicit State

Concrete representation of states, e.g., x = 4, y = 3

Transitions produce new concrete states, e.g.,

x = 4, y = 3
iinc x 1−−−−−→ x = 5, y = 3

System model: Transition System (TS)

Graph search algorithms used to search for property violations

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 20 / 30



Exploring Transition Systems

Treat transition system as graph

Use graph search algorithm to explore states

Different search strategies:

Depth-First-Search (DFS)
Breath-First-Search (BFS)
Greedy Search

å Goal: Find error fast (“before running out of memory”)
å More debugging than verification

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 21 / 30



Searching



Basics

Explore states in a graph.

Unify states.

Keep “pending list” of nodes yet to explore.

Keep “closed list” of already explored states.

Theory

Explore all possible states.

Practice

Heuristic cutoff:

bounded number of states

bounded path length

. . .

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 23 / 30



Abstract Searching

1 Choose and remove next state s.

2 If s is already closed, goto Step 1

3 Evaluate s.

4 Add all successors of s onto the pending list

5 Move s to closed list

Main Operations

State evaluation

Creation of successor states

State unification

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 24 / 30



Different Types

Uninformed Searches

Exploration order determined by graph structure.

Not goal-directed.

Informed Searches

Exploration order guided by heuristics and/or path length.

“Prefer short paths.”

Heuristic value = estimate of distance to goal.

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 25 / 30



Depth-First-Search (DFS)

uninformed search

first explore the successor nodes, then the siblings

Pending list: LIFO (e.g., stack)

q0start

q1

q2

q3

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 26 / 30



Breath-First-Search (BFS)

uninformed search

first explore the siblings, then the successor nodes

Pending list: FIFO (e.g., Queue)

q0start

q1

q2

q3

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 27 / 30



Greedy Search

informed search

heuristic estimate of the minimal distance of a state to a goal

expand state with minimal value of the heuristic

Pending list: Ordered list (e.g., priority queue or Heap)

Problems

Highly sensitive to heuristic

Plateaus

Found error path might still be long

. . . but highly efficient in practice

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 28 / 30



A∗ Search

informed search

use heuristic,

but also consider the cost of the path to the current state

expand state with minimal sum of heuristic value and path cost

Pending list: Ordered list (e.g., priority queue or Heap)

Admissible heuristics

Let n be a node and d(n) be the exact distance of node n to the goal.
Heuristic h is admissible if and only if

∀v . h(v) ≤ d(v)

A∗ search with admissible heuristic ensures shortest path to goal!

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 29 / 30



A Unified Search Framework

Observation

Search procedures only differ in the order in which they explore the state
space.

We can express all these search methods using two functions over states s
(and a bound on the length of paths):

d(s) - a distance function

h(s) - a heuristic function

Choose s that minimizes d(s) + h(s).
d(s) h(s)

DFS −pathlength(s) 0

BFS pathlength(s) 0

Greedy Search 0 heuristic(s)

A∗ pathlength(s) heuristic(s)

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012 30 / 30


	Explicit State Model Checking
	Searching

