Formal Methods for Java
Lecture 7: Explicit State Model Checking and JVM

Jochen Hoenicke

Software Engineering
- Albert-Ludwigs-University Freiburg

UNI
FREIBURG

Nov 13, 2012

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012

1/30

Java and the Virtual Machine

@ Programs are written in Java or
some other language

@ Compiler translates this to Java
Bytecode.

o Platform-specific Java Virtual
Machine executes the code.

Java source files
(.java)

}

class Foo
0 ooo b

{
/

.
javac

Java bytecode files
(.class/.jar)

iconst 0
iaload

iload 1

\

Python source files
(py)

def f(x):
print x

!
jython

Java bytecode files
(.class/.jar)

istore 1

iaload

N

I
ARM VM Y Y

Intel x86 JyMY Y
Bytecode Bytecode
verifier verifier
Memory Memory
manager manager
JRE (garbage | Interpreter / JRE (garbage | Interpreter /
collection)| JIT compiler collection)f JIT compiler

Jochen Hoenicke (Software Engineering) FM4J

Java APIs

PC Operating system

Java APIs

Mobile Operating system

Nov 13, 2012

2/30

Java Virtual Machine (JVM)

JVM interprets .class files
.class files contain

e a description of classes (name, fields, methods, inheritance
relationships, referenced classes, . ..)

o a description of fields (name, type, attributes (visibility, volatile,
transient, ..))

o bytecode for the methods

Stack machine

°
@ Integer stack

@ Typed instructions
°

Bytecode verifier to ensure type safety

Jochen Hoenicke (Software Engineering) FM4) Nov 13, 2012 3 /30

Executing Instructions

@ Arguments are on the operand stack

@ Most instructions pop the topmost arguments from the stack and
push result onto the stack

@ Some instructions read/write local variables or object fields.

Jochen Hoenicke (Software Engineering) FM4) Nov 13, 2012 4 /30

Instruction Group “Local Variable Instructions”

@ aload, iload, lload, fload, dload
Stores local variable on the operand stack

@ astore, istore, lstore, fstore, dstore
Stores top of operand stack into a local variable
@ iinc
Increments a local variable (does not touch the operand stack).

Let z, y be the first and second integer variables.
Then z=y is compiled to the bytecode

iload_2
istore_1

Jochen Hoenicke (Software Engineering) FM4) Nov 13, 2012 5 /30

Instruction Group “Constant value Instructions”

@ iconst, lconst, fconst, dconst, aconst_null
Pushes a fixed constant value on the operand stack

@ bipush, sipush
Pushes a byte or short constant value (given as parameter of the
instruction) on the operand stack

@ ldc, ldc_w, ldc2.w
Pushes a constant value from the constant pool (part of the class file)
on the operand stack.

Jochen Hoenicke (Software Engineering) FM4) Nov 13, 2012 6 /30

Let z, y, z be integer variables.
Then z=5, ¥=10000, 2=1000000 is compiled to the bytecode

iconst_5

istore_1

sipush 10000

istore_2

ldc #2; //int 1000000
istore_3

Jochen Hoenicke (Software Engineering) FM4) Nov 13, 2012 7 /30

Instruction Group “Stack Manipulation”

@ pop and pop2

Remove the topmost (2) elements from the operand stack
@ dup, dup2, dup-x1 ...

Duplicate the top element(s) of the stack
@ swap

Exchange the topmost two elements on the operand stack

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012

8 /30

The code

return alz] += 1;

is translated as

aload_1 //
iload_2 //
dup2 //
iaload //
iconst_1

iadd //
dup_x2 //

iastore //
ireturn //

load a

load i

duplicate, stack contains a,i,a,i
read al[i], stack now contains a,i,al[i]

add omne

duplicate, stack contains al[i]+1,a,i,ali]+1
store al[il+1 into ali].

return duplicated result.

Jochen Hoenicke (Software Engineering) FM4) Nov 13, 2012 9 /30

Instruction Group “Field Access Instructions”

@ getfield
Takes the object o from the operand stack and
puts the value of an instance field of o onto the stack.

@ getstatic
Puts the value of a static field onto the stack.

@ putfield
Takes an object o and a value from the stack and
writes the value of into the instance field of o.

@ putstatic
Takes a value from the stack and
writes it into a static field.

Jochen Hoenicke (Software Engineering) FM4) Nov 13, 2012 10 / 30

Instruction Group “Method Invocation”

@ invokespecial
Invoke method without polymorphic resolution.
Object and parameters are taken from the stack.

@ invokestatic

Invoke a static method. Parameters are taken from the stack.
@ invokevirtual

Invoke method with polymorphic resolution.

Object and parameters are taken from the stack.

@ invokeinterface
Like invokevirtual but used for interface methods.

Jochen Hoenicke (Software Engineering) FM4) Nov 13, 2012 11 /30

Example

The code

return new Integer(this.wvalue);

is translated as

new java.lang.Integer

dup

aload_0 // load this

getfield MyClass.value

invokespecial java.lang.Integer.<init>(int)
areturn

Jochen Hoenicke (Software Engineering) FM4J Nov 13, 2012

12 /30

Instruction Group “Monitor Instructions”

@ monitorenter

Enter a critical section
@ monitorexit

Leave a critical section

Jochen Hoenicke (Software Engineering) FM4) Nov 13, 2012 13 /30

Instruction Group “Miscellaneous”

@ checkcast
Check a cast and throw a ClassCastEzception if cast fails

@ instanceof
Check if reference points to an instance of the specified class

@ athrow
Throw an exception or an error

@ nop
Do nothing

Jochen Hoenicke (Software Engineering) FM4) Nov 13, 2012 14 / 30

Transition Systems (TS)

Definition (Transition System)
A transition system (TS) is a structure TS = (Q, Act, —), where

@ @ is a set of states,

@ Act a set of actions,
o —»C Q X Act x Q the transition relation.

.. e . 1 Q = {q07q17q25q3}
iinc x 1 y _ {C;’O}
start — - = {(qO’_].'lnC x 1,q1),
(q1,iinc y 1,q3),

iinc y 1 iinc x 1 (qo,iinc y 1,q2),
(Q2,iinC X 1aq3)}

\
|

Jochen Hoenicke (Software Engineering) FM4) Nov 13, 2012 15 / 30

Operational semantics for the JVM

@ State consists of heap and sequence of activation frames.

@ An action is the execution of a single bytecode instruction.

Jochen Hoenicke (Software Engineering) FM4) Nov 13, 2012 16 / 30

Explicit State Model Checking

Model checking

o ldea: exhaustively check the system
e Try all possible paths/all possible input values.

@ Use search strategies to find errors fast.

Jochen Hoenicke (Software Engineering) FM4) Nov 13, 2012 18 / 30

Runtime checking vs. Model checking vs. Verification

Jochen Hoenicke (Software Engineering) Nov 13, 2012 19 / 30

Now: Explicit State

o Concrete representation of states, e.g., m

@ Transitions produce new concrete states, e.g.,

@ System model: Transition System (TS)

@ Graph search algorithms used to search for property violations

Jochen Hoenicke (Software Engineering) FM4) Nov 13, 2012 20 / 30

Exploring Transition Systems

@ Treat transition system as graph

@ Use graph search algorithm to explore states
o Different search strategies:

o Depth-First-Search (DFS)
o Breath-First-Search (BFS)
o Greedy Search

w Goal: Find error fast (“before running out of memory™)
= More debugging than verification

Jochen Hoenicke (Software Engineering) FM4) Nov 13, 2012 21 /30

Searching

Basics

Explore states in a graph.
Unify states.

Keep “pending list” of nodes yet to explore.

Keep “closed list” of already explored states.

Explore all possible states.

Heuristic cutoff:

@ bounded number of states
@ bounded path length

Jochen Hoenicke (Software Engineering) FM4) Nov 13, 2012 23 /30

Abstract Searching

@ Choose and remove next state s.

@ If s is already closed, goto Step 1

© Evaluate s.

@ Add all successors of s onto the pending list
© Move s to closed list

Main Operations

@ State evaluation
@ Creation of successor states

@ State unification

Jochen Hoenicke (Software Engineering) FM4) Nov 13, 2012 24 / 30

Different Types

Uninformed Searches

@ Exploration order determined by graph structure.
@ Not goal-directed.

v

Informed Searches

@ Exploration order guided by heuristics and/or path length.

o “Prefer short paths.”

@ Heuristic value = estimate of distance to goal.

Jochen Hoenicke (Software Engineering) FM4) Nov 13, 2012 25 / 30

Depth-First-Search (DFS)

@ uninformed search
o first explore the successor nodes, then the siblings
e Pending list: LIFO (e.g., stack)

é.i (w)

Jochen Hoenicke (Software Engineering) FM4) Nov 13, 2012 26 / 30

Breath-First-Search (BFS)

@ uninformed search
o first explore the siblings, then the successor nodes
e Pending list: FIFO (e.g., Queue)

é.i o

Jochen Hoenicke (Software Engineering) FM4) Nov 13, 2012 27 / 30

Greedy Search

informed search
heuristic estimate of the minimal distance of a state to a goal

expand state with minimal value of the heuristic

Pending list: Ordered list (e.g., priority queue or Heap)

Problems

@ Highly sensitive to heuristic
o Plateaus

@ Found error path might still be long

... but highly efficient in practice

Jochen Hoenicke (Software Engineering) FM4) Nov 13, 2012 28 / 30

A* Search

informed search
use heuristic,
but also consider the cost of the path to the current state

expand state with minimal sum of heuristic value and path cost

Pending list: Ordered list (e.g., priority queue or Heap)

Admissible heuristics

Let n be a node and d(n) be the exact distance of node n to the goal.
Heuristic h is admissible if and only if

Vv. h(v) < d(v)

A* search with admissible heuristic ensures shortest path to goall!

Jochen Hoenicke (Software Engineering) FM4) Nov 13, 2012 29 / 30

A Unified Search Framework

Observation

Search procedures only differ in the order in which they explore the state
space.

We can express all these search methods using two functions over states s
(and a bound on the length of paths):

@ d(s) - a distance function
@ h(s) - a heuristic function
Choose s that minimizes d(s) + h(s).

d(s) h(s)
DFS —pathlength(s) 0
BFS pathlength(s) 0
Greedy Search 0 heuristic(s)
A* pathlength(s) | heuristic(s)

Jochen Hoenicke (Software Engineering) FM4) Nov 13, 2012 30/ 30

	Explicit State Model Checking
	Searching

