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Java and the Virtual Machine

Programs are written in Java or
some other language

Compiler translates this to Java
Bytecode.

Platform-specific Java Virtual
Machine executes the code.
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Java Virtual Machine (JVM)

JVM interprets .class files

.class files contain

a description of classes (name, fields, methods, inheritance
relationships, referenced classes, . . . )
a description of fields (name, type, attributes (visibility, volatile,
transient, . . . ))
bytecode for the methods

Stack machine

Integer stack

Typed instructions

Bytecode verifier to ensure type safety
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Executing Instructions

Arguments are on the operand stack

Most instructions pop the topmost arguments from the stack and
push result onto the stack

Some instructions read/write local variables or object fields.
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Instruction Group “Local Variable Instructions”

aload, iload, lload, fload, dload

Stores local variable on the operand stack

astore, istore, lstore, fstore, dstore

Stores top of operand stack into a local variable

iinc

Increments a local variable (does not touch the operand stack).

Example

Let x, y be the first and second integer variables.
Then x=y is compiled to the bytecode

iload_2

istore_1
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Instruction Group “Constant value Instructions”

iconst, lconst, fconst, dconst, aconst null

Pushes a fixed constant value on the operand stack

bipush, sipush

Pushes a byte or short constant value (given as parameter of the
instruction) on the operand stack

ldc, ldc w, ldc2 w

Pushes a constant value from the constant pool (part of the class file)
on the operand stack.
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Example

Let x, y, z be integer variables.
Then x=5, y=10000, z=1000000 is compiled to the bytecode

iconst_5

istore_1

sipush 10000

istore_2

ldc #2; //int 1000000

istore_3
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Instruction Group “Stack Manipulation”

pop and pop2

Remove the topmost (2) elements from the operand stack

dup, dup2, dup x1 . . .
Duplicate the top element(s) of the stack

swap

Exchange the topmost two elements on the operand stack
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Example

The code
return a[i] += 1;

is translated as

aload_1 // load a

iload_2 // load i

dup2 // duplicate, stack contains a,i,a,i

iaload // read a[i], stack now contains a,i,a[i]

iconst_1

iadd // add one

dup_x2 // duplicate, stack contains a[i]+1,a,i,a[i]+1

iastore // store a[i]+1 into a[i].

ireturn // return duplicated result.
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Instruction Group “Field Access Instructions”

getfield

Takes the object o from the operand stack and
puts the value of an instance field of o onto the stack.

getstatic

Puts the value of a static field onto the stack.

putfield

Takes an object o and a value from the stack and
writes the value of into the instance field of o.

putstatic

Takes a value from the stack and
writes it into a static field.
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Instruction Group “Method Invocation”

invokespecial

Invoke method without polymorphic resolution.
Object and parameters are taken from the stack.

invokestatic

Invoke a static method. Parameters are taken from the stack.

invokevirtual

Invoke method with polymorphic resolution.
Object and parameters are taken from the stack.

invokeinterface

Like invokevirtual but used for interface methods.
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Example

The code
return new Integer(this.value);

is translated as

new java.lang.Integer

dup

aload_0 // load this

getfield MyClass.value

invokespecial java.lang.Integer.<init>(int)

areturn
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Instruction Group “Monitor Instructions”

monitorenter

Enter a critical section

monitorexit

Leave a critical section
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Instruction Group “Miscellaneous”

checkcast

Check a cast and throw a ClassCastException if cast fails

instanceof

Check if reference points to an instance of the specified class

athrow

Throw an exception or an error

nop

Do nothing
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Transition Systems (TS)

Definition (Transition System)

A transition system (TS) is a structure TS = (Q,Act,→), where

Q is a set of states,

Act a set of actions,

→⊆ Q × Act × Q the transition relation.

q0start

q1

q2

q3

iinc x 1

iinc y 1

iinc y 1

iinc x 1

Q = {q0, q1, q2, q3}
I = {q0}
→ = {(q0, iinc x 1, q1),

(q1, iinc y 1, q3),
(q0, iinc y 1, q2),
(q2, iinc x 1, q3)}
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Operational semantics for the JVM

State consists of heap and sequence of activation frames.

An action is the execution of a single bytecode instruction.
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Explicit State Model Checking



Model checking

Idea: exhaustively check the system

Try all possible paths/all possible input values.

Use search strategies to find errors fast.
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Runtime checking vs. Model checking vs. Verification

Runtime Checking

JML Tools

Verification

ESC/Java2

KeY

Jahob

Model Checking

JPF
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Now: Explicit State

Concrete representation of states, e.g., x = 4, y = 3

Transitions produce new concrete states, e.g.,

x = 4, y = 3
iinc x 1−−−−−→ x = 5, y = 3

System model: Transition System (TS)

Graph search algorithms used to search for property violations
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Exploring Transition Systems

Treat transition system as graph

Use graph search algorithm to explore states

Different search strategies:

Depth-First-Search (DFS)
Breath-First-Search (BFS)
Greedy Search

å Goal: Find error fast (“before running out of memory”)
å More debugging than verification
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Searching



Basics

Explore states in a graph.

Unify states.

Keep “pending list” of nodes yet to explore.

Keep “closed list” of already explored states.

Theory

Explore all possible states.

Practice

Heuristic cutoff:

bounded number of states

bounded path length

. . .
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Abstract Searching

1 Choose and remove next state s.

2 If s is already closed, goto Step 1

3 Evaluate s.

4 Add all successors of s onto the pending list

5 Move s to closed list

Main Operations

State evaluation

Creation of successor states

State unification
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Different Types

Uninformed Searches

Exploration order determined by graph structure.

Not goal-directed.

Informed Searches

Exploration order guided by heuristics and/or path length.

“Prefer short paths.”

Heuristic value = estimate of distance to goal.
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Depth-First-Search (DFS)

uninformed search

first explore the successor nodes, then the siblings

Pending list: LIFO (e.g., stack)

q0start

q1

q2

q3
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Breath-First-Search (BFS)

uninformed search

first explore the siblings, then the successor nodes

Pending list: FIFO (e.g., Queue)

q0start

q1

q2

q3
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Greedy Search

informed search

heuristic estimate of the minimal distance of a state to a goal

expand state with minimal value of the heuristic

Pending list: Ordered list (e.g., priority queue or Heap)

Problems

Highly sensitive to heuristic

Plateaus

Found error path might still be long

. . . but highly efficient in practice
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A∗ Search

informed search

use heuristic,

but also consider the cost of the path to the current state

expand state with minimal sum of heuristic value and path cost

Pending list: Ordered list (e.g., priority queue or Heap)

Admissible heuristics

Let n be a node and d(n) be the exact distance of node n to the goal.
Heuristic h is admissible if and only if

∀v . h(v) ≤ d(v)

A∗ search with admissible heuristic ensures shortest path to goal!
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A Unified Search Framework

Observation

Search procedures only differ in the order in which they explore the state
space.

We can express all these search methods using two functions over states s
(and a bound on the length of paths):

d(s) - a distance function

h(s) - a heuristic function

Choose s that minimizes d(s) + h(s).
d(s) h(s)

DFS −pathlength(s) 0

BFS pathlength(s) 0

Greedy Search 0 heuristic(s)

A∗ pathlength(s) heuristic(s)
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