Formal Methods for Java
Lecture 8: Java Pathfinder

Jochen Hoenicke

g Software Engineering
-gg— Albert-Ludwigs-University Freiburg
Nov 16, 2012

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012

1/21

Runtime checking vs. Model checking vs. Verification

Jochen Hoenicke (Software Engineering) Nov 16, 2012 2/21

Java Pathfinder (JPF)

o

‘fﬂ? JPE e swiss army knife of Java™ verification
http://babelfish.arc.nasa.gov /trac/jpf /wiki

Developed at NASA Ames Research Center
One tool — many different usage patterns
Highly extensible core

Core implements explicit state model checking on top of a Java VM
Key concepts:

Execution choices as transition breakers
e State matching

o Backtracking (restoring previous state)
o Listeners, Properties, and Publishers

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 3/21

History of JPF

1999 Start as front end for the Spin model checker.

2000 Reimplementation as virtual machine
2003 Extension interfaces
2005 Open sourced on Sourceforge

since 2008 Participation in Google Summer of Code

since 2009 Project, extensions, and wiki hosted on NASA servers (still
open source)

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 4/21

Obtaining and Building JPF

Download from http://babelfish.arc.nasa.gov/trac/jpf

Binary builds not recommended since tool still evolves

Recommendation: use Mercurial repositories
> hg clone http://babelfish.arc.nasa.gov/hg/jpf/jpf-core

Repository contains everything needed to build jpf-core

> bin/ant

Instructions for Eclipse or NetBeans can be found in the JPF wiki

Jochen Hoenicke (Software Engineering) FM4) Nov 16, 2012 5/21

http://babelfish.arc.nasa.gov/trac/jpf

What We Got

system under tast

JPF installation

hative Java installation

application

verification target

=
JPF (VM) é.féssparn —
standard " m

ey classes " JPF modules

Jochen Hoenicke (Software Engineering)

hostovM "

o native_classpath
native libraries

standard Java
Installation
platform OS5
http://babelfish.arc.nasa.gov/trac/jpf/wiki
FM4J Nov 16, 2012

6/ 21

VM Inside a VM?

JPF is written in Java = runs on a JVM

JPF interprets Java Bytecode = acts as a JVM
JPF operates differently:

o Bytecode of System under Test (SUT) and
e SUT-specific Configuration produce
o a report and (possibly) some other artefacts (e.g., test cases)

JPF might terminate the application if a property is violated

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 7/21

How to Configure JPF

JPF Configuration

command line property arguments

| > bin/jpf [-log])[-show] {+log.info=..} .../RobotManager.jpf .
V.

4. command line
- debugging

target = RobotManager applicalign

target_args = ... properties
using = jpf-aprop ‘) 3. application properties
gimport = ./my.properties
<project>/.../*.ipf
shell = .shell.basicshell.BasicShell
- system-under-test

listener = .aprop.listener.SharedChecker

- listeners, shells
v

r— «s————— jpl.properties in current directory

jpf-core = §{config path} Spi-awt-shell = §{config_path} . .
2. project properties
using = jpf-awt *)

<project>/jpf.properties

jpf-core.native_classpath=\
§{jpf-core}/build/ipf.jax;\

- project class paths
- project dependencies

§{jpf-core}/lib/beel.jar; jpf-awt-shell.native classpath=.

jpf-awt-shell.classpath=...

jpf-core.classpath=\
build/jpf-classes.jar

jpf-core.test_classpath=\

build/tests = ${user.home}/projects/jpf
o 1. site properties
jpE-core.sonrcepath=\ = ${jpf.home} /jpE-core prope
src/classes

${jpf.home}/awt ~/.jpf/eite.properties

jpf-shell = ${jpf. h\:n\e}f]pf -shell st
Jpf-aprop = ... - project locations
rcer o tansons - - preoaded projects

cxtensions = SIJpE—ccre},S{]pt—snell}
;

http://babelfish.arc.nasa.gov/trac/jpf/wiki

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 9/21

JPF Configuration Files

o Basically Java properties files:

o key=value assigns value to key
o # This is a comment

@ Extensions:

o ${x} expands to current value of variable x

key+=value appends value to the value of key

(No space between key and +=)

+key=value prepend value to the value of key

${config_path} expands to the directory of the currently parsed file
${configl} expands to the filename of the currently parsed file
@using=<project-name> loads project project-name from location
defined in site.properties with line
<project-name>=<project-path>

e ...

@ Shortcut for class names: package prefix gov.nasa. jpf can be omitted
@ Configuration of JPF can be difficult

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 10 /21

Configuring Our Compiled Version

Switch to your home directory
o Create folder . jpf
o Create file . jpf/site.properties

jpf.home = <Path where you downloaded jpf>

jpf-core = ${jpf.home}/jpf-core

extensions = ${jpf-core}
@ This creates the basic configuration

o Add line jpf-proj = path to site.properties for every
additional project you download

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 11 /21

Configuring SuTs

o Create configuration file (typically ends with . jpf)
o Content:

Jochen Hoenicke

Some @using directives (optionally)

One line target = <SuT>

Optional arguments in a line target_args = <args>
Additional JPF and related project configuration (optional)
Optional classpath entry to locate the .class file
Optional sourcepath entry to locate the . java file

(Software Engineering) FM4J Nov 16, 2012

12/21

Demo

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 13 /21

Insights into JPF

JPF Components

« extensions -=

|

JPF distribution
suT EXE?UHDH
environment
(IPF —
choice
generatar
= o]
library

fopticnal) in-source
property spac

bytecode
=
JPF
Core
Java listener/
wirtual property
machine

eeroe pasn

el waitForEvent];

»

EDD

standard host - JVM
Java hbraries

Jochen Hoenicke (Software Engineering)

JPF configuration

http://babelfish.arc.nasa.gov/trac/jpf/wiki

FM4J

y
error-path

end

seen

property
violation

Nov 16, 2012

15 /21

JPF Core Architecture

govnasajpf |

JPF

search, vm c:onﬂg
createConfig)

n
[Config |

[ovm |
Torward ({1

basaac) [cassino |
Methodinfo
Fieldinfo

Elementinfo

Fields
executeStep ()
gov.nasa.jpf.search.heuristic m

[Heuristic |
heuristicValue (]

gov.nasa.jpt.jvm bytecode

Instruction
execute

[While (notDoney 1
. .vm. farward(y;

. .vm.bocktrack();
if (lproperties.check(1){
reportError(); break;

http://babelfish.arc.nasa.gov/trac/jpf/wiki

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 16 / 21

Explicit State Model Checking and JPF (1/3)

Unifies states, produces successor states, backtracks
Configurations:

vm.class VM implementation
vm.insn_factory instruction factory
vm.por apply partial order reduction
vm.por.sync_detection detect fields protected by locks
vm.gc run garbage collection

vm.max_alloc_gc maximal number of allocations before garbage
collection

vm.tree output generate output for all explored paths

vm.path_output generate program trace output

and many, many more

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 17 /21

Explicit State Model Checking and JPF (2/3)

Selects next state to explore.

Configurations:
search.class
search.depth_limit
search.match_depth

search.multiple_errors

search.properties

search implementation
maximal path length

only unify if depth for revisit is lower than known
depth

do not stop searching at first property violation

which properties to check during search

further options for each search

Jochen Hoenicke (Software Engineering)

FM4) Nov 16, 2012 18 /21

Explicit State Model Checking and JPF (3/3)

Evaluate states against properties.

Listeners can influence current transition while properties cannot.
Listener can monitor search and instruction execution.

Own listener can be set with the 1listener configuration option.

System under Test

executed by JPF

exacuted by host JVM

JPF - instructionExecuted()

- choicefeneratorAdvanced|)

axecution event notifications

- +jpf.listener=<listener-class>
T = listeners configured - EIPFConfigl..}
- Jjpf.listener.actoload=<annotations>

searci event notifications

- propertyViolated()
- searchPinished|}

http://babelfish.arc.nasa.gov/trac/jpf/wiki

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 19 /21

States

Collection of
o thread state (current instruction, stack),
@ global variables,
@ heap references, and

o trail (path to the state)

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 20 /21

Transitions

@ Sequence of instructions

@ End of transition determined by

Multiple successor states (choices)

Enforced by listeners (vm.breakTransition() ;)

o
o Reached maximal length (configuration vm.max_transition_length)
e End or blocking of current thread

0=

7% Choi
Transition oice

Scheduling Choice

synchronized {..) {..}
wait (..}
x = mySharedObject

Data Choice
boolean b = Verify.getBoolean();
double d = Verify.getDouble("MyHeuristic");

http://babelfish.arc.nasa.gov/trac/jpf/wiki

Jochen Hoenicke (Software Engineering) FM4J Nov 16, 2012 21 /21

	How to Configure JPF
	Insights into JPF

