
Formal Methods for Java
Lecture 12: Object Invariants

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

November 30, 2012

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 30, 2012 1 / 13



The Invariant Problem

public class SomeClass {
/*@ invariant inv; @*/

/*@ requires P;
@ ensures Q;
@*/

public void doSomething() {

assume(P);
assume(inv);

...code of doSomething...

assert(Q);
assert(inv);

}
}

public class OtherClass {
public void caller(SomeObject o) {
...some other code...

assert(P);

o.doSomething();

assume(Q);

}
}

ESC/Java checks the highlighted assumes and asserts.

This is unsound!

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 30, 2012 2 / 13



Why Unsound?

The following rule is unsound:

{P ∧ inv} doSomething() {Q ∧ inv}
{P} doSomething() {Q}

This is also not the intuition...

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 30, 2012 3 / 13



What is the Intuition?

An invariant should hold (almost) always.

{true} some other code {P}
{true ∧ inv} some other code {P ∧ inv}

Only sound, if some other code cannot change truth of invariant.

For example, invariant depends only on private fields

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 30, 2012 4 / 13



Invariants Depend on Other Objects

Consider a doubly linked list:
class Node {
Node prev, next;
/*@ invariant this.prev.next == this && this.next.prev == this; @*/

}
class List {
public void add() {
Node newnode = new Node();
newnode.prev = first.prev;
newnode.next = first;
first.prev.next = newnode;
first.prev = newnode;

}
}

The invariant of this depends on the fields of this.next and this.prev.
Moreover the List.add function changes the fields of the invariants of Node.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 30, 2012 5 / 13



The List example

First observation: The invariant should be put into the List class:
class Node {
Node prev, next;

}
class List {
/*@ private ghost JMLObjectSet nodes; @*/
/*@ invariant (\forall Node n; nodes.has(n);

n.prev.next == n && n.next.prev == n); @*/
public void add() {
Node newnode = new Node();
newnode.prev = first.prev;
newnode.next = first;
first.prev.next = newnode;
first.prev = newnode;
//@ set nodes = nodes.insert(newnode);

}
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 30, 2012 6 / 13



The List example

Second observation: Node objects must not be shared between two
different lists.
class Node {
/*@ ghost Object owner; @*/
Node prev, next;

}
class List {
/*@ private ghost JMLObjectSet nodes; @*/
/*@ invariant (\forall Node n; nodes.has(n);

n.prev.next == n && n.next.prev == n
&& n.owner == this); @*/

public void add() {
Node newnode = new Node();
//@ set newnode.owner = this;
newnode.prev = first.prev;
newnode.next = first;
first.prev.next = newnode;
first.prev = newnode;
//@ set nodes = nodes.insert(newnode);

}
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 30, 2012 7 / 13



The List example

Third observation: One may only change the owned fields.
class Node {
/*@ ghost Object owner; @*/
Node prev, next;

}
class List {
Node first;
/*@ private ghost JMLObjectSet nodes; @*/
/*@ invariant (\forall Node n; nodes.has(n);

n.prev.next == n && n.next.prev == n
&& n.owner == this); @*/

public void add() {
Node newnode = new Node();
//@ set newnode.owner = this;
newnode.prev = first.prev;
newnode.next = first;
//@ assert(first.prev.owner == this)
first.prev.next = newnode;
//@ assert(first.owner == this)
first.prev = newnode;
//@ set nodes = nodes.insert(newnode);

}
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 30, 2012 8 / 13



The Owner-as-Modifier Property

JML supports the owner-as-modifier property, when invoked as jmlc

--universes. The underlying type system is called Universes.

The class Object has a ghost field owner.

Fields can be declared as rep, peer, readonly.

rep Object x adds an implicit invariant (or requires) x.owner = this.
peer Object x adds an implicit invariant (or requires)
x.owner = this.owner.
readonly Object x do not restrict owner, but do not allow
modifications.

The new operation supports rep and peer:

new /*@rep@*/Node() sets owner field of new node to this.
new /*@peer@*/Node() sets owner field of new node to this.owner.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 30, 2012 9 / 13



The List with Universes Type System

class Node {
/*@ peer @*/ Node prev, next;

}
class List {
/*@ rep @*/ Node first;
/*@ private ghost JMLObjectSet nodes; @*/
/*@ invariant (\forall Node n; nodes.has(n);

n.prev.next == n && n.next.prev == n
&& n.owner == this); @*/

public void add() {
Node newnode = new /*@ rep @*/ Node();
newnode.prev = first.prev;
newnode.next = first;
first.prev.next = newnode;
first.prev = newnode;
//@ set nodes = nodes.insert(newnode);

}
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 30, 2012 10 / 13



The Universes Type System

A simple type system can check most of the ownership issues:

rep T can be assigned without cast to rep T and readonly T.

peer T can be assigned without cast to peer T and readonly T.

readonly T can be assigned without cast to readonly T.

One need to distinguish between the type of a field peer Node prev and the
type of a field expression: rep Node first.prev.

If obj is a peer type and fld is a peer T field
then obj.fld has type peer T.

If obj is a rep type and fld is a peer T field
then obj.fld has type rep T.

If obj = this and fld is a rep T field
then this.fld has type rep T.

In all other cases obj.fld has type readonly T.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 30, 2012 11 / 13



readonly References

To prevent changing readonly references there are these restrictions:
If obj has type readonly T then

obj.fld = expr is illegal.

obj.method(...) is only allowed if method is a pure method.

It is allowed to cast readonly T references to rep T or peer T:

(rep T) expr asserts that expr.owner == this.

(peer T) expr asserts that expr.owner == this.owner.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 30, 2012 12 / 13



Modification only by Owner

All write accesses to a field of an object are

in a function of the owner of the object or

in a function of a object having the same owner as the object
that was invoked (directly or indirectly) by the owner of the object.

An invariant that only depends on fields of owned objects can only be
invalidated by the owner or the function it invokes.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 30, 2012 13 / 13


