
Formal Methods for Java
Lecture 17: Verification of Data Structures in Jahob

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

December 18, 2012

Jochen Hoenicke (Software Engineering) FM4J December 18, 2012 1 / 17



The Jahob system

Focus of Jahob: verifying properties of data structures.

Developed at

EPFL, Lausanne, Switzerland (Viktor Kuncak)

MIT, Cambridge, USA (Martin Rinard)

Freiburg, Germany (Thomas Wies)

References

Jahob webpage: http://lara.epfl.ch/w/jahob_system

Viktor Kuncak’s PhD thesis

Jochen Hoenicke (Software Engineering) FM4J December 18, 2012 2 / 17

http://lara.epfl.ch/w/jahob_system


Core syntax of HOL

Jahob’s assertion language is a subset of the interactive theorem prover
Isabelle/HOL which is built on the simply typed lambda calculus.

Terms and Formulas:
f ::= λx :: t. f lambda abstraction (λ is also written %)
| f1 f2 function application
| x variable or constant
| f :: t typed formula

Types:
t ::= bool truth values
| int integers
| obj uninterpreted objects
| t1 ⇒ t2 total functions
| t set sets
| t1 ∗ t2 pairs

Jochen Hoenicke (Software Engineering) FM4J December 18, 2012 3 / 17



Function with Several Arguments

A function with two arguments g(x , y) has the type

g : (t1 ∗ t2)⇒ t3

In HOL, usually one defines a function with two arguments as

f : t1 ⇒ t2 ⇒ t3,

and the application as
f x y = g(x , y)

Note that⇒ is right-associative and function application is left-associative:

(t1 ⇒ t2 ⇒ t3) = (t1 ⇒ (t2 ⇒ t3)) and f x y = (f x)y .

Jochen Hoenicke (Software Engineering) FM4J December 18, 2012 4 / 17



Lambda Abstraction

Suppose, you want to define a function or relation:

inc x = x + 1 or succ x y ≡ (y = x + 1).

With lambda abstraction these can be written as

inc = (λ x . x + 1) resp. succ = (λ x y . y = x + 1).

This is especially useful if you need a function argument:

rtrancl pt succ 0 z

can be written as

rtrancl pt (λ x y . y = x + 1) 0 z

Jochen Hoenicke (Software Engineering) FM4J December 18, 2012 5 / 17



Data Structure Consistency

Statically verify data structure consistency properties.

Example

Internal Data Structure Consistency

. . . null

nextnext next next

prev prev prev

field prev is inverse of field next

field next is acyclic

Ü inconsistency can cause program crashes.

Jochen Hoenicke (Software Engineering) FM4J December 18, 2012 6 / 17



External Consistency Properties

Example (Library)

if a book is loaned to a person, then

the person is registered with the library, and
the book is in the catalog

Can loan a book to at most one person at a time

correlate multiple data structures

depend on internal consistency

capture design constraints (object models)

Ü inconsistency can cause policy violations.

Jochen Hoenicke (Software Engineering) FM4J December 18, 2012 7 / 17



Goal

Proof data structure consistency properties

for all program executions (sound)

with high level of automation

both internal and external consistency properties

both implementation and use of data structures.

Jochen Hoenicke (Software Engineering) FM4J December 18, 2012 8 / 17



Overview of the Jahob Approach

Jochen Hoenicke (Software Engineering) FM4J December 18, 2012 9 / 17



Overview of the Jahob Approach

Key question in automating approach (while keeping it useful)

Jochen Hoenicke (Software Engineering) FM4J December 18, 2012 10 / 17



The Jahob Approach through an Example

Data structures to record who borrowed which book. These consist of

a set of persons, implemented by a linked list.
Each person has a unique id.

a set of books, implemented by a linked list.
Each book has a unique id.

a relation borrows, implemented by an array indexed by the person
unique id.
Array contains a linked list of books borrowed by that person.

Jochen Hoenicke (Software Engineering) FM4J December 18, 2012 11 / 17



The Jahob Approach through an Example

class Library {

public static Set persons;

public static Set books;

public static Relation borrows;

...

}

class Relation {

private Set[] a;

private int size;

...

public void add(int i, Object o1){

...

}

}

class Set {

private Node first;

...

public void add(Object o1){

Node n = new Node();

n.data = o1;

n.next = first;

first = n;

}

}

Jochen Hoenicke (Software Engineering) FM4J December 18, 2012 12 / 17



Factoring Out Complexity

if a person has borrowed a book, then

the person is registered with the library, and

the book is in the catalog

∀ p b . (p, b) ∈ borrows.content→
p ∈ persons.content
∧ b ∈ books.content

Specification Variables

Set.content = { x | ∃ n . n ∈ first.next∗ ∧ n.data = b }

Relation.content = { (x , y) | a[x ] 6= null ∧ y ∈ a[x ].content }

Jochen Hoenicke (Software Engineering) FM4J December 18, 2012 13 / 17



Defining Interfaces using Specification Variables

class Node {
Object data;
Node next;

}
class Set {

public Node first;
/*: public specvar content :: objset;
...

How can we define the set of data values in the linked list?

content == first.next*.data

Jahob supports reflexive transitive closure but with a different syntax:

Definition (rtrancl pt)

Let R : α⇒ α⇒ bool be a relation on some type α, then rtrancl pt R is
the reflexive transitive closure of R:
rtrancl pt R x y holds if there is a sequence x = x0, . . . , xn = y , n ≥ 0
such that R xi xi+1 holds for 0 ≤ i < n.

Jochen Hoenicke (Software Engineering) FM4J December 18, 2012 14 / 17



Using the rtrancl pt predicate

Definition (rtrancl pt)

Let R : α⇒ α⇒ bool be a relation on some type α, then rtrancl pt R is
the reflexive transitive closure of R:
rtrancl pt R x y holds if there is a sequence x = x0, . . . , xn = y , n ≥ 0
such that R xi xi+1 holds for 0 ≤ i < n.

Define the successor relation using the field Node.next:

R == (% x y. x..Node.next = y) Note: % is λ-abstraction.
The set of all nodes on the list is:

nodes == {n. rtrancl_pt (% x y. x..Node.next = y) first n}

and the set of all values on the list is:

contents == {x. EX n. n..Node.data = x
& rtrancl_pt (% v1 v2. v1..Node.next = v2) first n}

Jochen Hoenicke (Software Engineering) FM4J December 18, 2012 15 / 17



Jahob Code

class Set {

private Node first;

...

/*: public specvar content :: objset;

vardefs "content == {x. EX n. n..Node.data = x &

rtrancl pt (% v1 v2. v1..Node.next = v2) first n}";

...

invariant "tree [Node.next]";

*/

public void add(Object o1)

/*: requires "o1 ~: content"

modifies "content"

ensures "content = old content Un {o1}"

*/

{ ... }

}

Jochen Hoenicke (Software Engineering) FM4J December 18, 2012 16 / 17



Use Interfaces to Verify Data Structure Clients

class Library {

public static Set persons;

...

/*: invariant "ALL p b. (p,b) : borrows..Relation.content -->

p : persons..Set.content & b : books..Set.content" */

public static void checkOutBook(Person p, Book b)

/*:

requires "p ~= null & b ~= null &

b : books..Set.content & p : persons..Set.content"

modifies "borrows..Relation.content"

ensures "((ALL p1. (p1,b) ~: old borrows..Relation.content) -->

borrows..Relation.content =

old (borrows..Relation.content) Un {(p,b)})

& (EX p1. (p1,b) : old borrows..Relation.content -->

borrows..Relation.content = old borrows..Relation.content)"

*/

{ ... }

}

Jochen Hoenicke (Software Engineering) FM4J December 18, 2012 17 / 17


