Formal Methods for Java Lecture 17: Verification of Data Structures in Jahob

Jochen Hoenicke

Software Engineering Albert-Ludwigs-University Freiburg

December 18, 2012

Focus of Jahob: verifying properties of data structures.

Developed at

- EPFL, Lausanne, Switzerland (Viktor Kuncak)
- MIT, Cambridge, USA (Martin Rinard)
- Freiburg, Germany (Thomas Wies)

References

- Jahob webpage: http://lara.epfl.ch/w/jahob_system
- Viktor Kuncak's PhD thesis

Core syntax of HOL

Jahob's assertion language is a subset of the interactive theorem prover Isabelle/HOL which is built on the simply typed lambda calculus.

f	::= 	Terms and Formulas: $\lambda x :: t. f$ $f_1 f_2$ x f :: t	lambda abstraction (λ is also written %) function application variable or constant typed formula
t	::= 	Types: bool int obj $t_1 \Rightarrow t_2$ t set $t_1 * t_2$	truth values integers uninterpreted objects total functions sets <i>pairs</i>

Function with Several Arguments

A function with two arguments g(x, y) has the type

$$g:(t_1*t_2)\Rightarrow t_3$$

In HOL, usually one defines a function with two arguments as

$$f:t_1\Rightarrow t_2\Rightarrow t_3,$$

and the application as

$$f \, x \, y = g(x, y)$$

Note that \Rightarrow is right-associative and function application is left-associative:

$$(t_1 \Rightarrow t_2 \Rightarrow t_3) = (t_1 \Rightarrow (t_2 \Rightarrow t_3))$$
 and $f \times y = (f \times y)y$.

Lambda Abstraction

Suppose, you want to define a function or relation:

inc
$$x = x + 1$$
 or succ $x y \equiv (y = x + 1)$.

With lambda abstraction these can be written as

$$inc = (\lambda \ x. \ x+1)$$
 resp. $succ = (\lambda \ x \ y. \ y = x+1).$

This is especially useful if you need a function argument:

rtrancl_pt succ 0 z

can be written as

rtrancl_pt (
$$\lambda \ x \ y$$
. $y = x + 1$) 0 z

Data Structure Consistency

Statically verify data structure consistency properties.

→ inconsistency can cause program crashes.

External Consistency Properties

- correlate multiple data structures
- depend on internal consistency
- capture design constraints (object models)
- ➔ inconsistency can cause policy violations.

Proof data structure consistency properties

- for all program executions (sound)
- with high level of automation
- both internal and external consistency properties
- both implementation and use of data structures.

Overview of the Jahob Approach

Key question in automating approach (while keeping it useful)

The Jahob Approach through an Example

Data structures to record who borrowed which book. These consist of

- a set of persons, implemented by a linked list.
 Each person has a unique id.
- a set of books, implemented by a linked list. Each book has a unique id.
- a relation borrows, implemented by an array indexed by the person unique id.

Array contains a linked list of books borrowed by that person.

The Jahob Approach through an Example

Factoring Out Complexity

if a person has borrowed a book, then

- the person is registered with the library, and
- the book is in the catalog

 $\forall p \ b . (p, b) \in \text{borrows.content} \rightarrow p \in \text{persons.content} \land b \in \text{books.content}$

Specification Variables

Set.content = { $x \mid \exists n . n \in \text{first.next}^* \land n.\text{data} = b$ }

 $\mathsf{Relation.content} = \{ (x, y) \mid a[x] \neq \mathsf{null} \land y \in a[x].\mathsf{content} \}$

Defining Interfaces using Specification Variables

```
class Node {
    Object data;
    Node next;
}
class Set {
    public Node first;
    /*: public specvar content :: objset;
    ...
```

How can we define the set of data values in the linked list?

```
content == first.next*.data
```

Jahob supports reflexive transitive closure but with a different syntax:

Definition (rtrancl_pt)

Let $R : \alpha \Rightarrow \alpha \Rightarrow$ bool be a relation on some type α , then rtrancl_pt R is the reflexive transitive closure of R: rtrancl_pt $R \times y$ holds if there is a sequence $x = x_0, \ldots, x_n = y, n \ge 0$ such that $R \times_i x_{i+1}$ holds for $0 \le i < n$.

Definition (rtrancl_pt)

Let $R : \alpha \Rightarrow \alpha \Rightarrow$ bool be a relation on some type α , then rtrancl_pt R is the reflexive transitive closure of R: rtrancl_pt $R \times y$ holds if there is a sequence $x = x_0, \ldots, x_n = y, n \ge 0$ such that $R \times_i x_{i+1}$ holds for $0 \le i < n$.

Define the successor relation using the field Node.next:

$$R == (\% x y. x..Node.next = y)$$

Note: % is λ -abstraction.
he set of all nodes on the list is:

nodes == {n.
$$rtrancl_pt$$
 (% x y. x..Node.next = y) first n}

and the set of all values on the list is:

contents == {x. EX n. n..Node.data = x
 & rtrancl_pt (% v1 v2. v1..Node.next = v2) first n}

Т

Jahob Code

```
class Set {
    private Node first;
    . . .
    /*: public specvar content :: objset;
    vardefs "content == {x. EX n. n..Node.data = x &
          rtrancl_pt (% v1 v2. v1..Node.next = v2) first n}";
    . . .
    invariant "tree [Node.next]";
    */
    public void add(Object o1)
     /*: requires "o1 ~: content"
       modifies "content"
       ensures "content = old content Un {o1}"
    */
   { ... }
}
```

Use Interfaces to Verify Data Structure Clients

```
class Library {
 public static Set persons;
  . . .
  /*: invariant "ALL p b. (p,b) : borrows..Relation.content -->
      p : persons..Set.content & b : books..Set.content" */
 public static void checkOutBook(Person p, Book b)
  /*:
   requires "p ~= null & b ~= null &
       b : books..Set.content & p : persons..Set.content"
   modifies "borrows..Relation.content"
    ensures "((ALL p1. (p1,b) ~: old borrows..Relation.content) -->
       borrows. Relation.content =
           old (borrows..Relation.content) Un {(p,b)})
       & (EX p1. (p1,b) : old borrows..Relation.content -->
       borrows..Relation.content = old borrows..Relation.content)"
    */
   { ... }
```

}