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The Jahob system

Focus of Jahob: verifying properties of data structures.

Developed at

EPFL, Lausanne, Switzerland (Viktor Kuncak)

MIT, Cambridge, USA (Martin Rinard)

Freiburg, Germany (Thomas Wies)

References

Jahob webpage: http://lara.epfl.ch/w/jahob_system

Viktor Kuncak’s PhD thesis
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Core syntax of HOL

Jahob’s assertion language is a subset of the interactive theorem prover
Isabelle/HOL which is built on the simply typed lambda calculus.

Terms and Formulas:
f ::= λx :: t. f lambda abstraction (λ is also written %)
| f1 f2 function application
| x variable or constant
| f :: t typed formula

Types:
t ::= bool truth values
| int integers
| obj uninterpreted objects
| t1 ⇒ t2 total functions
| t set sets
| t1 ∗ t2 pairs
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Function with Several Arguments

A function with two arguments g(x , y) has the type

g : (t1 ∗ t2)⇒ t3

In HOL, usually one defines a function with two arguments as

f : t1 ⇒ t2 ⇒ t3,

and the application as
f x y = g(x , y)

Note that⇒ is right-associative and function application is left-associative:

(t1 ⇒ t2 ⇒ t3) = (t1 ⇒ (t2 ⇒ t3)) and f x y = (f x)y .
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Lambda Abstraction

Suppose, you want to define a function or relation:

inc x = x + 1 or succ x y ≡ (y = x + 1).

With lambda abstraction these can be written as

inc = (λ x . x + 1) resp. succ = (λ x y . y = x + 1).

This is especially useful if you need a function argument:

rtrancl pt succ 0 z

can be written as

rtrancl pt (λ x y . y = x + 1) 0 z
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Data Structure Consistency

Statically verify data structure consistency properties.

Example

Internal Data Structure Consistency

. . . null

nextnext next next

prev prev prev

field prev is inverse of field next

field next is acyclic

Ü inconsistency can cause program crashes.
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External Consistency Properties

Example (Library)

if a book is loaned to a person, then

the person is registered with the library, and
the book is in the catalog

Can loan a book to at most one person at a time

correlate multiple data structures

depend on internal consistency

capture design constraints (object models)

Ü inconsistency can cause policy violations.
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Goal

Proof data structure consistency properties

for all program executions (sound)

with high level of automation

both internal and external consistency properties

both implementation and use of data structures.
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Overview of the Jahob Approach
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Overview of the Jahob Approach

Key question in automating approach (while keeping it useful)
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The Jahob Approach through an Example

Data structures to record who borrowed which book. These consist of

a set of persons, implemented by a linked list.
Each person has a unique id.

a set of books, implemented by a linked list.
Each book has a unique id.

a relation borrows, implemented by an array indexed by the person
unique id.
Array contains a linked list of books borrowed by that person.
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The Jahob Approach through an Example

class Library {

public static Set persons;

public static Set books;

public static Relation borrows;

...

}

class Relation {

private Set[] a;

private int size;

...

public void add(int i, Object o1){

...

}

}

class Set {

private Node first;

...

public void add(Object o1){

Node n = new Node();

n.data = o1;

n.next = first;

first = n;

}

}
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Factoring Out Complexity

if a person has borrowed a book, then

the person is registered with the library, and

the book is in the catalog

∀ p b . (p, b) ∈ borrows.content→
p ∈ persons.content
∧ b ∈ books.content

Specification Variables

Set.content = { x | ∃ n . n ∈ first.next∗ ∧ n.data = b }

Relation.content = { (x , y) | a[x ] 6= null ∧ y ∈ a[x ].content }
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Defining Interfaces using Specification Variables

class Node {
Object data;
Node next;

}
class Set {

public Node first;
/*: public specvar content :: objset;
...

How can we define the set of data values in the linked list?

content == first.next*.data

Jahob supports reflexive transitive closure but with a different syntax:

Definition (rtrancl pt)

Let R : α⇒ α⇒ bool be a relation on some type α, then rtrancl pt R is
the reflexive transitive closure of R:
rtrancl pt R x y holds if there is a sequence x = x0, . . . , xn = y , n ≥ 0
such that R xi xi+1 holds for 0 ≤ i < n.
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Using the rtrancl pt predicate

Definition (rtrancl pt)

Let R : α⇒ α⇒ bool be a relation on some type α, then rtrancl pt R is
the reflexive transitive closure of R:
rtrancl pt R x y holds if there is a sequence x = x0, . . . , xn = y , n ≥ 0
such that R xi xi+1 holds for 0 ≤ i < n.

Define the successor relation using the field Node.next:

R == (% x y. x..Node.next = y) Note: % is λ-abstraction.
The set of all nodes on the list is:

nodes == {n. rtrancl_pt (% x y. x..Node.next = y) first n}

and the set of all values on the list is:

contents == {x. EX n. n..Node.data = x
& rtrancl_pt (% v1 v2. v1..Node.next = v2) first n}
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Jahob Code

class Set {

private Node first;

...

/*: public specvar content :: objset;

vardefs "content == {x. EX n. n..Node.data = x &

rtrancl pt (% v1 v2. v1..Node.next = v2) first n}";

...

invariant "tree [Node.next]";

*/

public void add(Object o1)

/*: requires "o1 ~: content"

modifies "content"

ensures "content = old content Un {o1}"

*/

{ ... }

}
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Use Interfaces to Verify Data Structure Clients

class Library {

public static Set persons;

...

/*: invariant "ALL p b. (p,b) : borrows..Relation.content -->

p : persons..Set.content & b : books..Set.content" */

public static void checkOutBook(Person p, Book b)

/*:

requires "p ~= null & b ~= null &

b : books..Set.content & p : persons..Set.content"

modifies "borrows..Relation.content"

ensures "((ALL p1. (p1,b) ~: old borrows..Relation.content) -->

borrows..Relation.content =

old (borrows..Relation.content) Un {(p,b)})

& (EX p1. (p1,b) : old borrows..Relation.content -->

borrows..Relation.content = old borrows..Relation.content)"

*/

{ ... }

}
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