Formal Methods for Java

Lecture 20: Sequent Calculus

Jochen Hoenicke

Software Engineering
— Albert-Ludwigs-University Freiburg

UNI
FREIBURG

January 15, 2013

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013

1/20

Runtime vs. Static Checking

Runtime Checking
o finds bugs at run-time,
@ tests for violation during execution,
@ can check most of the JML,

@ is done by jmlrac.

Static Checking
o finds bugs at compile-time,
@ proves that there is no violation,
@ can check only parts of the JML,
@ is done by ESC/Java or Jahob.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 2 /20

The KEY—Project

Developed at University of Karlsruhe

http://www.key-project.org/.

Interactive Theorem Prover
Theory specialized for Java(Card).
Can generate proof-obligations from JML specification.

Underlying theory: Sequent Calculus + Dynamic Logic

Proofs are given manually.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 3/20

http://www.key-project.org/

Sequent Calculus

Definition (Sequent)

A sequent is a formula

¢1,---7¢n:>1/11a---;¢m

where ¢;,1); are formulae.
The meaning of this formula is:

P1N ... Ny = P11 V...V Uy

Why are sequents useful?

Simple syntax and nice calculus

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 4 /20

Example for Sequents

g=y/x,r=y%x =x=0,y =q*xx+r

It is logically equivalent to the formula:
g=y/xANr=y%x —>x=0Vy=q*x+r
This is equivalent to the sequent
= qg=y/xNr=y%x > x=0Vy=q*xx+r
Another equivalent sequent is:

x£0,g=y/x,r=y%x=y=q*xx+r

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013

5 /20

The Empty Sequent

What is the meaning of the following sequent?

—

This is equivalent to
true — false

which is false.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 6 /20

Sequent Calculus

To prove a goal (a formula) with sequent calculus:
o Start with the goal at the bottom

@ Use rules to derive formulas, s.t.
formulas are sufficient to prove the goal, formulas are simpler.

@ A proof node can be closed if it holds trivially.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 7 /20

A Rule of Sequent Calculus

r A
Rule impl-right: F i?gﬁ ;:/}1#
This rule is sound:
TN —>AVY

implies
Fr— AV (p—1)

Here A and I stand for an arbitrary set of formulae. We abstract from
order: rule is also applicable if ¢ — 1) occur in the middle of the
right-hand side, e.g.:
X1, ¢ = X2, ¥, X3
X1 = X2,¢ =¥, X3

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013

8 /20

A Sequent Calculus Proof

o= Ay
= A=

Axiom close: ;¢ = A, ¢ Rule impl-right:

Rule and-left; 2% =4

Fr=A¢ IT= A0

m Rule and—right:

Let's prove that A commutes: ¢ A1) — ¥ A ¢.

—— close ———— close
¢a QJZ) :;%p — 1/} faf = ¢ and—right
¢;\1/):>¢A¢ and-left
Iy TSy impl-right

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013

= A, oAV

9/ 20

Sequent Calculus Logical Rules

close: ' = A, ¢

false: T, false = A true: = A, true
= A, ¢ _ Mo — A
t-left: ——— t-right: ————
not-le Fo— A not-rig T —;
r A r A r A
and-left: Téov=4 and-right: —40¢ =AY
oAy = A M= A, oA
Ne=—=A I¢yv=A _ = A ¢,9
or-left: or-rightt ———
Movy = A Fr= AoV
imphleft: L2800 TV =08) oy, o= A9
| - . | -r .
P Mo—ip— A P T = A e o 0

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 10 / 20

Sequent Calculus All-Quantifier

MYX ¢(X), 6(t) = A
[LVX ¢(X) = A

all-left: , Where t is some arbitrary term.

This is sound because VX ¢(X) implies ¢(t).

M= A, ¢(xo)
[— A,VX ¢(X)’

all-right: where xg is a fresh identifier.

Xp is called a Skolem constant.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 11/20

Sequent Calculus Quantifier

The rules for the existential quantifier are dual:

VX o(X), o(t) = A

all-left: FVX 6(X) = A where t is some arbitrary term.
A
all-right: r :A,V)g?(;(()g()’ where xg is a fresh identifier.
r A
exists-left: r Ei;?(:;g():; A where xg is a fresh identifier.
r AAX p(X t
exists-right: — 8, 3X 9(X), o), where t is some arbitrary term.

r— A,3X ¢(X)

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 12 /20

Example: (VX¢(X)) V (IX=o(X))

r A r A
close: I, = A, ¢ not-right: Fi>:A>,—|¢ or-right: F:A,’g;b’\/zib
r A
all-right: r :>:>A,V’)q?(;(()) XY’ where xp is a fresh identifier.
r A 3X t
exists-right: ? A Elq)b((¢2 gé(), where t is some arbitrary term.
Let's prove (VX ¢(X)) V (3X—¢(X)).

close
)

00) = 6(0), IX=0(X) © L

= ¢(X0)7 ElX—‘¢(X)7 _'¢(X0)
= ¢(x0), IX—¢(X)
= VXo¢(X), IX=¢(X)
— VX¢(X) VvV IX=¢(X)

exists-right

all-right

or-right

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 13 /20

Rules for equality

eq-close: = At =1t
s =t,lt/s] = A[t/s]
s=t [= A

apply-eq:

These rules suffice to prove x =y = y=xand x=y,y =z = x = z.

X=y = Xx=x eq-close
X=y—y=xX 3PP|y-eq

— — —— close
X=yy=z=—y=2¢
X:y7y:Z:>X:Z apply_eq

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 14 /20

Soundness and Completeness

Theorem (Soundness and Completeness)

The sequent calculus with the rules presented on the previous three slides
is sound and complete

@ Soundness: Only true facts can be proven with the calculus.

o Completeness: Every true fact can be proven with the calculus.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 15 /20

Signature

Definition (Signature)
A signature Sig = (Func, Pred) is a tuple of sets of function and predicate
symbols, where

e f/k € Func if f is a function symbol with k parameters,

e p/k € Pred if p is a predicate symbol with k parameters.

A constant ¢/0 € Func is a function without parameters. We assume
there are infinitely many constants.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 16 / 20

Structures

Definition (Structure)

A structure M is a tuple (D,Z). The domain D is an arbitrary non-empty
set. The interpretation Z assigns to

@ each function symbol f/k € Func of arity k a function
I(f) : Dk - D
@ and each predicate symbol p/k € Pred of arity k a function

Z(p) : D* — {true, false}.

The interpretation Z(c) of a constant ¢/0 € Func is an element of D.

v

Let M = (D,Z), c a constant and d € D. With M|c := d| we denote the
structure (D,Z’), where Z'(c) = d and Z'(f) = Z(f) for all other function
symbols f and Z'(p) = Z(p) for all predicate symbols p.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 17 /20

Semantics of Terms and Formulas

Let M = (D,Z) be a structure.
The semantics M(t] of a term t is defined inductively by

Mf(t1,...,)] = Z(F)(M[t1], - .., M[tk]), in particular M[c] = Z(c).

The semantics of formula ¢, M[¢] € {true, false}, is defined by
° Ml[p(tl, cee tk)]] = I(,D)(Ml[tl]], o ,Ml[tk]]).
o M[s = t] = true, iff M[s] = M[t].
o M6 A U] = {true if ./\/l[[qb]] = true and M[¢] = true,
false otherwise.
o M[opV], Mo — 9], and M[—¢], analogously.
o M[VX ¢(X)] = true, iff for all d € D: M|xp := d][¢(x0)] = true,
where xg is a constant not occuring in ¢.
o M[3X ¢(X)] = true, iff there is some d € D with
M(xo := d][¢(x0)] = true, where xp is a constant not occuring in ¢.
Jochen Hoenicke (Software Engineering)

Formal Methods for Java January 15, 2013 18 /20

Models and Tautologies

Definition (Model)

A structure M is a model of a sequent ¢1,...,0, = V1, ...,y if
M([¢i] = false for some 1 < i < n, or if M[t;] = true for some

1 < j < m. We say that the sequent holds in M.

A sequent ¢1,...,0, = ¥1,...,%¥m is a tautology, if all structures are
models of this sequent.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 19 /20

Soundness

Definition (Soundness)

A calculus is sound, iff every formula F for which a proof exists is a
tautology.

@ We write - F to indicate that a proof for F exists.
e We write |= F to indicate that F is a tautology.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 15, 2013 20 / 20

