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Sequent Calculus

Definition (Sequent)

A sequent is a formula

φ1, . . . , φn =⇒ ψ1, . . . , ψm

where φi , ψi are formulae.
The meaning of this formula is:

φ1 ∧ . . . ∧ φn → ψ1 ∨ . . . ∨ ψm
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Sequent Calculus Logical Rules

close: Γ, φ =⇒ ∆, φ

false: Γ, false =⇒ ∆ true: Γ =⇒ ∆, true

not-left:
Γ =⇒ ∆, φ

Γ,¬φ =⇒ ∆
not-right:

Γ, φ =⇒ ∆

Γ =⇒ ∆,¬φ

and-left:
Γ, φ, ψ =⇒ ∆

Γ, φ ∧ ψ =⇒ ∆
and-right:

Γ =⇒ ∆, φ Γ =⇒ ∆, ψ

Γ =⇒ ∆, φ ∧ ψ

or-left:
Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ ∨ ψ =⇒ ∆
or-right:

Γ =⇒ ∆, φ, ψ

Γ =⇒ ∆, φ ∨ ψ

impl-left:
Γ =⇒ ∆, φ Γ, ψ =⇒ ∆

Γ, φ→ ψ =⇒ ∆
impl-right:

Γ, φ =⇒ ∆, ψ

Γ =⇒ ∆, φ→ ψ
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Sequent Calculus Quantifier

The rules for the existential quantifier are dual:

all-left:
Γ,∀X φ(X ), φ(t) =⇒ ∆

Γ, ∀X φ(X ) =⇒ ∆
, where t is some arbitrary term.

all-right:
Γ =⇒ ∆, φ(x0)

Γ =⇒ ∆,∀X φ(X )
, where x0 is a fresh identifier.

exists-left:
Γ, φ(x0) =⇒ ∆

Γ,∃X φ(X ) =⇒ ∆
, where x0 is a fresh identifier.

exists-right:
Γ =⇒ ∆,∃X φ(X ), φ(t)

Γ =⇒ ∆, ∃X φ(X )
, where t is some arbitrary term.
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Rules for equality

eq-close: Γ =⇒ ∆, t = t

apply-eq:
s = t, Γ[t/s] =⇒ ∆[t/s]

s = t, Γ =⇒ ∆

s = t, Γ[t/X ] =⇒ ∆[t/X ]

s = t, Γ[s/X ] =⇒ ∆[s/X ]

Example: Prove c = f (c) =⇒ c = f (f (c)).

c = f (c) =⇒ f (f (c)) = f (f (c))
close-eq

c = f (c) =⇒ f (c) = f (f (c))
apply-eq (∆ : f (X ) = f (f (c)))

c = f (c) =⇒ c = f (f (c))
apply-eq (∆ : X = f (f (c)))
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Soundness and Completeness

Theorem (Soundness and Completeness)

The sequent calculus with the rules presented on the previous three slides
is sound and complete

Soundness: Only true facts can be proven with the calculus.

Completeness: Every true fact can be proven with the calculus.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 18, 2013 6 / 14



Signature

Definition (Signature)

A signature Sig = (Func ,Pred) is a tuple of sets of function and predicate
symbols, where

f /k ∈ Func if f is a function symbol with k parameters,

p/k ∈ Pred if p is a predicate symbol with k parameters.

A constant c/0 ∈ Func is a function without parameters. We assume
there are infinitely many constants.
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Structures

Definition (Structure)

A structure M is a tuple (D, I). The domain D is an arbitrary non-empty
set. The interpretation I assigns to

each function symbol f /k ∈ Func of arity k a function

I(f ) : Dk → D

and each predicate symbol p/k ∈ Pred of arity k a function

I(p) : Dk → {true, false}.

The interpretation I(c) of a constant c/0 ∈ Func is an element of D.

Let M = (D, I), c a constant and d ∈ D. With M[c := d ] we denote the
structure (D, I ′), where I ′(c) = d and I ′(f ) = I(f ) for all other function
symbols f and I ′(p) = I(p) for all predicate symbols p.
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Semantics of Terms and Formulas

Let M = (D, I) be a structure.
The semantics M[[t]] of a term t is defined inductively by

M[[f (t1, . . . , tk)]] = I(f )(M[[t1]], . . . ,M[[tk ]]), in particular M[[c]] = I(c).

The semantics of formula φ, M[[φ]] ∈ {true, false}, is defined by

M[[p(t1, . . . , tk)]] = I(p)(M[[t1]], . . . ,M[[tk ]]).

M[[s = t]] = true, iff M[[s]] =M[[t]].

M[[φ ∧ ψ]] =

{
true if M[[φ]] = true and M[[ψ]] = true,

false otherwise.

M[[φ ∨ ψ]], M[[φ→ ψ]], and M[[¬φ]], analogously.

M[[∀X φ(X )]] = true, iff for all d ∈ D: M[x0 := d ][[φ(x0)]] = true,
where x0 is a constant not occuring in φ.

M[[∃X φ(X )]] = true, iff there is some d ∈ D with
M[x0 := d ][[φ(x0)]] = true, where x0 is a constant not occuring in φ.
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Models and Tautologies

Definition (Model)

A structure M is a model of a sequent φ1, . . . , φn =⇒ ψ1, . . . , ψm if
M[[φi ]] = false for some 1 ≤ i ≤ n, or if M[[ψj ]] = true for some
1 ≤ j ≤ m. We say that the sequent holds in M.
A sequent φ1, . . . , φn =⇒ ψ1, . . . , ψm is a tautology, if all structures are
models of this sequent.
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Soundness

Definition (Soundness)

A calculus is sound, iff every formula F for which a proof exists is a
tautology.

We write ` F to indicate that a proof for F exists.

We write |= F to indicate that F is a tautology.
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Definition (Soundness of a rule)

A rule
F1 · · · Fn

G
is sound, iff

|= F1 and . . . and |= Fn imply |= G .

An axiom G is sound, iff G is a tautology, i.e., |= G .

Lemma

A calculus is sound, if all of its rules and axioms are sound.

Proof.

By structural induction over the proof.
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Soundness of impl-left

The rule
Γ =⇒ ∆, φ Γ, ψ =⇒ ∆

Γ, φ→ ψ =⇒ ∆

is sound:
Assume Γ =⇒ ∆, φ and Γ, ψ =⇒ ∆ are tautologies and M is an arbitrary
structure. Prove that F := (Γ, φ→ ψ =⇒ ∆) holds in M.

If one of the formulas in Γ is false in M, then F holds.

Otherwise, from Γ =⇒ ∆, φ it follows that φ or a formula in ∆ is
true.

If M[[φ]] = true and M[[ψ]] = false, then M[[φ→ ψ]] = false.
Hence, F holds.

If M[[φ]] = true and M[[ψ]] = true, then Γ, ψ =⇒ ∆ implies that a
formula in ∆ is true.

If a formula in ∆ is true, F holds.
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Soundness of exists-left

exists-left:
Γ, φ(x0) =⇒ ∆

Γ, ∃X φ(X ) =⇒ ∆
, where x0 is a fresh identifier (constant).

Assume Γ, φ(x0) =⇒ ∆ is a tautology, where x0 does not occur in Γ nor ∆
nor φ(X ). Given an arbitrary structure M, prove that
F := (Γ, ∃X φ(X ) =⇒ ∆) holds in M.

If one of the formulas in Γ is false in M, then F holds.

If M[[∃X φ(X )]] = false, then F holds.

Otherwise, there is a d ∈ D such that M[x0 := d ][[φ(x0)]] = true.

Also in M[x0 := d ], all formulas in Γ are true. Since Γ, φ(x0) =⇒ ∆
is a tautology, some formula of ∆ is true in M[x0 := d ].

Since x0 does not occur in ∆, the formula is also true in the structure
M. Therefore F holds in M.
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