Formal Methods for Java

Lecture 21: Sequent Calculus

Jochen Hoenicke

January 18, 2013

Sequent Calculus

Definition (Sequent)

A sequent is a formula

$$\phi_1, \ldots, \phi_n \Longrightarrow \psi_1, \ldots, \psi_m$$

where ϕ_i, ψ_i are formulae.

The meaning of this formula is:

$$\phi_1 \wedge \ldots \wedge \phi_n \to \psi_1 \vee \ldots \vee \psi_m$$

Sequent Calculus Logical Rules

$$\begin{array}{lll} \text{close: } \Gamma, \phi \Longrightarrow \Delta, \phi \\ \text{false: } \Gamma, \textbf{false} \Longrightarrow \Delta & \text{true: } \Gamma \Longrightarrow \Delta, \textbf{true} \\ \text{not-left: } & \frac{\Gamma \Longrightarrow \Delta, \phi}{\Gamma, \neg \phi \Longrightarrow \Delta} & \text{not-right: } & \frac{\Gamma, \phi \Longrightarrow \Delta}{\Gamma \Longrightarrow \Delta, \neg \phi} \\ \text{and-left: } & \frac{\Gamma, \phi, \psi \Longrightarrow \Delta}{\Gamma, \phi \land \psi \Longrightarrow \Delta} & \text{and-right: } & \frac{\Gamma \Longrightarrow \Delta, \phi \quad \Gamma \Longrightarrow \Delta, \psi}{\Gamma \Longrightarrow \Delta, \phi \land \psi} \\ \text{or-left: } & \frac{\Gamma, \phi \Longrightarrow \Delta \quad \Gamma, \psi \Longrightarrow \Delta}{\Gamma, \phi \lor \psi \Longrightarrow \Delta} & \text{or-right: } & \frac{\Gamma \Longrightarrow \Delta, \phi, \psi}{\Gamma \Longrightarrow \Delta, \phi \lor \psi} \\ \text{impl-left: } & \frac{\Gamma \Longrightarrow \Delta, \phi \quad \Gamma, \psi \Longrightarrow \Delta}{\Gamma, \phi \to \psi \Longrightarrow \Delta} & \text{impl-right: } & \frac{\Gamma, \phi \Longrightarrow \Delta, \psi}{\Gamma \Longrightarrow \Delta, \phi \to \psi} \end{array}$$

Sequent Calculus Quantifier

The rules for the existential quantifier are dual:

all-left:
$$\frac{\Gamma, \forall X \ \phi(X), \phi(t) \Longrightarrow \Delta}{\Gamma, \forall X \ \phi(X) \Longrightarrow \Delta}$$
, where t is some arbitrary term. all-right: $\frac{\Gamma \Longrightarrow \Delta, \phi(x_0)}{\Gamma \Longrightarrow \Delta, \forall X \ \phi(X)}$, where x_0 is a fresh identifier. exists-left: $\frac{\Gamma, \phi(x_0) \Longrightarrow \Delta}{\Gamma, \exists X \ \phi(X) \Longrightarrow \Delta}$, where x_0 is a fresh identifier. exists-right: $\frac{\Gamma \Longrightarrow \Delta, \exists X \ \phi(X), \phi(t)}{\Gamma \Longrightarrow \Delta, \exists X \ \phi(X)}$, where t is some arbitrary term.

Rules for equality

eq-close:
$$\Gamma \Longrightarrow \Delta, t = t$$

apply-eq: $s = t, \Gamma[t/s] \Longrightarrow \Delta[t/s]$
 $s = t, \Gamma[t/s] \Longrightarrow \Delta[t/s]$
 $s = t, \Gamma[t/s] \Longrightarrow \Delta[t/x]$

Example: Prove $c = f(c) \Longrightarrow c = f(f(c))$.

$$\frac{c = f(c) \Longrightarrow f(f(c)) = f(f(c))}{c = f(c) \Longrightarrow c = f(f(c))} \text{ apply-eq } (\Delta : f(X) = f(f(c)))$$

$$\frac{c = f(c) \Longrightarrow f(c) = f(f(c))}{c = f(c) \Longrightarrow c = f(f(c))} \text{ apply-eq } (\Delta : X = f(f(c)))$$

Soundness and Completeness

Theorem (Soundness and Completeness)

The sequent calculus with the rules presented on the previous three slides is sound and complete

- Soundness: Only true facts can be proven with the calculus.
- Completeness: Every true fact can be proven with the calculus.

Signature

Definition (Signature)

A signature Sig = (Func, Pred) is a tuple of sets of function and predicate symbols, where

- $f/k \in Func$ if f is a function symbol with k parameters,
- $p/k \in Pred$ if p is a predicate symbol with k parameters.

A constant $c/0 \in Func$ is a function without parameters. We assume there are infinitely many constants.

Structures

Definition (Structure)

A structure $\mathcal M$ is a tuple $(\mathcal D,\mathcal I)$. The domain $\mathcal D$ is an arbitrary non-empty set. The interpretation $\mathcal I$ assigns to

• each function symbol $f/k \in Func$ of arity k a function

$$\mathcal{I}(f):\mathcal{D}^k\to\mathcal{D}$$

• and each predicate symbol $p/k \in Pred$ of arity k a function

$$\mathcal{I}(p): \mathcal{D}^k \to \{\mathsf{true}, \mathsf{false}\}.$$

The interpretation $\mathcal{I}(c)$ of a constant $c/0 \in Func$ is an element of \mathcal{D} .

Let $\mathcal{M}=(\mathcal{D},\mathcal{I})$, c a constant and $d\in\mathcal{D}$. With $\mathcal{M}[c:=d]$ we denote the structure $(\mathcal{D},\mathcal{I}')$, where $\mathcal{I}'(c)=d$ and $\mathcal{I}'(f)=\mathcal{I}(f)$ for all other function symbols f and $\mathcal{I}'(p)=\mathcal{I}(p)$ for all predicate symbols p.

Semantics of Terms and Formulas

Let $\mathcal{M} = (\mathcal{D}, \mathcal{I})$ be a structure.

The semantics $\mathcal{M}[t]$ of a term t is defined inductively by

$$\mathcal{M}[\![f(t_1,\ldots,t_k)]\!] = \mathcal{I}(f)(\mathcal{M}[\![t_1]\!],\ldots,\mathcal{M}[\![t_k]\!]), \text{ in particular } \mathcal{M}[\![c]\!] = \mathcal{I}(c).$$

The semantics of formula ϕ , $\mathcal{M}[\![\phi]\!] \in \{\text{true}, \text{false}\}$, is defined by

- $\mathcal{M}[\![p(t_1,\ldots,t_k)]\!] = \mathcal{I}(p)(\mathcal{M}[\![t_1]\!],\ldots,\mathcal{M}[\![t_k]\!]).$
- $\mathcal{M}[s=t] = \text{true}$, iff $\mathcal{M}[s] = \mathcal{M}[t]$.
- $\bullet \ \, \mathcal{M} \llbracket \phi \wedge \psi \rrbracket = \begin{cases} \mathsf{true} & \mathsf{if} \ \, \mathcal{M} \llbracket \phi \rrbracket = \mathsf{true} \ \, \mathsf{and} \ \, \mathcal{M} \llbracket \psi \rrbracket = \mathsf{true}, \\ \mathsf{false} & \mathsf{otherwise}. \end{cases}$
- $\mathcal{M}\llbracket\phi\lor\psi\rrbracket$, $\mathcal{M}\llbracket\phi\to\psi\rrbracket$, and $\mathcal{M}\llbracket\neg\phi\rrbracket$, analogously.
- $\mathcal{M}[\![\forall X \phi(X)]\!] =$ true, iff for all $d \in \mathcal{D}$: $\mathcal{M}[x_0 := d][\![\phi(x_0)]\!] =$ true, where x_0 is a constant not occurring in ϕ .
- $\mathcal{M}[\exists X \phi(X)] = \text{true}$, iff there is some $d \in \mathcal{D}$ with $\mathcal{M}[x_0 := d][\![\phi(x_0)]\!] = \text{true}$, where x_0 is a constant not occurring in ϕ .

Models and Tautologies

Definition (Model)

A structure \mathcal{M} is a model of a sequent $\phi_1,\ldots,\phi_n\Longrightarrow \psi_1,\ldots,\psi_m$ if $\mathcal{M}[\![\phi_i]\!]=$ false for some $1\leq i\leq n$, or if $\mathcal{M}[\![\psi_j]\!]=$ true for some $1\leq j\leq m$. We say that the sequent holds in \mathcal{M} .

A sequent $\phi_1, \ldots, \phi_n \Longrightarrow \psi_1, \ldots, \psi_m$ is a tautology, if all structures are models of this sequent.

Soundness

Definition (Soundness)

A calculus is sound, iff every formula F for which a proof exists is a tautology.

- We write $\vdash F$ to indicate that a proof for F exists.
- We write $\models F$ to indicate that F is a tautology.

Definition (Soundness of a rule)

A rule $\frac{F_1 \cdots F_n}{G}$ is sound, iff

$$\models F_1 \text{ and } \dots \text{ and } \models F_n \text{ imply } \models G.$$

An axiom G is sound, iff G is a tautology, i.e., $\models G$.

Lemma

A calculus is sound, if all of its rules and axioms are sound.

Proof.

By structural induction over the proof.

Soundness of impl-left

The rule

$$\frac{\Gamma \Longrightarrow \Delta, \phi \quad \Gamma, \psi \Longrightarrow \Delta}{\Gamma, \phi \to \psi \Longrightarrow \Delta}$$

is sound:

Assume $\Gamma \Longrightarrow \Delta, \phi$ and $\Gamma, \psi \Longrightarrow \Delta$ are tautologies and \mathcal{M} is an arbitrary structure. Prove that $F := (\Gamma, \phi \to \psi \Longrightarrow \Delta)$ holds in \mathcal{M} .

- If one of the formulas in Γ is **false** in \mathcal{M} , then F holds.
- Otherwise, from $\Gamma \Longrightarrow \Delta, \phi$ it follows that ϕ or a formula in Δ is **true**.
- If $\mathcal{M}[\![\phi]\!] =$ true and $\mathcal{M}[\![\psi]\!] =$ false, then $\mathcal{M}[\![\phi \to \psi]\!] =$ false. Hence, F holds.
- If $\mathcal{M}[\![\phi]\!] = \mathbf{true}$ and $\mathcal{M}[\![\psi]\!] = \mathbf{true}$, then $\Gamma, \psi \Longrightarrow \Delta$ implies that a formula in Δ is \mathbf{true} .
- If a formula in Δ is **true**, F holds.

Soundness of exists-left

exists-left:
$$\frac{\Gamma, \phi(x_0) \Longrightarrow \Delta}{\Gamma, \exists X \ \phi(X) \Longrightarrow \Delta}$$
, where x_0 is a fresh identifier (constant).

Assume $\Gamma, \phi(x_0) \Longrightarrow \Delta$ is a tautology, where x_0 does not occur in Γ nor Δ nor $\phi(X)$. Given an arbitrary structure \mathcal{M} , prove that $F := (\Gamma, \exists X \ \phi(X) \Longrightarrow \Delta)$ holds in \mathcal{M} .

- If one of the formulas in Γ is **false** in \mathcal{M} , then F holds.
- If $\mathcal{M}[\exists X \phi(X)] =$ false, then F holds.
- Otherwise, there is a $d \in \mathcal{D}$ such that $\mathcal{M}[x_0 := d]\llbracket \phi(x_0) \rrbracket = \mathbf{true}$.
- Also in $\mathcal{M}[x_0 := d]$, all formulas in Γ are **true**. Since $\Gamma, \phi(x_0) \Longrightarrow \Delta$ is a tautology, some formula of Δ is **true** in $\mathcal{M}[x_0 := d]$.
- Since x_0 does not occur in Δ , the formula is also **true** in the structure \mathcal{M} . Therefore F holds in \mathcal{M} .