
Formal Methods for Java
Lecture 22: Completeness of Sequent Calculus

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

January 22, 2013

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 22, 2013 1 / 16

Sequent Calculus

Definition (Sequent)

A sequent is a formula

φ1, . . . , φn =⇒ ψ1, . . . , ψm

where φi , ψi are formulae.
The meaning of this formula is:

φ1 ∧ . . . ∧ φn → ψ1 ∨ . . . ∨ ψm

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 22, 2013 2 / 16

Sequent Calculus Logical Rules

close: Γ, φ =⇒ ∆, φ

false: Γ, false =⇒ ∆ true: Γ =⇒ ∆, true

not-left:
Γ =⇒ ∆, φ

Γ,¬φ =⇒ ∆
not-right:

Γ, φ =⇒ ∆

Γ =⇒ ∆,¬φ

and-left:
Γ, φ, ψ =⇒ ∆

Γ, φ ∧ ψ =⇒ ∆
and-right:

Γ =⇒ ∆, φ Γ =⇒ ∆, ψ

Γ =⇒ ∆, φ ∧ ψ

or-left:
Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ ∨ ψ =⇒ ∆
or-right:

Γ =⇒ ∆, φ, ψ

Γ =⇒ ∆, φ ∨ ψ

impl-left:
Γ =⇒ ∆, φ Γ, ψ =⇒ ∆

Γ, φ→ ψ =⇒ ∆
impl-right:

Γ, φ =⇒ ∆, ψ

Γ =⇒ ∆, φ→ ψ

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 22, 2013 3 / 16

Sequent Calculus Quantifier

The rules for the existential quantifier are dual:

all-left:
Γ,∀X φ(X), φ(t) =⇒ ∆

Γ, ∀X φ(X) =⇒ ∆
, where t is some arbitrary term.

all-right:
Γ =⇒ ∆, φ(x0)

Γ =⇒ ∆,∀X φ(X)
, where x0 is a fresh identifier.

exists-left:
Γ, φ(x0) =⇒ ∆

Γ,∃X φ(X) =⇒ ∆
, where x0 is a fresh identifier.

exists-right:
Γ =⇒ ∆,∃X φ(X), φ(t)

Γ =⇒ ∆, ∃X φ(X)
, where t is some arbitrary term.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 22, 2013 4 / 16

Completeness of Sequent Calculus (without Equality)

For completeness we assume we have finitely many functions and predicate
symbols and countably infinitely many constants. This ensures that the set
of formulas and terms are also countably infinite.

Theorem (Completeness without Equality)

If a sequent F without equalities is a tautology, it can be proven.

Proof by contraposition: Assume F is not provable, show that there is a
model for which F does not hold.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 22, 2013 5 / 16

Proof of Completeness without Equality

Let Γ0 =⇒ ∆0 be an unprovable sequent.

We apply in each path of the proof tree each applicable rule on each
applicable subformula in a fair manner (e.g. round robin).
For the rules exists-right and all-left we chose a term in a fair manner, s.t.
every term is eventually applied (possible since the set of terms is
enumerable)
There are two cases

At some point no rule is applicable, we have an open goal with no
applicable rule.

The proof tree is infinite and there is an infinite sub-path (König’s
Lemma).

In both cases, there is a path, where every rule that is infinitely often
applicable is infinitely often applied. Since no rule can become
unapplicable by applying another rule, every applicable rule is eventually
applied. Moreover, every applicable all-left or exists-right rule is on every
term eventually applied.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 22, 2013 6 / 16

Proof of Completeness (cont)

There are two cases

At some point no rule is applicable, we have an open goal with no
applicable rule.

The proof tree is infinite and there is an infinite sub-path (König’s
Lemma).

In both cases we have a maximal open path in the sub-tree.

...
Γi+1 =⇒ ∆i+1

Γi =⇒ ∆i
...

Γ0 =⇒ ∆0

Define Γ =
⋃

i Γi , ∆ =
⋃

i ∆i .

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 22, 2013 7 / 16

Proof of Completeness (continued)

The algorithm creates a sequence of unprovable sequents Γi =⇒ ∆i ,

Set Γ :=
⋃

i Γi and ∆ :=
⋃

i ∆i . These are closed with respect to
applications of the sequent calculus rules, e.g.,

if ¬φ ∈ Γ then φ ∈ ∆,

if φ→ ψ ∈ Γ then ψ ∈ Γ or φ ∈ ∆,

if ∀X .φ(X) ∈ Γ then φ(t) ∈ Γ for all terms t.

Note that although Γi and ∆i are finite for all i , Γ and ∆ can be infinite
(if all-left or exists-right is applicable).
We define H := {φ | φ ∈ Γ} ∪ {¬φ | φ ∈ ∆}.
Then H is a Hintikka set (exercise).

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 22, 2013 8 / 16

Hintikka set

We distinguish four kinds of formulas:
α α1 α2 β β1 β2

φ ∧ ψ φ ψ φ ∨ ψ φ ψ
¬(φ ∨ ψ) ¬φ ¬ψ ¬(φ ∧ ψ) ¬φ ¬ψ
¬(φ→ ψ) φ ¬ψ (φ→ ψ) ¬φ ψ
¬¬φ φ φ

γ γ1(X) δ δ1(X)
∀Xφ(X) φ(X) ∃Xφ(X) φ(X)
¬∃Xφ(X) ¬φ(X) ¬∀Xφ(X) ¬φ(X)

A set H of formulas is a Hintikka set, iff

For every atomic formula φ, not both formulas φ,¬φ are in H.

If α ∈ H, then α1 ∈ H and α2 ∈ H.

If β ∈ H, then β1 ∈ H or β2 ∈ H.

If γ ∈ H, then for all terms t, γ1(t) ∈ H.

If δ ∈ H, then for at least one term t, δ1(t) ∈ H.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 22, 2013 9 / 16

Construction a Counter-Structure

Lemma

For every Hintikka set H there is a structureM with
M[[φ]] = true for all φ ∈ H.

Proof: As domain D choose the set of terms. The interpretation I is
defined as follows:

I(c) = c

I(f)(t1, . . . , tk) = f (t1, . . . , tk)

I(p)(t1, . . . , tk) = true, iff p(t1, . . . , tk) ∈ H

Show by induction over the terms t: M[[t]] = t.
Then one can show by induction over the number of logical operators in φ:

If φ ∈ H then M[[φ]] = true and if ¬φ ∈ H then M[[φ]] = false

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 22, 2013 10 / 16

Counter-Structure (cont.)

Show by induction over over the number of logical operators in φ:

If φ ∈ H then M[[φ]] = true and if ¬φ ∈ H then M[[φ]] = false.

Base Case: φ = p(t1, . . . , tk): If φ ∈ H, then by definition
M[[φ]] = I(p)(M[[t1]], . . . ,M[[tk]]) = I(p)(t1, . . . , tk) = true.
If ¬φ ∈ H, then φ /∈ H. Hence,
M[[φ]] = I(p)(M[[t1]], . . . ,M[[tk]]) = I(p)(t1, . . . , tk) = false.

Induction Step: Assume the hypothesis holds for φ, ψ. Show that it holds
for ¬φ, φ ∧ ψ, φ ∨ ψ, φ→ ψ,∃X .φ(X), ∀X .φ(X).

¬φ: If ¬φ ∈ H, then by induction hypothesis, M[[φ]] = false. Hence,
M[[¬φ]] = true.
If ¬¬φ ∈ H, then since H is a Hintikka set, φ ∈ H. By induction
hypothesis, M[[φ]] = true. Hence, M[[¬φ]] = false.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 22, 2013 11 / 16

Proof of Completeness (Conclusion)

We started with an unprovable sequent Γ0 =⇒ ∆0.
We constructed Γ ⊇ Γ0 and ∆ ⊇ ∆0. This lead to a Hintikka set H with
φ ∈ H for φ ∈ Γ and ¬φ ∈ H for φ ∈ ∆.
We constructed a structure M with

If φ ∈ H then M[[φ]] = true and if ¬φ ∈ H then M[[φ]] = false

This structure M is not a model for Γ =⇒ ∆. Thus,

M 6|= Γ0 =⇒ ∆0

Hence, every unprovable sequent is not a tautology.
In other words, every tautology can be proven.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 22, 2013 12 / 16

Additional Rules

The calculus presented so far is already complete.

These rules are not necessary but can shorten proofs:

cut:
Γ, φ =⇒ ∆ Γ =⇒ ∆, φ

Γ =⇒ ∆

known-left:
Γ =⇒ ∆

Γ, φ =⇒ ∆
known-right:

Γ =⇒ ∆

Γ =⇒ ∆, φ

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 22, 2013 13 / 16

The -Project

Theorem Prover

Developed at University of Karlsruhe

http://www.key-project.org/.

Theory specialized for Java(Card).

Can generate proof-obligations from JML specification.

Underlying theory: Sequent Calculus + Dynamic Logic

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 22, 2013 14 / 16

http://www.key-project.org/

Dynamic Logic

Dynamic logic extends predicate logic by

[α]φ

〈α〉φ
where α is a program and φ a sub-formula.

The meaning is as follows:

[α]φ: after all terminating runs of program α formula φ holds.

〈α〉φ: after some terminating run of program α formula φ holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 22, 2013 15 / 16

Comparison with Hoare Logic

The sequent φ =⇒ [α]ψ corresponds to partial correctness of the Hoare
formula:

{φ}α{ψ}

If α is deterministic, φ =⇒ 〈α〉ψ corresponds to total correctness.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 22, 2013 16 / 16

