
J. Hoenicke
J. Christ

20.11.2012
Hand in solutions via email to

christj@informatik.uni-freiburg.de

until 27.11.2012 (only Java sources, JPF
configuration files, and PDFs accepted).

Paper submissions possible after the lecture.

Tutorials for “Formal methods for Java”
Exercise sheet 5

Exercise 1: Installing JPF
Install a Mercurial client for your operating system. Get a copy of the JPF repository
either with

hg clone http://babelfish.arc.nasa.gov/hg/jpf/jpf-core

or a similar command from your Mercurial client.
Compile the downloaded version, e.g., using ant from the cloned repository:

bin/ant

Instructions for Eclipse or NetBeans can be found on the JPF wiki at http://babelfish.
arc.nasa.gov/trac/jpf/wiki

You don’t have to submit anything for this exercise.

Exercise 2: Configuring JPF
Create the directory .jpf in your home directory. Inside this directory create the main
configuration file site.properties containing only the lines

jpf.home=<where you cloned jpf-core to>

jpf-core=${jpf.home}/jpf-core

extensions=${jpf-core}

where the jpf.home is set appropriately.
You don’t have to submit anything for this exercise.

christj@informatik.uni-freiburg.de
http://babelfish.arc.nasa.gov/trac/jpf/wiki
http://babelfish.arc.nasa.gov/trac/jpf/wiki


Exercise 3: Create a JPF Project
Get a copy of the jpf-template project, e.g., with

hg clone http://babelfish.arc.nasa.gov/hg/jpf/jpf-template

and compile it.
Create a new JPF project with the following command line

<path-to-jpf-template>/bin/create_project <Project-Name>

where the parts within < and > are set appropriately.
This step creates a new folder containing your project. The folder contains a bin directory
that you can use to run JPF, a src directory with many subdirectories that you can use
for development and examples, and an ant build script to build your project.
You don’t have to submit anything for this exercise.

Exercise 4: Writing a listener
Create a subfolder src/main/exercises in your new JPF project. Download the file
UsageChecker.java from the website of the lecture and place it in this folder. This file
contains a partially implemented listener to check a certain usage pattern. For a pair of
functions f and g , at any point during execution, more calls to f than calls to g should be
made, i. e., the sequence ffg is allowed, but the sequence fgg is not. The functions f and
g should be configurable via the options uc.up for f and uc.down for g . Furthermore,
the Boolean option uc.rec should be used to configure, if multiple calls to f are allowed
before a call to g , i. e., if uc.rec is set to false, only sequences of the form (fg)∗(f |ε) are
allowed.
Your task is to implement this listener. To account for the backtracking search, you can an-
notate the ElementInfo with the methods addObjectAttr(Object), getObjectAttr(Class),
and replaceObjectAttr(Object old, Object new) of class ElementInfo. Note that
annotation objects need to be immutable since backtracking will not restore the value of
annotations.
Write a small test program and a JPF configuration to test your listener. You will need
two functions and a main method.
Hand in the implementation of the listener, the test class, and the JPF configuration.


