Formal Methods for Java
Lecture 3: Operational Semantics (Part 2)

Jochen Hoenicke

Software Engineering
- Albert-Ludwigs-University Freiburg

UNI
FREIBURG

October 30, 2012

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012

1/22

Operational Semantics for Java

Idea: define transition system for Java

Definition (Transition System)

A transition system (TS) is a structure TS = (Q, Act, —), where
@ Q is a set of states,
@ Act a set of actions,

o —+C @ x Act x Q the transition relation.

Q reflects the current dynamic state (heap and local variables).
Act is the executed code.

Idea from: D. v. Oheimb, T. Nipkow, Machine-checking the Java
specification: Proving type-safety, 1999

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 2/22

State of a Java Program

The state of a Java program gives valuations local and global (heap)
variables.

@ @ = Heap x Local
@ Heap = Address — Class x seq Value
o Local = Identifier — Value
o Value =7, Address C Z
A state is denoted as (heap, Icl), where heap : Heap and lcl : Local.

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 3/22

Actions of a Java Program

An action of a Java Program is either
@ the evaluation of an expression e to a value v, denoted as e v, or
@ a Java statement, or
@ a Java code block.

Note that expressions with side-effects can modify the current state

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 4 /22

Rules for Java Expressions

axiom for evaluating local variables:

(heap, Icl) xelel(x) (heap, Icl)

axiom for evaluating constants:

(heap, Icl) =< (heap, Icl)

rule for field access:

heap. Icl) —€Ys (heap'. Icl' where idx is the index
(heap, cl) = (heap', Icl') ,of the field fld in the

(heap, Icl) e.fld>heap’ (v)(idx) (heap', Icl") object heap'(v)

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012

5/ 22

Rules for Assignment Expressions

rule for assignment to local:

(heap, Icl) -2 (heap/, Icl")
(heap, Icl) === (heap/, IcI' & {x — v})

rule for assignment to field:

(heapy, Ich) 22 (heapy, Ich)

(heapy, Ich) 222 (heaps, Icl)

(heapy, lcly) —S:d=€2v2 5 (peap,, /c/3)’

where heaps = heapsz & {(v1, idx) — vo} and idx is the index of the field
fld in the object at heapsz(vi).

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 6 /22

Rules for Java Statements

expression statement (assignment or method call):

(heap, Icl) —=% (heap/, Icl")
(heap, Icl) —== (heap’, Icl")

sequence of statements:

(heapy, Ich) = (heapy, Ich) (heaps, Icl) =2+ (heaps, Icls)

(heapy, Ich) =122 (heaps, Icl3)

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012

7/ 22

Rules for Java Statements

if statement:

(heapy, Ich) —=% (heaps, Ich) (heaps, Ich) —%5 (heaps, Icl)

,Where v #£ 0

(heapy, Ich) fe) sielses, , (heaps, Ich)

(heapy, Ich) —=% (heaps, Ich) (heaps, Ich) 25 (heaps, Icl)

(heapy, Ich) fe) sielses, , (heaps, Ich)

,where v =10

while statement:

(heapy, Ich) if(e){s while(e) s} (heaps, Ich)

(heapa, Ich) _while(e)s (heapa, Ich)

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 8 /22

Rule for Java Method Call

(heaps, Ich) == (heapa, Ich)

(heapy, Ich) % (heaps, Icl3)

(heappy1, Iclyy1) Sy (heappy2, Iclyi2)

(heappy2, mlcl) 22% (heapns, micl)

e.m(e1,...,en)>mlcl’(\result)

(heapnys, Iclyi2)

where body is the body of the method m in the object heapp2(v), and
mlcl = {this — v, paramy — v1, ..., param, — v, } where
paramy, . .., param, are the names of the parameters of m

(heap1 s /C/1)

The value \result is written by the return statement using the rule

(heaps, Ich) == (heapa, Ich)

(heapy, Ich) ™™ (heapy, Ich & {\result — v})

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 9 /22

Example: Method Call

public class C
public int factorial(int n) {

if (n == 0)
return 1;
else

return n * this. factorial(n-1);

}}

Start state: (h, /), where [(this) is an object of class C

We show
(h, /) this.factorial(0)>1 (h, /)

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 10 / 22

Example: Method Call

Let m/ = {this — I(this), n — 0}. Then,

(h, ml) =% (h, ml)
(h, ml) 2% (h, ml) (h, ml) 2215 (h, ml)
(h, ml) "==21, (b mi) (h, ml) €4 Loy (h mi @ {\result — 1})

(h, m/) if (n==0) return 1;else... (h, ml & {\resu/t N 1})

(h, 1) =R ()

(h, 1) 22 (h, 1)

(h, m/) if (n==0) return 1;else... (h, m/)
(h, /) =Eeer2OL, (b,)

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 11 /22

Example: Method Call (general proof)
We can even show by induction that for m/(n) > 0

(h, ml) 2£0==9 -\ (p m[@ {\result — (mi(n)! mod 232)})
Proof by induction over m/(n). Base case m/(n) = 0 was already shown.
Assume n > 0. Induction hypothesis: if m/'(n) = ml(n) — 1, then

(h, ml") i (==0) ..., (h, mI" @ {\result — ((ml(n) —1)! mod 2%2)}) (IH)

We first show that

(h, m/) this.factorial(n—1)>(mi(n)—1)! mod 232 (h

, ml)
Proof tree:

(h, ml) =) (b mi)

) (h, ml) 2215 (h, ml) (IH)

(h, ml) 2=2m)=1 p i)
(h, m/) this.factorial(n—1)>(ml(n)—1)! mod 232 (h, m/) (*)

(h, ml) thisl>m/(this) (h

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 12 / 22

Example: Method Call (general proof, cont.)

Now we can prove the return statement correct.

n>ml(n)

(h,ml) ——"25 (h,ml) (%)
(h, m/) nxthis.factorial(n—1)>(ml(n)! mod 232) (h, m/)

(h, ml) return nxthis.factorial(n—1); (h, ml & {\result N (m/(n)' mod 232}) (**)
Finally, prove the whole method body.

(h, ml) =) (b mi) (h, ml) ~2=% (h, mi) (0)
(h, ml) 2==%9, (h ml)

(h, ml) <£==9) -\ (b mi @ {\ result — 1})

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 13 / 22

Creating Objects

Creating an Object is always combined with the call of a constructor:

heap; = heap U {na — (Type, (0,...,0))
(heaps, Icl) na.<init>(er,.en)ov (heap’, Icl")

(heap, Icl) new Type(ei,....en)>na (heap', Icl")

, where na ¢ dom heap

Here <init> stands for the internal name of the constructor.

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 14 / 22

Exceptions and Control Flow

To handle exceptions a few changes are necessary:

@ We extend the state by a flow component:
Q = Flow x Heap x Local

@ Flow ::= Norm|Ret|Exc{{Address))

We use the identifiers flow € Flow, heap € Heap and Icl € Local in the
rules. Also g € Q stands for an arbitrary state.

The following axioms state that in an abnormal state statements are not
executed:

(flow, heap, Icl) 2% (flow, heap, Icl), where flow # Norm

(flow, heap, Icl) = (flow, heap, Icl), where flow # Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 15 / 22

Expressions With Exceptions

The previously defined rules are valid only if the left-hand-state is not an
exception state.

e1bvy D>Vvo /

q q q

61*62I>(V1-V2) mod 232 q/

(Norm, heap, Icl)

(Norm, heap, Icl)

(Norm, heap, Icl) =%+ q q -2+ ¢’

(Norm, heap, Icl) 2252 o/
(Norm, heap, Icl) =% q g -+ q'

(Norm, heap, lcl) ~(e)sielsesz , o

, where v # 0

Note that exceptions are propagated using the axiom from the last slide.

(flow, heap, Icl) —==% (flow, heap, Icl), where flow # Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 16 / 22

Throwing Exceptions

(Norm, heap, Icl) =% (Norm, heap', Icl’)

(Norm, heap, lcl) W ety (Exc(v), heap!, Icl’)

What happens if in a field access the object is null?

(Norm, heap, Icl) <22 ¢
s throw new NullPointerException() .

o ,Where v is some arbitrary value
(Norm, heap, Icl) =Y g

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 17 / 22

Complete Rules for throw

(Norm, heap, Icl) —=% (Norm, heap', Icl’)

throw e;

, where v # 0
(Norm, heap, lcl) == (Exc(v), heap’, Icl")

el>0

(Norm, heap, Icl) === ¢

; throw new NullPointerException() q//

7

(Norm, heap, lcl) —throwe:, o

(Norm, heap, lcl) =25 (flow’, heap', Icl”)

(Norm, heap, Icl) ey (flow!, heap', Icl’)

, where flow’ # Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 18 / 22

Catching Exceptions

Catching an exception:

(Norm, heap, Icl) =15 (Exc(v), heap', Icl")
(Norm, heap', Icl" U {ex — v}) -2 q"
(Norm, heap, /C/) try sicatch(Type ex)s, q//

, where v is an instance of Type

No exception caught:

where flow' is not
(Norm, h, 1) =% (flow’, h', I") Exc(v) or v is

(Norm, h, [) —rysicateh(Type e)s2, o,/ v /) * not an instance of

Type

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 19 / 22

Return Statement

Return statement stores the value and signals the Ret in flow component:

(Norm, heap, Icl) —=% (Norm, heap', Icl’)

return e

(Norm, heap, lcl) *2Y (Ret, heap’, Icl’ & {\result — v})

But evaluating e can also throw exception:

(Norm, heap, Icl) —=% (flow, heap’, Icl")
(Norm, heap, Icl) "™ (flow, heap', Icl")

, where flow # Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 20 / 22

Method Call (Normal Case)

(Norm, hy, i) =% @»

>

en>
qn+1 —nﬁ% (fn+27 hn+2a /n+2)

(fas2, Bngo, ml) 22 (Ret, hpis, ml')

(Norm, hy, /1) e.m(ey,...,en)>ml’(\result) (Norm, heapp3, /n+2)

)

where paramy, ..., param, are the names of the parameters and body is
the body of the method m in the object heap,i2(v), and
ml = {this — v, paramy — vi, ..., param, — v, }

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 21 /22

Method Call With Exception

(Norm, hy, i) =% @»

>

en>
qn+1 —nﬁ% (fn+27 hn+2a /n+2)

(frs2, hnso, ml) =229 (Exc(ve), hnis, ml')

(Norm, h]_, ll) e.m(e1,4..,en)l>ml’(\result) (EXC(Ve), heapn+3, /n+2)’

where paramy, ..., param, are the names of the parameters and body is
the body of the method m in the object heap,i2(v), and
ml = {this — v, paramy — vi, ..., param, — v, }

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 22 /22

