
Formal Methods for Java
Lecture 3: Operational Semantics (Part 2)

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

October 30, 2012

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 1 / 22

Operational Semantics for Java

Idea: define transition system for Java

Definition (Transition System)

A transition system (TS) is a structure TS = (Q,Act,→), where

Q is a set of states,

Act a set of actions,

→⊆ Q × Act × Q the transition relation.

Q reflects the current dynamic state (heap and local variables).

Act is the executed code.

Idea from: D. v. Oheimb, T. Nipkow, Machine-checking the Java
specification: Proving type-safety, 1999

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 2 / 22

State of a Java Program

The state of a Java program gives valuations local and global (heap)
variables.

Q = Heap × Local

Heap = Address → Class × seq Value

Local = Identifier → Value

Value = Z,Address ⊆ Z
A state is denoted as (heap, lcl), where heap : Heap and lcl : Local .

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 3 / 22

Actions of a Java Program

An action of a Java Program is either

the evaluation of an expression e to a value v , denoted as e . v , or

a Java statement, or

a Java code block.

Note that expressions with side-effects can modify the current state

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 4 / 22

Rules for Java Expressions

axiom for evaluating local variables:

(heap, lcl)
x.lcl(x)−−−−−→ (heap, lcl)

axiom for evaluating constants:

(heap, lcl) c.c−−−→ (heap, lcl)

rule for field access:

(heap, lcl) e.v−−−→ (heap′, lcl ′)

(heap, lcl)
e.fld.heap′(v)(idx)−−−−−−−−−−−−→ (heap′, lcl ′)

,
where idx is the index
of the field fld in the
object heap′(v)

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 5 / 22

Rules for Assignment Expressions

rule for assignment to local:

(heap, lcl) e.v−−−→ (heap′, lcl ′)

(heap, lcl) x=e.v−−−−−→ (heap′, lcl ′ ⊕ {x 7→ v})

rule for assignment to field:

(heap1, lcl1) e1.v1−−−−→ (heap2, lcl2)
(heap2, lcl2) e2.v2−−−−→ (heap3, lcl3)

(heap1, lcl1) e1.fld=e2.v2−−−−−−−−→ (heap4, lcl3)
,

where heap4 = heap3 ⊕ {(v1, idx) 7→ v2} and idx is the index of the field
fld in the object at heap3(v1).

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 6 / 22

Rules for Java Statements

expression statement (assignment or method call):

(heap, lcl) e.v−−−→ (heap′, lcl ′)

(heap, lcl) e;−−→ (heap′, lcl ′)

sequence of statements:

(heap1, lcl1) s1−−→ (heap2, lcl2) (heap2, lcl2) s2−−→ (heap3, lcl3)

(heap1, lcl1) s1 s2−−−→ (heap3, lcl3)

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 7 / 22

Rules for Java Statements

if statement:

(heap1, lcl1) e.v−−−→ (heap2, lcl2) (heap2, lcl2) s1−−→ (heap3, lcl3)

(heap1, lcl1)
if(e) s1elses2−−−−−−−−→ (heap3, lcl3)

,where v 6= 0

(heap1, lcl1) e.v−−−→ (heap2, lcl2) (heap2, lcl2) s2−−→ (heap3, lcl3)

(heap1, lcl1)
if(e) s1elses2−−−−−−−−→ (heap3, lcl3)

,where v = 0

while statement:

(heap1, lcl1)
if(e){s while(e) s}−−−−−−−−−−−−→ (heap2, lcl2)

(heap1, lcl1)
while(e) s−−−−−−→ (heap2, lcl2)

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 8 / 22

Rule for Java Method Call

(heap1, lcl1) e.v−−−→ (heap2, lcl2)
(heap2, lcl2) e1.v1−−−−→ (heap3, lcl3)

...
(heapn+1, lcln+1) en.vn−−−−→ (heapn+2, lcln+2)

(heapn+2,mlcl) body−−−−→ (heapn+3,mlcl ′)

(heap1, lcl1)
e.m(e1,...,en).mlcl ′(\result)−−−−−−−−−−−−−−−−−→ (heapn+3, lcln+2)

,

where body is the body of the method m in the object heapn+2(v), and
mlcl = {this 7→ v , param1 7→ v1, . . . , paramn 7→ vn} where
param1, . . . , paramn are the names of the parameters of m

The value \result is written by the return statement using the rule

(heap1, lcl1) e.v−−−→ (heap2, lcl2)

(heap1, lcl1) return e−−−−−→ (heap2, lcl2 ⊕ {\result 7→ v})

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 9 / 22

Example: Method Call

public class C
public int factorial(int n) {
if (n == 0)

return 1;
else

return n * this.factorial(n-1);
} }

Start state: (h, l), where l(this) is an object of class C

We show
(h, l)

this.factorial(0).1−−−−−−−−−−−→ (h, l)

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 10 / 22

Example: Method Call

Let ml = {this 7→ l(this), n 7→ 0}. Then,

(h,ml) n.0−−−→ (h,ml)

(h,ml) 0.0−−−→ (h,ml)

(h,ml) n==0.1−−−−−−→ (h,ml)

(h,ml) 1.1−−−→ (h,ml)

(h,ml) return 1;−−−−−−→ (h,ml ⊕ {\result 7→ 1})
(h,ml)

if (n==0) return 1;else...−−−−−−−−−−−−−−−−→ (h,ml ⊕ {\result 7→ 1})

(h, l)
this.l(this)−−−−−−−→ (h, l)

(h, l) 0.0−−−→ (h, l)

(h,ml)
if (n==0) return 1;else...−−−−−−−−−−−−−−−−→ (h,ml)

(h, l)
this.factorial(0).1−−−−−−−−−−−→ (h, l)

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 11 / 22

Example: Method Call (general proof)

We can even show by induction that for ml(n) ≥ 0

(h,ml)
if (n==0) ...−−−−−−−−−→ (h,ml ⊕ {\result 7→ (ml(n)! mod 232)})

Proof by induction over ml(n). Base case ml(n) = 0 was already shown.
Assume n > 0. Induction hypothesis: if ml ′(n) = ml(n)− 1, then

(h,ml ′)
if (n==0) ...−−−−−−−−−→ (h,ml ′ ⊕ {\result 7→ ((ml(n)− 1)! mod 232)}) (IH)

We first show that

(h,ml)
this.factorial(n−1).(ml(n)−1)! mod 232−−−−−−−−−−−−−−−−−−−−−−−−→ (h,ml)

Proof tree:

(h,ml)
this.ml(this)−−−−−−−−→ (h,ml)

(h,ml)
n.ml(n)−−−−−−→ (h,ml)

(h,ml) 1.1−−−→ (h,ml)

(h,ml)
n−1.ml(n)−1−−−−−−−−−→ (h,ml)

(IH)

(h,ml)
this.factorial(n−1).(ml(n)−1)! mod 232−−−−−−−−−−−−−−−−−−−−−−−−→ (h,ml) (∗)

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 12 / 22

Example: Method Call (general proof, cont.)

Now we can prove the return statement correct.

(h,ml)
n.ml(n)−−−−−−→ (h,ml) (∗)

(h,ml)
n∗this.factorial(n−1).(ml(n)! mod 232)−−−−−−−−−−−−−−−−−−−−−−−−→ (h,ml)

(h,ml)
return n∗this.factorial(n−1);−−−−−−−−−−−−−−−−−−→ (h,ml ⊕ {\result 7→ (ml(n)! mod 232}) (∗∗)

Finally, prove the whole method body.

(h,ml)
n.ml(n)−−−−−−→ (h,ml) (h,ml) 0.0−−−→ (h,ml)

(h,ml) n==0.0−−−−−−→ (h,ml)
(∗∗)

(h,ml)
if (n==0) ...−−−−−−−−−→ (h,ml ⊕ {\result 7→ 1})

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 13 / 22

Creating Objects

Creating an Object is always combined with the call of a constructor:

heap1 = heap ∪ {na 7→ (Type, 〈0, . . . , 0〉)
(heap1, lcl)

na.<init>(e1,...,en).v−−−−−−−−−−−−−−→ (heap′, lcl ′)

(heap, lcl)
new Type(e1,...,en).na−−−−−−−−−−−−−−→ (heap′, lcl ′)

, where na /∈ dom heap

Here <init> stands for the internal name of the constructor.

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 14 / 22

Exceptions and Control Flow

To handle exceptions a few changes are necessary:

We extend the state by a flow component:
Q = Flow × Heap × Local

Flow ::= Norm|Ret|Exc〈〈Address〉〉

We use the identifiers flow ∈ Flow , heap ∈ Heap and lcl ∈ Local in the
rules. Also q ∈ Q stands for an arbitrary state.
The following axioms state that in an abnormal state statements are not
executed:

(flow , heap, lcl) e.v−−−→ (flow , heap, lcl), where flow 6= Norm

(flow , heap, lcl) s−→ (flow , heap, lcl), where flow 6= Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 15 / 22

Expressions With Exceptions

The previously defined rules are valid only if the left-hand-state is not an
exception state.

(Norm, heap, lcl) e1.v1−−−−→ q q e2.v2−−−−→ q′

(Norm, heap, lcl)
e1*e2.(v1·v2) mod 232−−−−−−−−−−−−−−→ q′

(Norm, heap, lcl) st1−−→ q q st2−−→ q′

(Norm, heap, lcl) st1;st2−−−−→ q′

(Norm, heap, lcl) e.v−−−→ q q s1−−→ q′

(Norm, heap, lcl)
if(e) s1elses2−−−−−−−−→ q′

, where v 6= 0

Note that exceptions are propagated using the axiom from the last slide.

(flow , heap, lcl) e.v−−−→ (flow , heap, lcl), where flow 6= Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 16 / 22

Throwing Exceptions

(Norm, heap, lcl) e.v−−−→ (Norm, heap′, lcl ′)

(Norm, heap, lcl) throw e;−−−−−→ (Exc(v), heap′, lcl ′)

What happens if in a field access the object is null?

(Norm, heap, lcl) e.0−−−→ q′

q′
throw new NullPointerException()−−−−−−−−−−−−−−−−−−−−→ q′′

(Norm, heap, lcl) e.fld.v−−−−−→ q′′
,where v is some arbitrary value

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 17 / 22

Complete Rules for throw

(Norm, heap, lcl) e.v−−−→ (Norm, heap′, lcl ′)

(Norm, heap, lcl) throw e;−−−−−→ (Exc(v), heap′, lcl ′)
, where v 6= 0

(Norm, heap, lcl) e.0−−−→ q′

q′
throw new NullPointerException()−−−−−−−−−−−−−−−−−−−−→ q′′

(Norm, heap, lcl) throw e;−−−−−→ q′′

(Norm, heap, lcl) e.v−−−→ (flow ′, heap′, lcl ′)

(Norm, heap, lcl) throw e;−−−−−→ (flow ′, heap′, lcl ′)
, where flow ′ 6= Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 18 / 22

Catching Exceptions

Catching an exception:

(Norm, heap, lcl) s1−−→ (Exc(v), heap′, lcl ′)
(Norm, heap′, lcl ′ ∪ {ex 7→ v}) s2−−→ q′′

(Norm, heap, lcl)
try s1catch(Type ex)s2−−−−−−−−−−−−−−→ q′′

, where v is an instance of Type

No exception caught:

(Norm, h, l) s1−−→ (flow ′, h′, l ′)

(Norm, h, l)
try s1catch(Type ex)s2−−−−−−−−−−−−−−→ (flow ′, h′, l ′)

,

where flow’ is not
Exc(v) or v is
not an instance of
Type

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 19 / 22

Return Statement

Return statement stores the value and signals the Ret in flow component:

(Norm, heap, lcl) e.v−−−→ (Norm, heap′, lcl ′)

(Norm, heap, lcl) return e−−−−−→ (Ret, heap′, lcl ′ ⊕ {\result 7→ v})

But evaluating e can also throw exception:

(Norm, heap, lcl) e.v−−−→ (flow , heap′, lcl ′)

(Norm, heap, lcl) return e−−−−−→ (flow , heap′, lcl ′)
, where flow 6= Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 20 / 22

Method Call (Normal Case)

(Norm, h1, l1) e.v−−−→ q2

q2
e1.v1−−−−→ q3

...
qn+1

en.vn−−−−→ (fn+2, hn+2, ln+2)

(fn+2, hn+2,ml) body−−−−→ (Ret, hn+3,ml ′)

(Norm, h1, l1)
e.m(e1,...,en).ml ′(\result)−−−−−−−−−−−−−−−−→ (Norm, heapn+3, ln+2)

,

where param1, . . . , paramn are the names of the parameters and body is
the body of the method m in the object heapn+2(v), and
ml = {this 7→ v , param1 7→ v1, . . . , paramn 7→ vn}

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 21 / 22

Method Call With Exception

(Norm, h1, l1) e.v−−−→ q2

q2
e1.v1−−−−→ q3

...
qn+1

en.vn−−−−→ (fn+2, hn+2, ln+2)

(fn+2, hn+2,ml) body−−−−→ (Exc(ve), hn+3,ml ′)

(Norm, h1, l1)
e.m(e1,...,en).ml ′(\result)−−−−−−−−−−−−−−−−→ (Exc(ve), heapn+3, ln+2)

,

where param1, . . . , paramn are the names of the parameters and body is
the body of the method m in the object heapn+2(v), and
ml = {this 7→ v , param1 7→ v1, . . . , paramn 7→ vn}

Jochen Hoenicke (Software Engineering) Formal Methods for Java October 30, 2012 22 / 22

