
Formal Methods for Java
Lecture 18: Verification of a Linked List in Jahob

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

December 21, 2012

Jochen Hoenicke (Software Engineering) FM4J December 21, 2012 1 / 7



Example: Doubly Linked List

Consider an implementation of a cyclic list with prev and next pointer:
class Node {

public Node next;
public Node prev;
public Object data;

}

class DoublyLinkedList
{

private Node first;
private Node last;

Jochen Hoenicke (Software Engineering) FM4J December 21, 2012 2 / 7



Defining Interfaces using Specification Variables

class DoublyLinkedListSet {
private Node first;
private Node last;
/*: public specvar nodes :: objset;

public specvar content :: objset;
...

How can we define the set of nodes and data values in the linked list?

content == first.next*.data

Jahob supports reflexive transitive closure but with a different syntax:

Definition (rtrancl pt)

Let R : α⇒ α⇒ bool be a relation on some type α, then rtrancl pt R is
the reflexive transitive closure of R:
rtrancl pt R x y holds if there is a sequence x = x0, . . . , xn = y , n ≥ 0
such that R xi xi+1 holds for 0 ≤ i < n.

Jochen Hoenicke (Software Engineering) FM4J December 21, 2012 3 / 7



Using the rtrancl pt predicate

Definition (rtrancl pt)

Let R : α⇒ α⇒ bool be a relation on some type α, then rtrancl pt R is
the reflexive transitive closure of R:
rtrancl pt R x y holds if there is a sequence x = x0, . . . , xn = y , n ≥ 0
such that R xi xi+1 holds for 0 ≤ i < n.

Define the successor relation using the field Node.next:

R == (% x y. x..Node.next = y) Note: % is λ-abstraction.
The set of all nodes on the list is:

nodes == {n. rtrancl_pt (% x y. x..Node.next = y) first n}

and the set of all values on the list is:

content == {d. EX n. n: nodes & n..Node.data = d }

Jochen Hoenicke (Software Engineering) FM4J December 21, 2012 4 / 7



Alternative Syntax Using Sets of Tuples

Definition (rtrancl pt)

Let R : α ∗ α set be a relation on some type α (as set of tuples),
then R∗ is the reflexive transitive closure of R:
(x , y) ∈ R∗ holds if there is a sequence x = x0, . . . , xn = y , n ≥ 0 such
that (xi , xi+1) ∈ R holds for 0 ≤ i < n.

Define the successor relation using the field Node.next:

R == { (x,y) . x..Node.next = y}

The set of all nodes on the list is:

nodes == {n. (first, n) : {(x,y). x..Node.next = y}^*}

and the set of all values on the list is:

content == {d. EX n. n: nodes & n..Node.data = d }

Jochen Hoenicke (Software Engineering) FM4J December 21, 2012 5 / 7



Cyclic Versus Null-Terminated Lists

The decision procedure in Jahob works best with null-terminated lists.
Introduce a second linking structure on top of the existing list as ghost
variables:
class Node {

public Node next;
public Node prev;
public Object data;

}

class DoublyLinkedList
{

private Node first;
private Node last;
/*:
specvar nodes :: objset;
vardefs "nodes == {x. x ~= null &

(first,x) : {(v,w). v..next =w}^*}";

class Node {
public Node next;
public Node prev;
public Object data;
//: public ghost specvar next1 :: obj = "null";

}

class DoublyLinkedList
{

private Node first;
private Node last;
/*:
specvar nodes :: objset;
vardefs "nodes == {x. x ~= null &

(first,x) : {(v,w). v..next1=w}^*}";

Jochen Hoenicke (Software Engineering) FM4J December 21, 2012 6 / 7



Relation of the Linking Structures

We introduce two axioms to relate next, prev with the new field next1:
class DoublyLinkedList
{
...
/*:
invariant nextDef: "ALL x y. x..next = y -->

((x = last --> y = first) &
(x : nodes & x ~= last --> y = x..next1))"

invariant prevDef: "ALL x y. x..prev = y -->
((x = first & first ~= null --> y = last) &
(x : nodes & x ~= first --> y..next1 = x))"

*/

Jochen Hoenicke (Software Engineering) FM4J December 21, 2012 7 / 7


