Formal Methods for Java
Lecture 18: Verification of a Linked List in Jahob

Jochen Hoenicke

g Software Engineering
-gg— Albert-Ludwigs-University Freiburg

December 21, 2012

Jochen Hoenicke (Software Engineering) FM4J December 21, 2012

1/7



Example: Doubly Linked List

Consider an implementation of a cyclic list with prev and next pointer:
class Node {

public Node nezxt;

public Node prev;

public Object data;
}

class DoublyLinkedList
{
private Node first;
private Node last;

Jochen Hoenicke (Software Engineering) FM4J December 21, 2012 2/7



Defining Interfaces using Specification Variables

class DoublyLinkedListSet {
private Node first;
private Node last;
/*: public specvar nodes :: objset;
public specvar content :: objset;

How can we define the set of nodes and data values in the linked list?
content == first.next*.data

Jahob supports reflexive transitive closure but with a different syntax:

Definition (rtrancl_pt)

Let R: a = a = bool be a relation on some type «, then rtrancl_pt R is
the reflexive transitive closure of R:

rtrancl_pt R x y holds if there is a sequence x = xg,...,xp, =y, n >0
such that R x; xj+1 holds for 0 </ < n.

Jochen Hoenicke (Software Engineering) FM4J December 21, 2012 3/7



Using the rtrancl_pt predicate

Definition (rtrancl_pt)

Let R: a = a = bool be a relation on some type «, then rtrancl_pt R is
the reflexive transitive closure of R:

rtrancl_pt R x y holds if there is a sequence x = xg,...,xp, =y, n >0
such that R x; xj+1 holds for 0 </ < n.

Define the successor relation using the field vode. next:

R==(h zy. z. Node.next = y) Note: % is A-abstraction.
The set of all nodes on the list is:

nodes == {n. rtrancl_pt (4 z y. z..Node.next = y) first n}

and the set of all values on the list is:
content == {d. EX n. n: nodes & n..Node.data

d}

Jochen Hoenicke (Software Engineering) FM4J December 21, 2012 4/7



Alternative Syntax Using Sets of Tuples

Definition (rtrancl_pt)

Let R:axa set be a relation on some type « (as set of tuples),
then R* is the reflexive transitive closure of R:

(x,y) € R* holds if there is a sequence x = xp,...,Xxp =y, n > 0 such
that (xj, xi+1) € R holds for 0 </ < n.

Define the successor relation using the field Node. next:
R =={ (z,y) . z..Node.next = y}

The set of all nodes on the list is:
nodes == {n. (first, n) : {(z,y). z..Node.next = y} *}

and the set of all values on the list is:
content == {d. EX n. n: nodes & n..Node.data = d }

Jochen Hoenicke (Software Engineering) FM4J December 21, 2012 5/7



Cyclic Versus Null-Terminated Lists

The decision procedure in Jahob works best with null-terminated lists.

Introduce a second linking structure on top of the existing list as ghost
variables:
class Node {

public Node next;

public Node prewv;

public Object data;

}

class DoublyLinkedList
{
private Node first;
private Node last;

/*:
specvar nodes :: objset;
vardefs "nodes == {x. z "= null &

(first,z) : {(v,w). v..next =w} *}";
class Node {
public Node next;
public Node prev;
public Object data;
//: public ghost specvar nextl :: obj = "null";
Jochen Hoenicke (Software Engineering) FM4J December 21, 2012

6/7



Relation of the Linking Structures

We introduce two axioms to relate next, prev with the new field nextz:
class DoublyLinkedList

{

/*:

tnvariant nextDef: "ALL = y. x..next =y ——>
((z = last -=> y = first) &
(z : nodes & z "= last --> y = z..next1))"

tnvariant prevDef: "ALL = y. x..prev =y -->
((z = first & first "= null --> y = last) &
(z : nodes & z "= first --> y..nextl = z))"

*/

Jochen Hoenicke (Software Engineering) FM4J

December 21, 2012



