

J. Hoenicke J. Christ 15.01.2013 Hand in solutions via email to christj@informatik.uni-freiburg.de until 22.01.2013 (only Java sources and PDFs accepted). Paper submissions possible after the lecture.

Tutorials for "Formal methods for Java" Exercise sheet 10

Exercise 1: Jahob Integrated Proof Language Consider the following class:¹ class Ex11 { /*: public qhost specvar P :: "obj => bool"; public ghost specuar Q :: "obj => bool"; */ public static void test() /*: requires "ALL x. $P x \longrightarrow Q x$ " ensures "ALL u v. P u \mathcal{C} v=u --> Q v" */ { { //: pickAny u::obj, v::obj suchThat cond: "P u & v=u"; //: noteThat p1: "P v" from cond; //: noteThat p2: "Q v" from Precondition forSuch u, v; } } }

- (a) Which formula does this class try to prove?
- (b) Explain why the proof does not succeed.
- (c) Fix the proof.

¹This is a slightly modified version of a test class that comes with the Jahob distribution.

Exercise 2: Logical operators

From the logical operators false, \rightarrow and \forall , all other logical operators are definable. For example $\neg F$ can be defined as $\neg F := F \rightarrow$ false. Find formulas defining

- (a) $\neg F$
- (b) true,
- (c) $F \lor G$
- (d) $F \wedge G$
- (e) $\exists x F$

in terms of false, \rightarrow and \forall . Prove the validity of these definitions in sequent calculus, e.g. $\neg F \Longrightarrow F \rightarrow \mathsf{false}$ and $F \rightarrow \mathsf{false} \Longrightarrow \neg F$.