
Formal Methods for Java
Lecture 24: Proving Loops with KeY

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

January 29, 2013

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 29, 2013 1 / 16



The -Project

Theorem Prover

Developed at University of Karlsruhe

http://www.key-project.org/.

Theory specialized for Java(Card).

Can generate proof-obligations from JML specification.

Underlying theory: Sequent Calculus + Dynamic Logic

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 29, 2013 2 / 16

http://www.key-project.org/


Rigid vs.Non-Rigid Functions vs. Variables

KeY distinguishes the following symbols:

Rigid Functions: These are functions that do not depend on the
current state of the program.

+,−, ∗ : integer × integers → integer (mathematical operations)
0, 1, . . . : integer , TRUE ,FALSE : boolean (mathematical constants)

Non-Rigid Functions: These are functions that depend on current
state.

·[·] : >× int → > (array access)
.next : > → > if next is a field of a class.
i, j : > if i, j are program variables.

Variables: These are logical variables that can be quantified.
Variables may not appear in programs.

x , y , z

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 29, 2013 3 / 16



Example

∀x .i = x → 〈{while(i > 0){i = i− 1; }}〉i = 0

0,1,− are rigid functions.

> is a rigid relation.

i is a non-rigid function.

x is a logical variable.

Quantification over i is not allowed and x must not appear in a program.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 29, 2013 4 / 16



Builtin Rigid Functions

+,−,∗,/,%,jdiv ,jmod : operations on integer .

. . . ,−1, 0, 1, . . ., TRUE ,FALSE , null : constants.

(A) for any type A: cast function.

A :: get gives the n-th object of type A.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 29, 2013 5 / 16



Updates in KeY

The formula 〈i = t;α〉φ is rewritten to

{i := t}〈α〉φ

Formula {i := t}φ is true, iff
φ holds in a state, where the program variable i has the value denoted by
the term t.
Here:

i is a program variable (non-rigid function).

t is a term (may contain logical variables).

φ a formula

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 29, 2013 6 / 16



Simplifying Updates

If φ contains no modalities, then {x := t}φ is rewritten to φ[t/x ].

A double update {x1 := t1, x2 := t2}{x1 := t ′1, x3 := t ′3}φ is automatically
rewritten to

{x1 := t ′1[t1/x1, t2/x2], x2 := t2, x3 := t ′3[t1/x1, t2/x2]}φ

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 29, 2013 7 / 16



Example: 〈{i = j; j = i+ 1}〉i = j

〈{i = j; j = i + 1}〉i = j

≡{i := j}{j := i+1}i = j

≡{i := j, j := j + 1}i = j

≡j = j + 1

≡false
or alternatively

〈{i = j; j = i + 1}〉i = j

≡{i := j}{j := i+1}i = j

≡{i := j}i = i + 1

≡j = j + 1

≡false

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 29, 2013 8 / 16



Rules for Java Dynamic Logic

〈{i = j; ...}〉φ is rewritten to:
{i := j}〈{...}〉φ.

〈{i = j + k; ...}〉φ is rewritten to:
{i := j + k}〈{...}〉φ.

〈{i = j + +; ...}〉φ is rewritten to:
〈{int j 0; j 0 = j; j = j + 1; i = j 0; ...}〉φ.

〈{int k; ...}〉φ is rewritten to:
〈{...}〉φ and k is added as new program variable.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 29, 2013 9 / 16



Rules for Java Dynamic Logic (if statements)

〈{if (i < j)s1 else s2; ...}〉φ is rewritten to:
\if i < j \then 〈{s1}; ...〉φ \else 〈{s2}; ...〉φ.

\if . . . \then . . . \else . . . is a logical operator with the following
sequent calculus rules:

Γ, φ, ψ1 =⇒ ∆ Γ, ψ2 =⇒ φ,∆

Γ, \if φ \then ψ1 \else ψ2 =⇒ ∆

Γ, φ =⇒ ψ1,∆ Γ =⇒ φ, ψ2,∆

Γ =⇒ \if φ \then ψ1 \else ψ2,∆

The rule in KeY is really

Γ[ψ1], φ =⇒ ∆[ψ1] Γ[ψ2] =⇒ φ,∆[ψ2]

Γ[\if φ \then ψ1 \else ψ2] =⇒ ∆[\if φ \then ψ1 \else ψ2],

i. e., the if-then-else can be replaced in arbitrary sub-formulas.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 29, 2013 10 / 16



Demo

Which formula is equivalent to

j = 3 ∧ k = 5→ 〈i = j + k ; if (i < j) k = i ; else k = j ; 〉p(i , j , k) ?
Answer: j = 3 ∧ k = 5→ p(8, 3, 3)

〈i = j + k ; if (i < j) k = i ; else k = j ; 〉p(i , j , k) ?
Answer: \if k < 0 \then p(j + k , j , j + k) \else p(j + k, j , j)

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 29, 2013 11 / 16



Proving Programs with Loops

Given a simple loop:

〈{while(n > 0) n--; }〉n = 0

How can we prove that the loop terminates for all n ≥ 0 and that n = 0
holds in the final state?

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 29, 2013 12 / 16



Method (1): Induction

To prove a property φ(x) for all x ≥ 0 we can use induction:

Show φ(0).

Show φ(x) =⇒ φ(x + 1) for all x ≥ 0.

This proves that ∀x (x ≥ 0→ φ(x)) holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 29, 2013 13 / 16



The rule int induction

The KeY-System has the rule int induction

Γ =⇒ ∆, φ(0) Γ =⇒ ∆, ∀X (X ≥ 0 ∧ φ(X )→ φ(X + 1))
Γ,∀X (X ≥ 0→ φ(X )) =⇒ ∆

Γ =⇒ ∆

The three goals are:

Base Case: =⇒ φ(0)

Step Case: =⇒ ∀X (X ≥ 0 ∧ φ(X )→ φ(X + 1))

Use Case: ∀X (X ≥ 0→ φ(X )) =⇒

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 29, 2013 14 / 16



Method(2): Loop Invariants with Variants

Induction proofs are very difficult to perform for a loop

〈{while(COND)BODY ; . . .}〉φ

The KeY-system supports special rules for while loops using invariants and
variants.

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 29, 2013 15 / 16



The rule while invariant with variant dec

The rule while invariant with variant dec takes an invariant inv , a modifies
set {m1, . . . ,mk} and a variant v . The following cases must be proven.

Initially Valid: =⇒ inv ∧ v ≥ 0
Body Preserves Invariant:

=⇒ {m1 := x1‖ . . . ‖mk := xk}(inv ∧ [{b = COND; }]b = true

→ 〈BODY 〉inv

Use Case:

=⇒ {m1 := x1‖ . . . ‖mk := xk}(inv ∧ [{b = COND; }]b = false

→ 〈. . .〉φ

Termination:

=⇒ {m1 := x1‖ . . . ‖mk := xk}(inv ∧ v ≥ 0 ∧ [{b = COND; }]b = true

→ {old := v}〈BODY 〉v ≤ old ∧ v ≥ 0

Jochen Hoenicke (Software Engineering) Formal Methods for Java January 29, 2013 16 / 16


