
Formal Methods for Java
Lecture 11: ESC/Java

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

November 27, 2012

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 27, 2012 1 / 21



Runtime vs. Static Checking

Runtime Checking

finds bugs at run-time,

tests for violation during execution,

can check most of the JML,

is done by jmlrac.

Static Checking

finds bugs at compile-time,

proves that there is no violation,

can check only parts of the JML,

is done by ESC/Java.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 27, 2012 2 / 21



ESC/Java 2

Developed by the DEC Software Research Center (now HP Research),

Extended by David Cok and Joe Kiniry (Kind Software)

Proves correctness of specification,

Is neither sound nor complete (but this will improve),

Is useful to find bugs.

Homepage:
http://kindsoftware.com/products/opensource/ESCJava2

Download link: ESCJava2.0.5

Works with Java-1.5.0 (1.6.0 does not work).

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 27, 2012 3 / 21

http://kindsoftware.com/products/opensource/ESCJava2
http://kindsoftware.com/products/opensource/ESCJava2/download.html
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase5-419410.html#jre-1.5.0_22-oth-JPR


Example

Consider the following code:
Object[] a;
void m(int i) {
a[i] = "Hello";

}

Is a a null-pointer? (NullPointerException)

Is i nonnegative? (ArrayIndexOutOfBoundsException)

Is i smaller than the array length?
(ArrayIndexOutOfBoundsException)

Is a an array of Object or String?
(ArrayStoreException)

ESC/Java warns about these issues. (Demo)

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 27, 2012 4 / 21



ESC/Java and run-time exceptions

ESC/Java checks that no undeclared run-time exceptions occur.

NullPointerException

ClassCastException

ArrayIndexOutOfBoundsException

ArrayStoreException

ArithmeticException

NegativeArraySizeException

other run-time exception, e.g., when calling library functions.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 27, 2012 5 / 21



ESC/Java and specification

ESC/Java also checks the JML specification:

ensures in method contract,

requires in called methods,

assert statements,

signals clause,

invariant (loop invariant and class invariant).

ESC/Java assumes that some formulae hold:

requires in method contract,

ensures in called methods,

assume statements,

invariant (loop invariant and class invariant).

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 27, 2012 6 / 21



NullPointerException

public void put(Object o) {
int hash = o.hashCode();
...

}

results in Possible null dereference.

Solutions:

Declare o as non_null.

Add o != null to precondition.

Add throws NullPointerException.
(Also add signals (NullPointerException) o == null)

Add Java code that handles null pointers.
int hash = (o == null ? 0 : o.hashCode());

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 27, 2012 7 / 21



ClassCastException

class Priority implements Comparable {
public int compareTo(Object other) {

Priority o = (Priority) other;
...

}
}

results in Possible type cast error.
Solutions:

Add throws ClassCastException.
(Also add
signals (ClassCastException) !(other instanceof Priority))

Add Java code that handles differently typed objects:
if (!(other instanceof Priority))

return -other.compareTo(this)
Priority o = ...

This results in a Possible null dereference.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 27, 2012 8 / 21



ArrayIndexOutOfBoundsException

void write(/*@non_null@*/ byte[] what, int offset, int len) {
for (int i = 0; i < len; i++) {
write(what[offset+i]);

}
}

results in Possible negative array index
Solution:

Add offset >= 0 to pre-condition,
this results in Array index possibly too large.

Add offset + len <= what.length.

ESC/Java does not complain but there is still a problem.
If offset and len are very large numbers, then offset + len can be
negative. The code would throw an
ArrayIndexOutOfBoundsException at run-time.

The correct pre-condition is:
/*@ requires offset >= 0 && offset + len >= offset
@ && offset + len <= what.length;
@*/

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 27, 2012 9 / 21



ArrayStoreException

public class Stack {
/*@non_null@*/ Object[] elems;
int top;
/*@invariant 0 <= top && top <= elems.length @*/

/*@ requires top < elems.length;
@*/

void add(Object o) {
elems[top++] = o;

}

results in Type of right-hand side possibly not a subtype of array element
type (ArrayStore).
Solutions:

Add an invariant \typeof(elems) == \type(Object[]).

Add a precondition \typeof(o) <: \elemtype(\typeof(elems)).

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 27, 2012 10 / 21



Types in assertions

\typeof gets the run-time type of an expression
\typeof(obj) ∼ obj.getClass().

\elemtype gets the base type from an array type.
\elemtype(t1) ∼ t1.getComponentType().

\type gets the type representing the given Java type.
\type(Foo) ∼ Foo.class

<: means is sub-type of.
t1 <: t2 ∼ t2.isAssignableFrom(t1)

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 27, 2012 11 / 21



ArithmeticException

class HashTable {
/*@non_null@*/ Bucket[] buckets;
void put(/*@non_null@*/Object key, Object val) {

int hash = key.hashCode() % buckets.length;
...

}

results in Possible division by zero.
Solution:

Add invariant buckets.length > 0.

Run ESC/Java again to check that this invariant holds.

It probably warns about a Possible negative array index.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 27, 2012 12 / 21



Exceptions in Library Functions

class Bag {
/*@ non_null @*/ Object[] elems;

void sort() {
java.util.Arrays.sort(elems);

}
}

results in Possible unexpected exception.

Look in escjava/specs/java/util/Arrays.refines-spec!

Array.sort() has pre-condition:
elems[i] instanceof Comparable for all i.

Solution: Add similar condition as class invariant.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 27, 2012 13 / 21



Assume and Assert

The basic specifications in ESC/Java are assume and assert.

/*@ assume this.next != null; @*/
this.next.prev = this;
/*@ assert this.next.prev == this; @*/

ESCJava proves that if the assumption holds in the pre-state, the
assertion holds in the post-state.

This is a Hoare triple.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 27, 2012 14 / 21



Requires and Ensures

The method specification is just translated into assume and assert:
/*@ requires n > 0;
@ ensures \result == (int) Math.sqrt(n);
@*/

int m() {
...
return x;

}

is treated as:
/*@ assume n > 0; @*/
...
/*@ assert x == (int) Math.sqrt(n); @*/

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 27, 2012 15 / 21



Calling Methods

And if m() is called the assumption and assertion is the other way round:
...
y = m(x);
...

is treated as
...
/*@ assert x > 0; @*/
y = m(x);
/*@ assume y == (int) Math.sqrt(x); @*/
...

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 27, 2012 16 / 21



Checking for Exceptions

To check for run-time exceptions ESC/Java automatically inserts asserts:
a[x] = "Hello";

is treated as:
/*@ assert a != null && x >= 0 && x < a.length
@ && \typeof("Hello") <: \elemtype(\typeof(a));
@*/

a[x] = "Hello";

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 27, 2012 17 / 21



Assume is Considered Harmful

Never assume something wrong. This enables ESC/Java to prove
everything:

Object o = null;
/*@ assume o != null; @*/
Object[] a = new String[-5];
a[-3] = new Integer(2);

> escjava2 -q AssumeFalseTest.java

0 warnings

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 27, 2012 18 / 21



ESC/Java is Not Complete

ESC/Java can only do limited reasoning:
/*@ requires i == 5 && j== 3;
@ ensures \result == 15;
@*/

int m(int i, int j) {
return i*j;

}

Test.java:19: Warning: Postcondition possibly not established (Post)

}

^

Associated declaration is "Test.java", line 14, col 8:

@ ensures \result == 15;

A good assumption can help, e.g.
int m(int i, int j) {
/*@ assume 15 == 5 * 3; @*/
return i*j;

}

But this may introduce unsoundness if not used carefully.
Jochen Hoenicke (Software Engineering) Formal Methods for Java November 27, 2012 19 / 21



Loops in ESC/Java

int a[] = new int[6];
for (int i = 0; i <= 6; i++) {

a[i] = i;
}

> escjava2 -q Test.java

0 warnings

> escjava2 -Loop 7 -q Test.java

Test.java:15: Warning: Array index possibly too large (IndexTooBig)

a[i] = i;

^

1 warning

> escjava2 -LoopSafe -q Test.java

Test.java:15: Warning: Array index possibly too large (IndexTooBig)

a[i] = i;

^

1 warning

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 27, 2012 20 / 21



ESC/Java Demo

Demo

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 27, 2012 21 / 21


