
Formal Methods for Java
Lecture 13: Invariants with Pack and Unpack

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

December 4, 2012

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 4, 2012 1 / 26

The Invariant Problem

There are some problems with invariants:

Ownership: invariants can depend on fields of other objects.
For example, the invariant of list accesses node fields.

Callback: invariants can be temporarily violated.
While invariant is violated we call a different method that calls back.

Atomicity: invariants can be temporarily violated.
While invariant is violated another thread accesses object.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 4, 2012 2 / 26

Temporarily Violating Invariants

public class Container {
int[] content;
int size;
/*@ invariant 0 <= size && size <= content.length; @*/

public void add(int v) {
/* 1 */
size++;
/* 2 */
if (size > content.length) {
newContent = new int[2*size+1];
...
content = newContent;

}
...
/* 3 */

}
}

When do Invariants Hold?

Before a public method is called. /* 1 */

After a public method returns. /* 3 */

However, it may be violated in between. /* 2 */

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 4, 2012 3 / 26

Private Methods

public class Container {
int[] content;
int size;
/*@ invariant 0 <= size && size <= content.length; @*/

private void growContent() {

private /*@ helper @*/ void growContent() {

...
content = newContent;

}

public void add(int v) {
/* invariant should hold */
size++;
/* invariant may be violated */
if (size > content.length)
growContent();

...
/* invariant should hold, again */

}
}

Sometimes an invariant should not hold for a private method.
JML has the keyword /*@ helper @*/.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 4, 2012 4 / 26

Calling Methods of Other Classes

public class Container {
int[] content;
int size;
/*@ invariant 0 <= size && size <= content.length; @*/

public void add(int v) {
/* invariant should hold */
size++;
/* invariant may be violated */
if (size > content.length) {
newContent = new int[2*size+1];
System.arraycopy(content, 0, newContent, 0, content.length);
content = newContent;

}

...
/* invariant should hold, again */

}
}

The invariant need not to hold, when calling other methods.

However there is the callback problem.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 4, 2012 5 / 26

The Callback Problem

public class Log {
public void log(String p) {
logfile.write("Log: "+p+" list is "+Global.theList);

} }

public class Container {
int[] content;
int size;
/*@ invariant 0 <= size && size <= content.length; @*/

public void add(int v) {
/* invariant should hold */
size++;
/* invariant may be violated */
if (size > content.length) {
Logger.log("growing array.");

...
}

public String toString() {
/* invariant should hold */
...

} }

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 4, 2012 6 / 26

The Callback Problem

A method of a different class can be called while invariant is violated.

This method may call a method of the first class.

Who has to ensure that the invariant holds?

jmlrac complains that invariant does not hold

ESC/Java checks that most invariants hold at every method call,
but not all invariants; this may lead to unsoundness.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 4, 2012 7 / 26

A Ghost Variable for Invariants

Idea of David A. Naumann and Mike Barnett:

Make the places where an invariant does not hold explicit.

Add a ghost variable packed that indicates if the invariant should hold.

Before modifying an object set this variable to false.

When modification is finished, set it to true.

The following invariant should always hold:
packed ==> invariants of object

The caller has to ensure that the objects he uses are packed.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 4, 2012 8 / 26

Example: A Ghost Variable for Invariants

//@ public ghost boolean packed;
//@ private invariant packed ==> (size >= 0 && size <= content.length);

/*@ requires packed;
@ ensures packed;
@*/

public void add(int v) {
unpack this;
size++;
...
pack this;

}

The pre- and post-conditions explicitly states that invariant holds
unpack this is an abbrevation for:

assert this.packed;
set this.packed = false;

pack this is an abbrevation for:
assert !this.packed;
assert /*invariant of this holds*/;
set this.packed = true;

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 4, 2012 9 / 26

The pack/unpack Mechanism

object

packed == true

Invariant holds

object

packed == false

Invariant may be broken

object

packed == true

Invariant holds

unpack pack

object.f = val object.f = val object.f = val

An object must be unpacked before fields may be accessed.

The invariant has to hold only while object is packed.

The invariant may only depend on fields of the object.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 4, 2012 10 / 26

Checking with Atomicity

Static Checking with packed ghost field:

Fields may only be modified if packed is false.

For each pack operation check that invariant holds again.

Thus packed ==> invariants holds for all states.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 4, 2012 11 / 26

Tree Example

class TreeNode {
int key, value;
TreeNode left, right;
/*@ invariant left != null ==> left.key <= key; @*/
/*@ invariant right != null ==> right.key >= key; @*/

public void add(Node n) {
if (n.key < key) {
if (left == null)
left = n;

else
left.add(n);

} else {
...

}
}

}

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 4, 2012 12 / 26

Adding Packed variable

class TreeNode {
int key, value;
TreeNode left, right;
//@ public ghost boolean packed = false;

/*@ invariant packed ==> (left != null ==> left.key <= key); @*/
/*@ invariant packed ==> (right != null ==> right.key >= key); @*/

//@ requires packed;
//@ ensures packed;
public void add(/*@non_null@*/ TreeNode n) {
// unpack this
if (n.key < key) {
if (left == null)
left = n;

else
left.add(n);

} else {
...

}
// pack this

}
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 4, 2012 13 / 26

Running ESC/Java gives:

> escjava2 -q TreeNode.java

TreeNode.java:19: Warning: Precondition possibly not established (Pre)

left.add(n);

^

Associated declaration is "TreeNode.java", line 9, col 8:

//@ requires packed;

The nodes left and right must be packed!

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 4, 2012 14 / 26

Fixing the invariant

class TreeNode {
int key, value;
TreeNode left, right;
//@ public ghost boolean packed = false;

/*@ invariant packed ==> (left != null ==>
left.packed && left.key <= key); @*/

/*@ invariant packed ==> (right != null ==>
right.packed && right.key >= key); @*/

//@ requires packed;
//@ ensures packed;
public void add(/*@non_null@*/ TreeNode n) {
...

}
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 4, 2012 15 / 26

Adding Ownership

There are still problems:

The invariant also depends on fields of left and right.
In particular the left.key and left.packed.

Can unpack this violate the invariant of another TreeNode?

How can we exclude undesired sharing,
e.g., left == this or left == n?

Solution: Use the ownership principle

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 4, 2012 16 / 26

Ownership and pack/unpack

owner

left

right

owner

left

right

owner

left

right

owner.packed == true

left.packed == true

owner.packed == false

left.packed == true

owner.packed == false

left.packed == false

unpack owner

pack owner

unpack left

pack left

owner.f = val
left.f = val

owner.f = val
left.f = val

The owner must be unpacked before an owned object can be
unpacked.

The invariant of owner may depend on owned objects.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 4, 2012 17 / 26

Ownership And pack/unpack

How does pack/unpack work with ownership?

To modify an object, you must unpack it first.

To unpack an object, you must unpack the owner.

To pack the owner again, its invariant must hold.

unpack obj is an abbreviation for:
assert(obj.packed);
assert(obj.owner == null || !obj.owner.packed);
set obj.packed = false;

pack obj ensures that its owned classes are packed.
assert(!obj.packed);
assert(left != null ==> (left.owner == this && left.packed));
assert(right != null ==> (right.owner == this && right.packed));
assert(/* other invariants of obj holds*/);
set obj.packed = true;

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 4, 2012 18 / 26

Adding Ownership

class TreeNode {
int key, value;
TreeNode left, right;
//@ public ghost boolean packed = false;

/*@ invariant packed ==> (left != null ==>
left.owner == this && left.packed && left.key <= key); @*/

/*@ invariant packed ==> (right != null ==>
right.owner == this && right.packed && right.key >= key); @*/

//@ requires packed && n.packed && n.owner == null;
//@ ensures packed;
public void add(/*@non_null@*/ TreeNode n) {
...

}
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 4, 2012 19 / 26

Ownership vs. Friendship

The ownership discipline has a few restrictions.

An object invariant can only depend on fields of owned objects.

An object can have at most one owner.

A field may only be changed by the owner, or if the owner is
unpacked.

Sometimes too restrictive!

Friendship offers another way to depend on other objects:

An invariant can also depend on fields of granters.

The class must define update guards for all fields it depends on.

A granter object has a list of friends that depend on fields.

A field may be changed if the update guards of all friends holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 4, 2012 20 / 26

Friendship

Friendship is not symmetric. The allies are:

Granter G that gives rights to depend on a field.

Friend C whose invariant depends on a field.

Every class that changes a field of G has to check the friend’s update
condition.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 4, 2012 21 / 26

Friendship and field accesses

granterfriend1 friend2
deps deps

granter.f = val

guard guard

Friend’s invariant can depend on granted fields.

Access to granted fields is checked against update guards.

A granter can have many friends.

All current friends must be checked.

The friend objects can be packed or unpacked.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 4, 2012 22 / 26

Friendship Example

class Object {
/*@ spec_public @*/ int hashCode;
//@ friend Map reads hashCode;
//@ ghost JMLObjectSet deps;

}

class Map {
JMLObjectSet buckets[];
/*@ invariant

\forall int i ; 0 <= i && i < buckets.length;
(\forall Object o; buckets[i].has(o); o.deps.has(this) &&

Math.abs(o.hashCode % buckets.length) == i); @*/

/*@ guard obj.hashCode := val by
val % buckets.length == obj.hashCode % buckets.length; @*/

}

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 4, 2012 23 / 26

Update Guard and Invariant

class FriendClass {
//@ invariant friendInvariant(granter.field)
//@ guard granter.field := val by updateGuardForField(granter, val);

}

The update guard must guarantee that the invariant is not invalidated:
friends.packed && friendInvariant(granter.field)
&& updateGuardForField(granter, val) ==> friendInvariant(val)

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 4, 2012 24 / 26

What May Appear in an Invariant

Only the following field accesses are allowed in an invariant:

this.field for all fields.

x.field if it appears in a subformula:
\forall Object x ; x.owner == this ==> ...

object.field if object != null && object.owner == this can be proven.

x.field if it appears in a subformula:
\forall Object x ; x.deps.has(this) ==> ...

object.field if object != null && object.deps.has(this) can be
proven.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 4, 2012 25 / 26

Why Is This Sound?

A field access obj.f=val only affects invariants of

obj,

obj.owner if it is not null,

and the objects in obj.deps.

obj and obj.owner must be unpacked if field is accessed. Thus their
invariants need not to hold afterwards.

For the objects in obj.deps the update guard must hold. Therefore, the
invariant holds also with the new value val for obj.f.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 4, 2012 26 / 26

