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KeY and Procedures

In KeY, the default rule is to inline the procedures.
Advantages:

@ No function contract needed.
@ No separate proof for correctness of function needed.
But it has several disadvantages:
@ Proof gets larger (especially important if proof is interactive).
@ Proof has to be repeated for every function call.

@ No recursive procedures possible.
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The rule Use Operation Contract

The rule “Use Operation Contract” allows compositional proofs.
It opens three subgoals:
@ Pre: Show that pre-condition holds (this includes class invariants).
@ Post: Show that with the post-condition, the remaining program is
correct.
@ Exceptional Post: Show that if called method throws an exception,
the remaining program is correct.
Note: Use Operation Contract cannot be used for the method you are just
proving.
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Proving Pure Recursive Functions

Unfortunately, KeY has no direct support for recursive functions.

An induction proof can work. Ingredients:
@ A precondition pre,
@ A postcondition post,
@ A ranking function rank.

Show by induction over r:
\forall int z. (pre & rank < r) -> \< result = methodcall(z); \> post
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Lecture Summary
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Motivations

Quality
o Leads to better understood code.
o Different view point reveals bugs.
@ Formal proof can rule out bugs entirely.
Productivity
@ Error detection in early stages of development.
Modular specifications allow reuse of components.

°
@ Documentation, maintenance.

@ Automatic test case generation.
°

Clearer specification leads to better software.
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Operational Semantics for Java

Idea: define transition system for Java

Definition (Transition System)

A transition system (TS) is a structure TS = (Q, Act, —), where
@ @ is a set of states,
@ Act a set of actions,

o —C @ x Act x @ the transition relation.

Q reflects the current dynamic state (heap and local variables).
Act is the executed code.

Idea from: D. v. Oheimb, T. Nipkow, Machine-checking the Java
specification: Proving type-safety, 1999
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State of a Java Program

The state of a Java program consists of a flow component and valuations
for local and global (heap) variables.

@ @ = Flow x Heap x Local

@ Flow ::= Norm|Ret|Exc{{Address))

@ Heap = Address — Class x seq Value
o Local = Identifier — Value

o Value = 7, Address C 7

A state is denoted as g = (flow, heap, Icl), where flow : Flow, heap : Heap
and Icl : Local.
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Rules of Operational Semantics
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... and many more.
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Rules for Exceptions

(Norm, heap, Icl) —=% (Norm, heap', Icl’)

(Norm, heap, Icl) T e (Exc(v), heap', Icl')

A null-pointer dereference works like a throw statement:

el>0

(Norm, heap, lcl) === ¢

1 throw new NullPointerException() q//

,where v is some arbitrary value

(Norm, heap, Icl) _efldev.y o1

Propagating exceptions:

(flow, heap, Icl) = (flow, heap, Icl), where flow # Norm
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JML
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The Java Modelling Language (JML)

JML is a behavioral interface specification language (BISL) for Java
@ Proposed by G. Leavens, A. Baker, C. Ruby:
JML: A Notation for Detailed Design, 1999
@ It combines ideas from two approaches:

o Eiffel with it's built-in language for Design by Contract (DBC)
o Larch/C++ a BISL for C++
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Tools for JML

@ http://www.jmlspecs.org/

@ Release can be downloaded from
http://sourceforge.net/projects/jmlspecs/files

e JML compiler (jmlc)

o JML runtime assertion checker (jmlrac)

External Tools:
e ESC/Java
o KeY

@ and many more ...
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Run-time Checking with jmlrac

Advantages of run-time checking:
o Easy to use.
@ Supports a large sub-language of JML.
@ No false warnings.
Disadvantages of run-time checking:
@ Coverage only as good as test cases that are used.

@ Does not prove absence of errors.

Jochen Hoenicke (Software Engineering) FM4) Feb 12, 2012 15 /19



Model-checking with Java Pathfinder

Advantages of model-checking:

@ Almost as easy as testing.

@ More exhaustive than simple testing.
Disadvantages of model-checking:

@ State explosion problem.

@ Runtime vs. coverage.
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Static Checking with ESC/Java

Advantages of static checking:
o Easy to use.
o No test cases needed.
o Better coverage than runtime checking.
@ Can detect missing specification.
Disadvantages of static checking:
@ Only a small subset of JML supported.

@ Many spurious warnings (not complete).
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Theorem Proving with KeY

Advantages of static checking:

@ Prove of correctness.

@ Both sound and complete (modulo Peano Axioms).
Disadvantages of static checking:

o Very difficult to use.

o Can require interactive proving.
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Suggested order

@ Run-time checking, e.g. jmlrac and jmlunit.
@ Static checking, e.g. ESC/Java.

© Model-checking, e.g. Java Pathfinder

@ Theorem proving, e.g. KeY.

Ensures that most bugs are already found before starting with theorem
proving. Some prefer doing static checking before run-time checking (no

test cases needed).
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