
Formal Methods for Java
Lecture 28: Conclusion

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

Feb 12, 2012

Jochen Hoenicke (Software Engineering) FM4J Feb 12, 2012 1 / 19

KeY and Procedures

In KeY, the default rule is to inline the procedures.
Advantages:

No function contract needed.

No separate proof for correctness of function needed.

But it has several disadvantages:

Proof gets larger (especially important if proof is interactive).

Proof has to be repeated for every function call.

No recursive procedures possible.

Jochen Hoenicke (Software Engineering) FM4J Feb 12, 2012 2 / 19

The rule Use Operation Contract

The rule “Use Operation Contract” allows compositional proofs.
It opens three subgoals:

Pre: Show that pre-condition holds (this includes class invariants).

Post: Show that with the post-condition, the remaining program is
correct.

Exceptional Post: Show that if called method throws an exception,
the remaining program is correct.

Note: Use Operation Contract cannot be used for the method you are just
proving.

Jochen Hoenicke (Software Engineering) FM4J Feb 12, 2012 3 / 19

Proving Pure Recursive Functions

Unfortunately, KeY has no direct support for recursive functions.

An induction proof can work. Ingredients:

A precondition pre,

A postcondition post,

A ranking function rank.

Show by induction over r:
\forall int x. (pre & rank < r) -> \< result = methodcall(x); \> post

Jochen Hoenicke (Software Engineering) FM4J Feb 12, 2012 4 / 19

Lecture Summary

Jochen Hoenicke (Software Engineering) FM4J Feb 12, 2012 5 / 19

Topics

Lecture Topics

1 Introduction to JML and JLS
2–3 Operational Semantics
4–5 JML

6–10 Java Pathfinder
11 ESC/Java

12–14 Ownership/Friendship and Invariants
15–19 Jahob
20–22 Sequent Calculus
23–28 Dynamic Logic and Proving with KeY

Jochen Hoenicke (Software Engineering) FM4J Feb 12, 2012 6 / 19

Motivations

Quality

Leads to better understood code.

Different view point reveals bugs.

Formal proof can rule out bugs entirely.

Productivity

Error detection in early stages of development.

Modular specifications allow reuse of components.

Documentation, maintenance.

Automatic test case generation.

Clearer specification leads to better software.

Jochen Hoenicke (Software Engineering) FM4J Feb 12, 2012 7 / 19

Operational Semantics for Java

Idea: define transition system for Java

Definition (Transition System)

A transition system (TS) is a structure TS = (Q,Act,→), where

Q is a set of states,

Act a set of actions,

→⊆ Q × Act × Q the transition relation.

Q reflects the current dynamic state (heap and local variables).

Act is the executed code.

Idea from: D. v. Oheimb, T. Nipkow, Machine-checking the Java
specification: Proving type-safety, 1999

Jochen Hoenicke (Software Engineering) FM4J Feb 12, 2012 8 / 19

State of a Java Program

The state of a Java program consists of a flow component and valuations
for local and global (heap) variables.

Q = Flow × Heap × Local

Flow ::= Norm|Ret|Exc〈〈Address〉〉
Heap = Address → Class × seq Value

Local = Identifier → Value

Value = Z,Address ⊆ Z
A state is denoted as q = (flow , heap, lcl), where flow : Flow , heap : Heap
and lcl : Local .

Jochen Hoenicke (Software Engineering) FM4J Feb 12, 2012 9 / 19

Rules of Operational Semantics

(Norm, heap, lcl) e1.v1−−−−→ q q e2.v2−−−−→ q′

(Norm, heap, lcl)
e1*e2.(v1·v2) mod 232−−−−−−−−−−−−−−→ q′

(Norm, heap, lcl) st1−−→ q q st2−−→ q′

(Norm, heap, lcl) st1;st2−−−−→ q′

(Norm, heap, lcl) e.v−−−→ q q bl1−−→ q′

(Norm, heap, lcl)
if(e) bl1elsebl2−−−−−−−−−→ q′

, where v 6= 0

. . . and many more.

Jochen Hoenicke (Software Engineering) FM4J Feb 12, 2012 10 / 19

Rules for Exceptions

(Norm, heap, lcl) e.v−−−→ (Norm, heap′, lcl ′)

(Norm, heap, lcl) throw e−−−−−→ (Exc(v), heap′, lcl ′)

A null-pointer dereference works like a throw statement:

(Norm, heap, lcl) e.0−−−→ q′

q′
throw new NullPointerException()−−−−−−−−−−−−−−−−−−−−→ q′′

(Norm, heap, lcl) e.fld.v−−−−−→ q′′
,where v is some arbitrary value

Propagating exceptions:

(flow , heap, lcl) α−−→ (flow , heap, lcl), where flow 6= Norm

Jochen Hoenicke (Software Engineering) FM4J Feb 12, 2012 11 / 19

JML

public class ArrayOps {

private /*@ spec_public @*/ Object[] a;

//@ public invariant 0 < a.length;

/*@ requires 0 < arr.length;
@ ensures this.a == arr;
@*/

public void init(Object[] arr) {
this.a = arr;

}
}

ESC/Java2

Warnings

Daikon

Data trace file

JML Annotated Java

JACK, Jive, Krakatoa,
KeY, LOOP

Correctness proof
Class file

jmlc

Unit tests

jmlunit

jmldoc

Web pages

Bogor

Model checking
XVP

Jochen Hoenicke (Software Engineering) FM4J Feb 12, 2012 12 / 19

The Java Modelling Language (JML)

JML is a behavioral interface specification language (BISL) for Java

Proposed by G. Leavens, A. Baker, C. Ruby:
JML: A Notation for Detailed Design, 1999

It combines ideas from two approaches:

Eiffel with it’s built-in language for Design by Contract (DBC)
Larch/C++ a BISL for C++

Jochen Hoenicke (Software Engineering) FM4J Feb 12, 2012 13 / 19

Tools for JML

http://www.jmlspecs.org/

Release can be downloaded from
http://sourceforge.net/projects/jmlspecs/files

JML compiler (jmlc)

JML runtime assertion checker (jmlrac)

External Tools:

ESC/Java

KeY

and many more . . .

Jochen Hoenicke (Software Engineering) FM4J Feb 12, 2012 14 / 19

http://www.jmlspecs.org/
http://sourceforge.net/projects/jmlspecs/files

Run-time Checking with jmlrac

Advantages of run-time checking:

Easy to use.

Supports a large sub-language of JML.

No false warnings.

Disadvantages of run-time checking:

Coverage only as good as test cases that are used.

Does not prove absence of errors.

Jochen Hoenicke (Software Engineering) FM4J Feb 12, 2012 15 / 19

Model-checking with Java Pathfinder

Advantages of model-checking:

Almost as easy as testing.

More exhaustive than simple testing.

Disadvantages of model-checking:

State explosion problem.

Runtime vs. coverage.

Jochen Hoenicke (Software Engineering) FM4J Feb 12, 2012 16 / 19

Static Checking with ESC/Java

Advantages of static checking:

Easy to use.

No test cases needed.

Better coverage than runtime checking.

Can detect missing specification.

Disadvantages of static checking:

Only a small subset of JML supported.

Many spurious warnings (not complete).

Jochen Hoenicke (Software Engineering) FM4J Feb 12, 2012 17 / 19

Theorem Proving with KeY

Advantages of static checking:

Prove of correctness.

Both sound and complete (modulo Peano Axioms).

Disadvantages of static checking:

Very difficult to use.

Can require interactive proving.

Jochen Hoenicke (Software Engineering) FM4J Feb 12, 2012 18 / 19

Suggested order

1 Run-time checking, e.g. jmlrac and jmlunit.

2 Static checking, e.g. ESC/Java.

3 Model-checking, e.g. Java Pathfinder

4 Theorem proving, e.g. KeY.

Ensures that most bugs are already found before starting with theorem
proving. Some prefer doing static checking before run-time checking (no

test cases needed).

Jochen Hoenicke (Software Engineering) FM4J Feb 12, 2012 19 / 19

