
Formal Methods for Java
Lecture 4: Semantics of JML

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

November 2, 2012

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2012 1 / 14

Operational Semantics for Java

Idea: define transition system for Java

Definition (Transition System)

A transition system (TS) is a structure TS = (Q,Act,→), where

Q is a set of states,

Act a set of actions,

→⊆ Q × Act × Q the transition relation.

Q reflects the current dynamic state (heap and local variables).

Act is the executed code or expressions.

q e.v−−−→ q′ means that in
state q the expression e is evaluated to v and the side-effects change
the state to q′.

q st−−→ q′ means that in state q the statement st is executable and
changes the state to q′.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2012 2 / 14

Semantics of Specification

/*@ requires x >= 0;
@ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;
@*/

public static int isqrt(int x) {
body

}

Whenever the method is called with values that satisfy the requires-formula
and the method terminates normally
then the ensures-formula holds.

For all heap, heap′, lcl , lcl ′ if lcl(x) ≥ 0

and (Norm, heap, lcl) body−−−−→ (Ret, heap′, lcl ′),
then lcl ′(\result) ≤ Math.sqrt(lcl(x)) < lcl ′(\result) + 1 holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2012 3 / 14

Hoare Triples

/*@ requires x >= 0;
@ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;
@*/

public static int isqrt(int x) {
body

}

The JML code above states partial correctness of the Hoare triple

{x ≥ 0}
body

{\result ≤ Math.sqrt(x) < \result + 1}

It also states total correctness, as we will see later.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2012 4 / 14

Post condition and input parameters

Is the following implementation correct?

/*@ requires x >= 0;
@ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;
@*/

public static int isqrt(int x) {
x = 0;
return 0;

}

No, because JML always evaluates input parameters always in the
pre-state!

For all heap, heap′, lcl , lcl ′ if lcl(x) ≥ 0

and (Norm, heap, lcl) body−−−−→ (Ret, heap′, lcl ′),
then lcl ′(\result) ≤ Math.sqrt(lcl(x)) < lcl ′(\result) + 1 holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2012 5 / 14

What About Exceptions?

/*@ requires true;
@ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;
@ signals (IllegalArgumentException) x < 0;
@ signals_only IllegalArgumentException;
@*/

public static int isqrt(int x) {
body

}

The signals_only specification denotes that for all transitions

(Norm, heap, lcl) body−−−−→ (Exc(v), heap′, lcl ′)

where lcl satisfies the precondition and v is an Exception, v must be of
type IllegalArgumentException.
The signals specification denotes that in that case lcl must satisfy x < 0.

The code is still allowed to throw an Error like a OutOfMemoryError or a
ClassNotFoundError.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2012 6 / 14

Side-Effects

A method can change the heap in an unpredictable way.
The assignable clause restricts changes:

/*@ requires x >= 0;
@ assignable \nothing;
@ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;
@*/

public static int isqrt(int x) {
body

}

For all executions of the method,

(Norm, heap, lcl) body−−−−→ (Ret, heap′, lcl ′),

if lcl(x) >= 0 then the formula

lcl ′(\result) <= Math.sqrt(lcl(x)) < lcl ′(\result + 1)

holds and heap ⊆ heap′.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2012 7 / 14

What is the meaning of a formula

A formula like x >= 0 is a Boolean Java expression. It can be evaluated
with the operational semantics.
x >= 0 holds in state (heap, lcl), iff

(Norm, heap, lcl) x >= 0.1−−−−−−→ (Norm, heap′, lcl ′)

An assertion may not have side-effects; it may create new objects, though,
i.e., heap ⊆ heap′ and lcl = lcl ′.
For the ensures formula both the pre-state and the post-state are
necessary to evaluate the formula.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2012 8 / 14

Semantics of a Specification (formally)

A function satisfies the specification

requires e1

ensures e2

iff for all executions

(Norm, heap, lcl) body−−−−→ (Ret, heap′, lcl ′)

with (Norm, heap, lcl) e1.v1−−−−→ q1, v1 6= 0, the post-condition holds, i. e.,
there exists v2, q2, such that

(Norm, heap′, lcl ′) e2.v2−−−−→ q2, where v2 6= 0

However we need a new rule for evaluating \old :

(Norm, heap, lcl) e.v−−−→ q

(Norm, heap′, lcl ′)
\old(e).v−−−−−−−→ q

,
where heap, lcl is the state of the pro-
gram before body was executed

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2012 9 / 14

Side-Effects in Specification

In JML side-effects in specifications are forbidden:
If e is an expression in a specification and

(Norm, heap, lcl) e.v−−−→ (flow , heap′, lcl ′)

then heap ⊆ heap′ and lcl = lcl ′.
Here, heap ⊆ heap′ indicates that the new heap may contain new
(unreachable) objects.
Also flow 6= Norm is possible. In that case the expression is considered to
be false.
A tool should warn the user if flow 6= Norm is possible.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2012 10 / 14

Exceptions in Specification

There were some discussions on exceptions in JML specifications.

next == null || next.prev == this is okay. It never throws a
null-pointer exception.

next.prev == this || next == null is not equivalent. It is not valid if
next is null.

Specifications that can throw an exception should be avoided.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2012 11 / 14

Lightweight vs. Heavyweight Specifications

A lightweigth specification
/*@ requires P;
@ assignable X;
@ ensures Q;
@*/

public void foo() throws IOException;

is an abbreviation for the heavyweight specification
/*@ public behavior
@ requires P;
@ diverges false;
@ assignable X;
@ ensures Q;
@ signals_only IOException
@*/

public void foo() throws IOException;

With the behavior-keyword there are no default values for diverges,
signals_only, and assignable.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2012 12 / 14

Making Exceptions Explicit

/*@ public normal_behavior
@ requires x >= 0;
@ assignable \nothing;
@ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;
@ also
@ public exceptional_behavior
@ requires x < 0;
@ assignable \nothing;
@ signals (IllegalArgumentException) true;
@*/

public static int isqrt(int x) throws IllegalArgumentException {
if (x < 0)

throw new IllegalArgumentException();
body

}

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2012 13 / 14

Making Exceptions Explicit (2)

If several specification are given with also, the method must fulfill all
specifications.

Specifications with normal behavior implicitly have the clause
signals (java.lang.Exception) false

so the method must not throw an exception.

Specifications with exceptional behavior implicitly have the clause
ensures false

so the method must not terminate normally.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2012 14 / 14

