Software Design, Modelling and Analysisin UML

Lecture 02: Semantical Model

2012-10-24

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Why (of all things) UML?

Note: being a modelling languages doesn’t mean being graphical
(or: being a visual formalism [Harel])

For instance, [Kastens and Biining, 2008] also name:

= Sets, Relations, Functions

o Terms and Algebras

« Propositional and Predicate Logic

» Graphs

o XML Schema, Entity Relation Diagrams, UML Class Diagrams
« Finite Automata, Petri Nets, UML State Machines

Pro: visual formalisms are found appealing and easier to grasp.
Yet they are not necessarily easier to write!

.

Beware: you may meet people who dislike visual formalisms just for
being graphical — maybe because it is easier to “trick” people with a
meaningless picture than with a meaningless formula.

.

More serious:

's maybe easier to misunderstand a picture than a formula.

4

Contents & Goals

Last Lecture:
= Motivation: model-based development of things (houses, software) to cope
with complexity, detect errors early
« Model-based (or ~driven) Software Engineering

* UML Mode of the Lecture: Blueprint.

This Lecture:
« Educational Objectives: Capabilities for these tasks/questions:
* Why is UML of the form ?
« Shall one feel bad
« What is a signature, an object, a system state, etc.?
What's the purpose of signature, object, etc. in the course?

« How do Basic Object System Signatures relate to UML class diagrams?

not using all diagrams during software development?

« Content:
 Brief history of UML
o Course map revisited
« Basic Object System Signature, Structure, and System State 23

A Brief History of UML

e software for ages.

« 1970’s, Software Crisis™
— ldea: learn from engineering disciplines to handle growing complexity.

L Flowcharts, N Entity-Relation Diagrams

« Mid 1980’s: Statecharts [Harel, 1987], StateMate™ [Harel et al., 1990]

« Early 1990’s, advent of Object-Oriented-Analysis/Design/Programming
— Inflation of notations and methods, most prominent:
o Object-Modeling Technique (OMT) [Rumbaugh et al., 1990]

e~

L

P e e

e

. v

Err
)

[sai Cuot H

Why (of all things) UML?

A Brief Histg

Boxes/lines g

1970’s, Soft]
— Idea: lear

Languages:
Mid 1980's:

Early 1990’s|
— Inflation

) KiasseD

T

: Q/‘ J v i |
Y kessec 7T
v, . ey

o Verwendung

 Object-Modeling Technique (OMT) [Rumbaugh et al., 1990]
« Booch Method and Notation [Booch, 193]

ages.

slexity.

ims

, 1990]

\mming

Common Expectations on UML

UML Overview ome, 2007, 684

A Brief History of UML

Easily writeable, readable even by customers

« Boxes/lines and finite automata are used to visualise software for ages.
.
Powerful enough to bridge the gap between idea and implementation

1970's, Software Crisis™ oct []

— Idea: learn from engineering disciplines to handle growing complexity. x
« Means to tame complexity by separation of concerns

i , Entity-Relation Diagrams

“views"

Unambiguous

+ Mid 1980's: Statecharts [Harel, 1987], StateMate™ [Harel et al., 1990] 5 ! N - o
T » St B between tools
+ Early 1990's, advent of Object-Oriented-Analysis/Design/P i — | | ICEE z _ + UML standard says how to develop software
! » Using UML leads to better software

— Inflation of notations and methods, most prominent:

Packsge
Dlagram

oeptoyment
Giagram

olagram

= Object-Modeling Technique (OMT) [Rumbaugh et al., 1990]
« Booch Method and Notation [Booch, 1993]
o Object-Oriented Software Engineering (OOSE) [Jacobson et al., 1992]

¢ We will see...

! Each “persuasion” selling books, tools, seminars. . .

7 e Late 1990's: joint effort UML 0.x, 1.x
g Standards published by Object Management Group (OMG), “international, g § : S * Seriously: After the course, you should have an own opinion on each of these claims.
g X N A < Figure A5 - The taxonomy of structure and behavior diagram © In how far/in what sense does it hold? Why? Why not? How can it be achieved?
E open membership, not-for-profit computer industry consortium’.] "
} | Which ones are really only hopes and expectations?
' T2

B /23

Since 2005: UML 2.x

The Plan UML: Semantic Areas

Recall
a formal language
s

« Approach

Course Map Revisited (i) Common semantical domin

i) UML fragments as syntax

Activities State Machines Interactions

Intra-Object Behavior Base

i) Abstract representation of
grams.

(iv) Informal semantics:
UML standard

(v) assign meaning to diagra
Inter-Object Behavior Base

(vi) Define, e.g., consistency.

Figure 6.1 - A schematic of the UML semantic areas and their dependencies

[OMG, 2007b, 11]

! 10723

! 8

Common Semantical Domain

1123
Basic Object System Sgnature Another Example
' = (7,%.V, atr) where
o (basic) types 7 and classes %, (both finite),
o typed attributes V, 7 from .7 or Cp, or C,, C € €,
o atr: € — 2V mapping classes to attributes.
Example: Q: Whd ond
%.Aw{ Tod§ vos (il ol solit
N ;w ‘ lss © vl ablule x. At 2
{3, . ;
\M‘E. " A: Revans .\sd_h‘\rx@
L ?!?ﬂ | i s Teak 4 ("3
3 abhioue
| B B TS ()
i @ld o
g @@ De§o _:&WV
o o
& ol
T 14/

Basic Object System Sgnature

where

« 7 is a set of (basic) types,

» € is a finite set of classes,

« Vs a finite set of typed attributes/
eTET or
* Cp,1 or Ci, where C € €

« atr: € —2Y, maps each class to its set of a

»E\ rﬂw!a.!ak._\

& =(Z,€,V, atr) e eed cliss
Hmm‘r«

3?1&&

O .vp
H@

ie,eachveV :mm va

e Q‘w X

i ot
(written v : 7 or v : Co,y or v : Cy), A._w?.\. V= MP, a4

ttributes.

e on

Note: Inspired by OCL 2.0 standard [OMG, 2006], Annex A.

Basic Object System Sructure

Definition. A Basic Object System Structure of

= (Z,%,V, atr)

* 7€ 7 is mapped to Z(7),

« C €% is mapped to an il
Note: Object identities only have the *:
object identities of different classes are disjoint,

VC,De€:C#D— 2(C)N2(D) = 0.
o C. and C,, for C € % are mapped to 27(¢).

is a domain function 2 which assigns to each type a domain,

nite set 2(C) of (object) identities.
=" operation;

ie.

We use 7(%) to denote Uycqr Z(C); analogously Z(%.).

&&\v

1272

Note: We identify objects and object identities, because both uniquely deter-

-~ mine each other (cf. OCL 2.0 standard).

15723

Basic Object System Sgnature Example

= (7.4, V, atr) where
« (basic) types 7 and classes %, (both finite),
o typed attributes V, 7 from 7 or Cy; or C., C € €,

« atr : € — 2" mapping classes to attributes.

d ahibuks . al(¢)e §pnf
alned .t?f.\ “« < ©)=Fef
Example: \ <\ e bt ﬂ
L = ({Inty{C, D} e : E i Comsn: Ol AC o {punbs D = (03)
sl 8 ET uﬁ "Dy, aibet Ihieg q.\[}i*»
v ,

132
Basic Object System Structure Example
Wanted: a structure for signature
o= ({Int}.{C, D} {a: Int,p: Co1.n:C.}.{C— {p,n}, D~ {x}})
Recall: by definition, seek a Z which maps
* 7€ .7 tosome Z(1),
« ¢ €€ to some identities Z(C) (infinite, disjoint for different classes),
s C. and Co,1 for C € € to Z(Co,1) = Z(C.) =270,
alo véid: D,
P(int) = L = fecl, o]

200) = N x38 = 8§20 3,3 | #1350
2(D) = N §33 ~ 1,20, 35,4 |7Suke f
9Con) =9 = 2%

2m)
' 2(Doa) = 2(D.) = 2 16/

System Sate

et eles . (4 £
) ek ke G

Definition. Let & bf a stylcture of .* =
A system state of . wrt. £/ is a type-copfistent mapping

D(E) » (V= (2(T) U D(%.))).

o
et 5, ?Hm;mw_:\m%ﬁﬂ C €%, ifuedom(o)

« dom(6(u)) = atr(C)

. Tsv@ cor)ifvrred

») € Z(D.) if v: Doy or v: D, with D € 6

We call u € (%) alive in o if and only if u € dom(o).

We use $% to denote the set of all system states of .7 wrt. 2.

You Are Here.

System State Example
Signature, Structure:

o= ({Int},{C, D}, {w : Int,p: Coa,n: C.},{C > {p,n}, D > {x}})
2} 2(D) = {10,20,3p, ..}

2(Int) =Z, 2(C) = {lc,2¢,3c

Wanted: o0 : 2(%) » (V -+ (2(7) U 2(%.))) such that
o dom(o(u)) = atr(C),
e o) € 2 ifvinTE T,
o o(u)(v) € 2(C.) if v: Du with DEC .

« Vo)
g e
05 MAA i 11,1& n IMmEa«w © OQ
2 P ixn-BY] 0% § b 0ipn8,
- o ° PRSI S tww“
) qu.M_ bfenin, wb {5X,

w05 .kwm

21024

1723 1823
Course Map
I v
pe0oCL CD, SD s
capr 7, 8D
B =(Qsp.q. \T}lé;ué
(consy, Sndg) M
S (01, 60): - <A\ i = (01, consi, Snd)) e
Q (NE, f)
3 op
2123

System Sate Example

Signature, Structure:
o = ({Int},{C, D}, {w : Int,p: Co1,n: C},{C = {p,n}, D > {2}})
D(Int) =2, 2(C)={1¢,20,3¢,..}, (D) ={1p,2p,3p,..}

Wanted: o : 2(%) - (V - (2(7) U 9(%.))) such that
+ dom(a(u)) = atr(C),
o o(u)(v) € D(r) ifviT,T €T,
« o(u)(v) € 2(C.) ifv: D with DEE .
dom (5(52))= 3tz a¥(e) S
e
o={lc={p=0n {5c}}. 50— {p= 0.0 0}, 1p = {x — 23}}.

« Concrete, explicit:

o Alternative: symbolic system state
o={ci—={p—0n—{c}}t o {p—=0.n—0},d— {x— 23}}

assuming c1, ¢, € Z(C), d € Z(D), ¢1 # ca.

1972

References

222

References

[Booch, 1993] Booch, G. (1993). Object-oriented Analysis and Design with Applications.
Prentice-Hall

[Dobing and Parsons, 2006] Dobing, B. and Parsons, J. (2006). How UML is used. Communications
of the ACM, 49(5):109-114.

[Harel, 1087] Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231-274.

[Harel et al., 1990] Harel, D., Lachover, H., et al. (1990). Statemate: A working environment for the
development of complex reactive systems. IEEE Transactions on Software Engineering,
16(4):403-414.

[Jacobson et al., 1992] Jacobson, I., Christerson, M., and Jonsson, P. (1992). Object-Oriented
Software Engineering - A Use Case Driven Approach. Addison-Wesley.

[Kastens and Biining, 2008] Kastens, U. and Biining, H. K. (2008). Modellierung, Grundlagen und
Formale Methoden. Carl Hanser Verlag Miinchen, 2nd edition

[OMG, 2006] OMG (2006). Object Constraint Language, version 2.0. Technical Report
formal /06-05-01.

[OMG, 2007a] OMG (2007a). U
Report formal /07-11-04.

g language: Infrastructure, version 2.1.2. Technical

. [OMG, 2007b] OMG (2007b). Unified modeling language: version 2.1.2. Technical
S Report formal/07-11-02.
2 et al., 1990] , J., Blaha, M., , W., Eddy, F., and Lorensen, W.

(1990). Object-Oriented Modeling and Design. Prentice Hall
T 23723

