
Software Design, Modelling and Analysis in UML

Lecture 05: Class Diagrams I

2012-11-07

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

–
0
5
–
2
0
1
2
-1
1
-0
7
–
m
a
in

–

Course Map

UML

M
o
d
e
l

In
s
t
a
n
c
e
s

N

S

W E

CD, SM

S = (T,C, V, atr), SM

M = (ΣD
S
, AS ,→SM)

ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, consi, Snd i))i∈N

G = (N,E, f) Mathematics

OD UML

!

✔

✔

✔

✔

✔

✔

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
p
re
li
m

–

2/56

Contents & Goals

Last Lecture:

• OCL Semantics

• Object Diagrams

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What is a class diagram?

• For what purposes are class diagrams useful?

• Could you please map this class diagram to a signature?

• Could you please map this signature to a class diagram?

• Content:

• Object Diagrams Cont’d.

• Study UML syntax.

• Prepare (extend) definition of signature.

• Map class diagram to (extended) signature.

• Stereotypes – for documentation.

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
p
re
li
m

–

3/56

Recall: Corner Cases

–
0
5
–
2
0
1
2
-1
1
-0
7
–
m
a
in

–

4/56

Closed Object Diagrams vs. Dangling References

Find the 10 differences! (Both diagrams shall be complete.)

1C : C 5C : C

p = {1C}

n 1C : C 5C : C

p = {7C}

n

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
d
sc
o
n
f
–

5/56

Closed Object Diagrams vs. Dangling References

Find the 10 differences! (Both diagrams shall be complete.)

1C : C 5C : C

p = {1C}

n 1C : C 5C : C

p = {7C}

n

Definition. Let σ be a system state. We say attribute v ∈ V0,1,∗ has
a dangling reference in object u ∈ dom(σ) if and only if the attribute’s
value comprises an object which is not alive in σ, i.e. if

σ(u)(v) 6⊂ dom(σ).

We call σ closed if and only if no attribute has a dangling reference in
any object alive in σ.

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
d
sc
o
n
f
–

5/56

Closed Object Diagrams vs. Dangling References

Find the 10 differences! (Both diagrams shall be complete.)

1C : C 5C : C

p = {1C}

n 1C : C 5C : C

p = {7C}

n

Definition. Let σ be a system state. We say attribute v ∈ V0,1,∗ has
a dangling reference in object u ∈ dom(σ) if and only if the attribute’s
value comprises an object which is not alive in σ, i.e. if

σ(u)(v) 6⊂ dom(σ).

We call σ closed if and only if no attribute has a dangling reference in
any object alive in σ.

Observation: Let G be the (!) complete object diagram of a closed system state σ.
Then the nodes in G are labelled with T -typed attribute/value pairs only.

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
d
sc
o
n
f
–

5/56

Special Notation

• S = ({Int}, {C}, {n, p : C∗}, {C 7→ {n, p}}).

• Instead of

1C : C 5C : Cn

we want to write

1C : C

p = ∅

5C : C

p = ∅

n

or

1C : C 5C : Cn
|

p
|

p

to explicitly indicate that attribute p : C∗ has value ∅ (also for p : C0,1).

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
d
sc
o
n
f
–

6/56

Aftermath

We slightly deviate from the standard (for reasons):

• In the course, C0,1 and C∗-typed attributes only have sets as values.
UML also considers multisets, that is, they can have

u1 : C u2 : C
n

n

(This is not an object diagram in the sense of our definition because of the

requirement on the edges E. Extension is straightforward but tedious.)

• We allow to give the valuation of C0,1- or C∗-typed attributes in the
values compartment.

• Allows us to indicate that a certain r is not referring to another object.

• Allows us to represent “dangling references”, i.e. references to objects
which are not alive in the current system state.

• We introduce a graphical representation of ∅ values.

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
d
sc
o
n
f
–

7/56

The Other Way Round

–
0
5
–
2
0
1
2
-1
1
-0
7
–
m
a
in

–

8/56

The Other Way Round

• If we only have a picture as below, we typically assume that it’s meant
to be an object diagram wrt. some signature and structure.

u1 : C u2 : C u3 : D

z = 0

x p

• In the example, we can conclude (by “good will”) that the author is
referring to some signature S = (T,C, V, atr) with at least

• {C,D} ⊆ C ,

• T ∈ T ,

• {x : C∗, p : C∗, z : T} ⊆ V ,

• {x} ⊆ atr(C),

• {p, z} ⊆ atr(D),

and a structure with

• {u1, u2} ⊆ D(C),

• u3 ∈ D(D),

• 0 ∈ D(T).

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
th
er
w
ay

–

9/56

Example: Object Diagrams for Documentation

–
0
5
–
2
0
1
2
-1
1
-0
7
–
m
a
in

–

10/56

Example: Data Structure [Schumann et al., 2008]
–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
t9
r
–

11/56

Example: Illustrative Object Diagram [Schumann et al., 2008]

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
t9
r
–

12/56

OCL Consistency

–
0
5
–
2
0
1
2
-1
1
-0
7
–
m
a
in

–

13/56

OCL Satisfaction Relation

In the following, S denotes a signature and D a structure of S .

Definition (Satisfaction Relation).

Let ϕ be an OCL constraint over S and σ ∈ ΣD
S

a system state.

We write

• σ |= ϕ (“σ satisfies ϕ”) if and only if IJϕK(σ, ∅) = true.

• σ 6|= ϕ if and only if IJϕK(σ, ∅) = false.

Note: In general we can’t conclude from ¬(σ |= ϕ) to σ 6|= ϕ or vice versa.

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
sa
t
–

14/56

Object Diagrams and OCL

• Let G be an object diagram of signature S wrt. structure D .
Let expr be an OCL expression over S .

We say G satisfies expr , denoted by G |= expr , if and only if

∀σ ∈ G−1 : σ |= expr .

• If G is complete, we can also talk about “6|=”.

(Otherwise, to avoid confusion, avoid “ 6|=”: G−1 could comprise system states

in which expr evaluates to true, false, and ⊥.)

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
sa
t
–

15/56

Object Diagrams and OCL

• Let G be an object diagram of signature S wrt. structure D .
Let expr be an OCL expression over S .

We say G satisfies expr , denoted by G |= expr , if and only if

∀σ ∈ G−1 : σ |= expr .

• If G is complete, we can also talk about “6|=”.

(Otherwise, to avoid confusion, avoid “ 6|=”: G−1 could comprise system states

in which expr evaluates to true, false, and ⊥.)

• Example: (complete — what if not complete wrt. object/attribute/both?)

1C : C

p = ∅

5C : C

n = ∅

p = ∅

1D : D

x = 23

n

• context C inv : n -> isEmpty()

• context C inv : p . n -> isEmpty()

• context D inv : x 6= 0

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
sa
t
–

15/56

OCL Consistency

Definition (Consistency). A set Inv = {ϕ1, . . . , ϕn} of OCL
constraints over S is called consistent (or satisfiable) if and only if
there exists a system state of S wrt. D which satisfies all of them,
i.e. if

∃σ ∈ ΣD

S : σ |= ϕ1 ∧ ... ∧ σ |= ϕn

and inconsistent (or unrealizable) otherwise.

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
sa
t
–

16/56

OCL Inconsistency Example

((C) Prof. Dr. P. Thiemann, http://proglang.informatik.uni-freiburg.de/teaching/swt/2008/)

TeamMember

name : String

age : Integer

name : String

Location

participants

2..* meetings

*
title : String

numParticipants : Integer

start : Date

duration: Time

Meeting

move(newStart : Date)

1

* lo
ca
ti
o
n

m
ee
ti
n
g

• context Location inv :
name = ’Lobby’ impliesmeeting -> isEmpty()

• context Meeting inv :
title = ’Reception’ implies location . name = ”Lobby”

• allInstancesMeeting -> exists(w : Meeting | w . title = ’Reception’)

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
sa
t
–

17/56

Deciding OCL Consistency

• Whether a set of OCL constraints is satisfiable or not is in general not
as obvious as in the made-up example.

• Wanted: A procedure which decides the OCL satisfiability problem.

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
sa
t
–

18/56

Deciding OCL Consistency

• Whether a set of OCL constraints is satisfiable or not is in general not
as obvious as in the made-up example.

• Wanted: A procedure which decides the OCL satisfiability problem.

• Unfortunately: in general undecidable.

Otherwise we could, for instance, solve diophantine equations

c1x
n1

1 + · · ·+ cmxnm

m = d.

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
sa
t
–

18/56

Deciding OCL Consistency

• Whether a set of OCL constraints is satisfiable or not is in general not
as obvious as in the made-up example.

• Wanted: A procedure which decides the OCL satisfiability problem.

• Unfortunately: in general undecidable.

Otherwise we could, for instance, solve diophantine equations

c1x
n1

1 + · · ·+ cmxnm

m = d.

Encoding in OCL:

allInstancesC -> exists(w : C | c1 ∗ w.x
n1

1 + · · ·+ cm ∗ w.xnm

m = d).

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
sa
t
–

18/56

Deciding OCL Consistency

• Whether a set of OCL constraints is satisfiable or not is in general not
as obvious as in the made-up example.

• Wanted: A procedure which decides the OCL satisfiability problem.

• Unfortunately: in general undecidable.

Otherwise we could, for instance, solve diophantine equations

c1x
n1

1 + · · ·+ cmxnm

m = d.

Encoding in OCL:

allInstancesC -> exists(w : C | c1 ∗ w.x
n1

1 + · · ·+ cm ∗ w.xnm

m = d).

• And now? Options: [Cabot and Clarisó, 2008]

• Constrain OCL, use a less rich fragment of OCL.

• Revert to finite domains — basic types vs. number of objects.

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
sa
t
–

18/56

OCL Critique

• Expressive Power:

• “Pure OCL expressions only compute primitive recursive functions, but not
recursive functions in general.” [Cengarle and Knapp, 2001]

• Evolution over Time: “finally self .x > 0”

Proposals for fixes e.g. [Flake and Müller, 2003]. (Or: sequence diagrams.)

• Real-Time: “Objects respond within 10s”

Proposals for fixes e.g. [Cengarle and Knapp, 2002]

• Reachability: “After insert operation, node shall be reachable.”

Fix: add transitive closure.

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
sa
t
–

19/56

OCL Critique

• Expressive Power:

• “Pure OCL expressions only compute primitive recursive functions, but not
recursive functions in general.” [Cengarle and Knapp, 2001]

• Evolution over Time: “finally self .x > 0”

Proposals for fixes e.g. [Flake and Müller, 2003]. (Or: sequence diagrams.)

• Real-Time: “Objects respond within 10s”

Proposals for fixes e.g. [Cengarle and Knapp, 2002]

• Reachability: “After insert operation, node shall be reachable.”

Fix: add transitive closure.

• Concrete Syntax
“The syntax of OCL has been criticized – e.g., by the authors of Catalysis [...]
– for being hard to read and write.

• OCL’s expressions are stacked in the style of Smalltalk, which makes it hard
to see the scope of quantified variables.

• Navigations are applied to atoms and not sets of atoms, although there is a
collect operation that maps a function over a set.

• Attributes, [...], are partial functions in OCL, and result in expressions with
undefined value.” [Jackson, 2002]

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
sa
t
–

19/56

UML Class Diagrams: Stocktaking

–
0
5
–
2
0
1
2
-1
1
-0
7
–
m
a
in

–

20/56

UML Class Diagram Syntax [Oestereich, 2006]

Geschäftsmitarbeiter Geschäftsmitarbeiter

Klassendiagramm

attribut

operation()

«Stereotyp1»
attribut = wert

«Stereotyp1, Stereotyp2»
Paket::Klasse

Sichtbarkeit:
+ public element
protected element
– private element
~ package element

Syntax für Attribute:
Sichtbarkeit Attributname : Paket::Typ [Multiplizität Ordnung] = Initialwert {Eigenschaftswerte}
Eigenschaftswerte: {readOnly}, {ordered}, {composite}
Syntax für Operationen:
Sichtbarkeit Operationsname (Parameterliste):Rückgabetyp {Eigenschaftswerte}

Parameterliste: Richtung Name : Typ = Standardwert
Eigenschaftswerte: {query}
Richtung: in, out, inout

Klasse
Abstrakte

Klasse

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
o
se

–

21/56

What Do We (Have to) Cover?

A class Geschäftsmitarbeiter Geschäftsmitarbeiter

Klassendiagramm

attribut

operation()

«Stereotyp1»
attribut = wert

«Stereotyp1, Stereotyp2»
Paket::Klasse

Sichtbarkeit:
+ public element
protected element
– private element
~ package element

Syntax für Attribute:
Sichtbarkeit Attributname : Paket::Typ [Multiplizität Ordnung] = Initialwert {Eigenschaftswerte}
Eigenschaftswerte: {readOnly}, {ordered}, {composite}
Syntax für Operationen:
Sichtbarkeit Operationsname (Parameterliste):Rückgabetyp {Eigenschaftswerte}

Parameterliste: Richtung Name : Typ = Standardwert
Eigenschaftswerte: {query}
Richtung: in, out, inout

Klasse
Abstrakte

Klasse

• has a set of stereotypes,

• has a name,

• belongs to a package,

• can be abstract,

• can be active,

• has a set of operations,

• has a set of attributes.

Each attribute has

• a visibility,

• a name, a type,

• a multiplicity, an order,

• an initial value, and

• a set of properties, such as readOnly, ordered, etc.

Wanted: places in the signature to represent the information from the picture.

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
o
se

–

22/56

Extended Signature

–
0
5
–
2
0
1
2
-1
1
-0
7
–
m
a
in

–

23/56

Recall: Signature

S = (T,C, V, atr) where

• (basic) types T and classes C , (both finite),

• typed attributes V , τ from T or C0,1 or C∗, C ∈ C ,

• atr : C → 2V mapping classes to attributes.

Too abstract to represent class diagram, e.g. no “place” to put class stereo-
types or attribute visibility.

So: Extend definition for classes and attributes: Just as attributes already
have types, we will assume that

• classes have (among other things) stereotypes and

• attributes have (in addition to a type and other things) a visibility.

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
ex
ts
ig

–

24/56

Extended Classes

From now on, we assume that each class C ∈ C has:

• a finite (possibly empty) set SC of stereotypes,

• a boolean flag a ∈ B indicating whether C is abstract,

• a boolean flag t ∈ B indicating whether C is active.

We use SC to denote the set
⋃

C∈C
SC of stereotypes in S .

(Alternatively, we could add a set St as 5-th component to S to provides the stereo-

types (names of stereotypes) to choose from. But: too unimportant to care.)

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
ex
ts
ig

–

25/56

Extended Classes

From now on, we assume that each class C ∈ C has:

• a finite (possibly empty) set SC of stereotypes,

• a boolean flag a ∈ B indicating whether C is abstract,

• a boolean flag t ∈ B indicating whether C is active.

We use SC to denote the set
⋃

C∈C
SC of stereotypes in S .

(Alternatively, we could add a set St as 5-th component to S to provides the stereo-

types (names of stereotypes) to choose from. But: too unimportant to care.)

Convention:

• We write

〈C, SC , a, t〉 ∈ C

when we want to refer to all aspects of C.

• If the new aspects are irrelevant (for a given context),
we simply write C ∈ C i.e. old definitions are still valid.

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
ex
ts
ig

–

25/56

Extended Attributes

• From now on, we assume that each attribute v ∈ V has
(in addition to the type):

• a visibility

ξ ∈ {public
︸ ︷︷ ︸

:=+

, private
︸ ︷︷ ︸

:=−

, protected
︸ ︷︷ ︸

:=#

, package
︸ ︷︷ ︸

:=∼

}

• an initial value expr0 given as a word from language for initial
values, e.g. OCL expresions.

(If using Java as action language (later) Java expressions would be fine.)

• a finite (possibly empty) set of properties Pv.

We define PC analogously to stereotypes.

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
ex
ts
ig

–

26/56

Extended Attributes

• From now on, we assume that each attribute v ∈ V has
(in addition to the type):

• a visibility

ξ ∈ {public
︸ ︷︷ ︸

:=+

, private
︸ ︷︷ ︸

:=−

, protected
︸ ︷︷ ︸

:=#

, package
︸ ︷︷ ︸

:=∼

}

• an initial value expr0 given as a word from language for initial
values, e.g. OCL expresions.

(If using Java as action language (later) Java expressions would be fine.)

• a finite (possibly empty) set of properties Pv.

We define PC analogously to stereotypes.

Convention:

• We write 〈v : τ, ξ, expr0, Pv〉 ∈ V when we want to refer to all aspects of v.

• Write only v : τ or v if details are irrelevant.

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
ex
ts
ig

–

26/56

And?

• Note:
All definitions we have up to now principally still apply as they are
stated in terms of, e.g., C ∈ C — which still has a meaning with the
extended view.

For instance, system states and object diagrams remain mostly
unchanged.

• The other way round: most of the newly added aspects don’t con-
tribute to the constitution of system states or object diagrams.

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
ex
ts
ig

–

27/56

And?

• Note:
All definitions we have up to now principally still apply as they are
stated in terms of, e.g., C ∈ C — which still has a meaning with the
extended view.

For instance, system states and object diagrams remain mostly
unchanged.

• The other way round: most of the newly added aspects don’t con-
tribute to the constitution of system states or object diagrams.

• Then what are they useful for...?

• First of all, to represent class diagrams.

• And then we’ll see.

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
ex
ts
ig

–

27/56

Mapping UML CDs to Extended Signatures

–
0
5
–
2
0
1
2
-1
1
-0
7
–
m
a
in

–

28/56

From Class Boxes to Extended Signatures

A class box n induces an (extended) signature class as follows:

n: 〈〈S1, . . . , Sk 〉〉

C

ξ1 v1 : τ1 = v0,1 {P1,1, . . . , P1,m1
}

...

ξℓ vℓ : τℓ = v0,ℓ {Pℓ,1, . . . , Pℓ,mℓ
}

C (n) := 〈C, {S1, . . . , Sk}, a(n), t(n)〉

V (n) := {〈v1 : τ1, ξ1, v0,1, {P1,1, . . . , P1,m1
}〉, . . . , 〈vℓ : τℓ, ξℓ, v0,ℓ, {Pℓ,1, . . . , Pℓ,mℓ

}〉}

atr(n) := {C 7→ {v1, . . . , vℓ}}

where
• “abstract” is determined by the font:

a(n) =

{

true , if n = C or n = C {A}

false , otherwise

• “active” is determined by the frame:

t(n) =

{

true , if n = C or n = C

false , otherwise–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
cd

m
a
p
–

29/56

What If Things Are Missing?

• For instance, what about the box above?

C

v : Int

• v has no visibility, no initial value, and (strictly speaking) no properties.

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
cd

m
a
p
–

30/56

What If Things Are Missing?

• For instance, what about the box above?

C

v : Int

• v has no visibility, no initial value, and (strictly speaking) no properties.

It depends.

• What does the standard say? [OMG, 2007a, 121]

“Presentation Options.
The type, visibility, default, multiplicity, property string may be

suppressed from being displayed, even if there are values in the model.”

• Visibility: There is no “no visibility” — an attribute has a visibility in the
(extended) signature.

Some (and we) assume public as default, but conventions may vary.

• Initial value: some assume it given by domain (such as “leftmost value”,
but what is “leftmost” of Z?).
Some (and we) understand non-deterministic initialisation.

• Properties: probably safe to assume ∅ if not given at all.

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
cd

m
a
p
–

30/56

From Class Diagrams to Extended Signatures

• We view a class diagram CD as a graph with nodes {n1, . . . , nN}
(each “class rectangle” is a node).

• C (CD) :=
⋃N

i=1 C (ni)

• V (CD) :=
⋃N

i=1 V (ni)

• atr(CD) :=
⋃N

i=1 atr(ni)

• In a UML model, we can have finitely many class diagrams,

C D = {CD1, . . . , CDk},

which induce the following signature:

S (C D) =

(

T ,
k⋃

i=1

C (CDi),
k⋃

i=1

V (CDi),
k⋃

i=1

atr(CDi)

)

.

(Assuming T given. In “reality”, we can introduce types in class diagrams, the

class diagram then contributes to T .)

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
cd

m
a
p
–

31/56

Is the Mapping a Function?

• Is S (C D) well-defined?

Two possible sources for problems:

(1) A class C may appear in multiple class diagrams:

(i)

C

v : Int

CD1

C

w : Int

CD2

(ii)

C

v : Int

CD1

C

v : Bool

CD2

Simply forbid the case (ii) — easy syntactical check on diagram.–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
cd

m
a
p
–

32/56

Is the Mapping a Function?

(2) An attribute v may appear in multiple classes:

C

v : Bool

D

v : Int

Two approaches:

• Require unique attribute names.
This requirement can easily be established (implicitly, behind the scenes) by
viewing v as an abbreviation for

C::v or D::v

depending on the context. (C::v : Bool and D::v : Int are unique.)

• Subtle, formalist’s approach: observe that

〈v : Bool , . . . 〉 and 〈v : Int , . . . 〉

are different things in V . But we don’t follow that path. . .

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
cd

m
a
p
–

33/56

Class Diagram Semantics

–
0
5
–
2
0
1
2
-1
1
-0
7
–
m
a
in

–

34/56

Semantics

• The semantics of a set of class diagrams C D first of all is the induced
(extended) signature S (C D).

• The signature gives rise to a set of system states given a structure D .

• Do we need to redefine/extend D?

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
cd

se
m

–

35/56

Semantics

• The semantics of a set of class diagrams C D first of all is the induced
(extended) signature S (C D).

• The signature gives rise to a set of system states given a structure D .

• Do we need to redefine/extend D? No.

(Would be different if we considered the definition of enumeration types in class

diagrams. Then the domain of an enumeration type τ , i.e. the set D(τ), would

be determined by the class diagram, and not free for choice.)

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
cd

se
m

–

35/56

Semantics

• The semantics of a set of class diagrams C D first of all is the induced
(extended) signature S (C D).

• The signature gives rise to a set of system states given a structure D .

• Do we need to redefine/extend D? No.

(Would be different if we considered the definition of enumeration types in class

diagrams. Then the domain of an enumeration type τ , i.e. the set D(τ), would

be determined by the class diagram, and not free for choice.)

• What is the effect on ΣD
S
?

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
cd

se
m

–

35/56

Semantics

• The semantics of a set of class diagrams C D first of all is the induced
(extended) signature S (C D).

• The signature gives rise to a set of system states given a structure D .

• Do we need to redefine/extend D? No.

(Would be different if we considered the definition of enumeration types in class

diagrams. Then the domain of an enumeration type τ , i.e. the set D(τ), would

be determined by the class diagram, and not free for choice.)

• What is the effect on ΣD
S
? Little.

For now, we only remove abstract class instances, i.e.

σ : D(C) 9 (V 9 (D(T) ∪ D(C∗)))

is now only called system state if and only if, for all 〈C, SC , 1, t〉 ∈ C ,

dom(σ) ∩ D(C) = ∅.

With a = 0 as default “abstractness”, the earlier definitions apply directly.
We’ll revisit this when discussing inheritance.–

0
5
–
2
0
1
2
-1
1
-0
7
–
S
cd

se
m

–

35/56

What About The Rest?

• Classes:

• Active: not represented in σ.
Later: relevant for behaviour, i.e., how system states evolve over time.

• Stereotypes: in a minute.

• Attributes:

• Initial value: not represented in σ.
Later: provides an initial value as effect of “creation action”.

• Visibility: not represented in σ.
Later: viewed as additional typing information for well-formedness
of system transformers; and with inheritance.

• Properties: such as readOnly, ordered, composite
(Deprecated in the standard.)

• readOnly — later treated similar to visibility.
• ordered — too fine for our representation.
• composite — cf. lecture on associations.

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
cd

se
m

–

36/56

Stereotypes

–
0
5
–
2
0
1
2
-1
1
-0
7
–
m
a
in

–

37/56

Stereotypes as Labels or Tags

• So, a class is

〈C, SC , a, t〉

with a the abstractness flag, t activeness flag, and SC a set of stereotypes.

• What are Stereotypes?

• Not represented in system states.

• Not contributing to typing rules.
(cf. later lecture on type theory for UML)

• [Oestereich, 2006]:
View stereotypes as (additional) “labelling” (“tags”) or as “grouping”.

Useful for documentation and MDA.

• Documentation: e.g. layers of an architecture.
Sometimes, packages (cf. the standard) are sufficient and “right”.

• Model Driven Architecture (MDA): later.

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
st
er
eo

–

38/56

Example: Stereotypes for Documentation

Core

View

Application/Qt

Trace

sort

move

filter

jump

zoom

View/Qt

• Example: Timing Diagram Viewer
[Schumann et al., 2008]

• Architecture of four layers:

• core, data layer

• abstract view layer

• toolkit-specific view layer/widget

• application using widget

• Stereotype “=” layer “=” colour–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
st
er
eo

–

39/56

Stereotypes as Inheritance

• Another view (due to whom?): distinguish

• Technical Inheritance

If the target platform, such as the programming language for the implementation of

the blueprint, is object-oriented, assume a 1-on-1 relation between inheritance in the

model and on the target platform.

• Conceptual Inheritance

Only meaningful with a common idea of what stereotypes stand for. For instance,
one could label each class with the team that is responsible for realising it. Or with
licensing information (e.g., LGPL and proprietary).

Or one could have labels understood by code generators (cf. lecture on MDSE).

• Confusing:

• Inheritance is often referred to as the “is a”-relation.
Sharing a stereotype also expresses “being something”.

• We can always (ab-)use
UML-inheritance for the
conceptual case, e.g.

Core

Cell Trace

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
st
er
eo

–

40/56

Excursus: Type Theory (cf. Thiemann, 2008)

–
0
5
–
2
0
1
2
-1
1
-0
7
–
m
a
in

–

41/56

Type Theory

Recall: In lecture 03, we introduced OCL expressions with types, for instance:

expr ::= w : τ . . . logical variable w

| true | false : Bool . . . constants

| 0 | −1 | 1 | . . . : Int . . . constants

| expr1 + expr2 : Int × Int → Int . . . operation

| size(expr1) : Set(τ) → Int

Wanted: A procedure to tell well-typed, such as (w : Bool)

notw

from not well-typed, such as,

size(w).

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
ty
p
th

–

42/56

Type Theory

Recall: In lecture 03, we introduced OCL expressions with types, for instance:

expr ::= w : τ . . . logical variable w

| true | false : Bool . . . constants

| 0 | −1 | 1 | . . . : Int . . . constants

| expr1 + expr2 : Int × Int → Int . . . operation

| size(expr1) : Set(τ) → Int

Wanted: A procedure to tell well-typed, such as (w : Bool)

notw

from not well-typed, such as,

size(w).

Approach: Derivation System, that is, a finite set of derivation rules.
We then say expr is well-typed if and only if we can derive

A,C ⊢ expr : τ (read: “expression expr has type τ”)

for some OCL type τ , i.e. τ ∈ TB ∪ TC ∪ {Set(τ0) | τ0 ∈ TB ∪ TC }, C ∈ C .–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
ty
p
th

–

42/56

A Type System for OCL

–
0
5
–
2
0
1
2
-1
1
-0
7
–
m
a
in

–

43/56

A Type System for OCL

We will give a finite set of type rules (a type system) of the form

(“name”)
“premises”

“conclusion”
“side condition”

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
ty
p
–

44/56

A Type System for OCL

We will give a finite set of type rules (a type system) of the form

(“name”)
“premises”

“conclusion”
“side condition”

These rules will establish well-typedness statements (type sentences)
of three different “qualities”:

(i) Universal well-typedness:

⊢ expr : τ

⊢ 1 + 2 : Int

(ii) Well-typedness in a type environment A: (for logical variables)

A ⊢ expr : τ

self : τC ⊢ self .v : Int

(iii) Well-typedness in type environment A and context D: (for visibility)

A,D ⊢ expr : τ
self : τC , C ⊢ self . r . v : Int

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
ty
p
–

44/56

Constants and Operations

• If expr is a boolean constant, then expr is of type Bool :

(BOOL)
⊢ B : Bool

, B ∈ {true, false}

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
ty
p
–

45/56

Constants and Operations

• If expr is a boolean constant, then expr is of type Bool :

(BOOL)
⊢ B : Bool

, B ∈ {true, false}

• If expr is an integer constant, then expr is of type Int :

(INT)
⊢ N : Int

, N ∈ {0, 1,−1, . . . }

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
ty
p
–

45/56

Constants and Operations

• If expr is a boolean constant, then expr is of type Bool :

(BOOL)
⊢ B : Bool

, B ∈ {true, false}

• If expr is an integer constant, then expr is of type Int :

(INT)
⊢ N : Int

, N ∈ {0, 1,−1, . . . }

• If expr is the application of operation ω : τ1 × · · · × τn → τ to expressions
expr1, . . . , exprn which are of type τ1, . . . , τn, then expr is of type τ :

(Fun0)
⊢ expr1 : τ1 . . . ⊢ exprn : τn
⊢ ω(expr1, . . . , exprn) : τ

, ω : τ1 × · · · × τn → τ,
n ≥ 1, ω /∈ atr(C)

(Note: this rule also covers ‘=τ ’, ‘isEmpty’, and ‘size’.)

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
ty
p
–

45/56

Constants and Operations Example

(BOOL)
⊢ B : Bool

, B ∈ {true, false}

(INT)
⊢ N : Int

, N ∈ {0, 1,−1, . . . }

(Fun0)
⊢ expr

1
: τ1 . . . ⊢ exprn : τn

⊢ ω(expr
1
, . . . , exprn) : τ

, ω : τ1 × · · · × τn → τ,
n ≥ 1, ω /∈ atr(C)

Example:

• not true

• true+ 3

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
ty
p
–

46/56

Type Environment

• Problem: Whether

w + 3

is well-typed or not depends on the type of logical variable w ∈ W .

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
ty
p
–

47/56

Type Environment

• Problem: Whether

w + 3

is well-typed or not depends on the type of logical variable w ∈ W .

• Approach: Type Environments

Definition. A type environment is a (possibly empty) finite se-
quence of type declarations.
The set of type environments for a given set W of logical variables
and types T is defined by the grammar

A ::= ∅ | A,w : τ

where w ∈ W , τ ∈ T .

Clear: We use this definition for the set of OCL logical variables W and
the types T = TB ∪ TC ∪ {Set(τ0) | τ0 ∈ TB ∪ TC }.

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
ty
p
–

47/56

Environment Introduction and Logical Variables

• If expr is of type τ , then it is of type τ in any type environment:

(EnvIntro)
⊢ expr : τ

A ⊢ expr : τ

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
ty
p
–

48/56

Environment Introduction and Logical Variables

• If expr is of type τ , then it is of type τ in any type environment:

(EnvIntro)
⊢ expr : τ

A ⊢ expr : τ

• Care for logical variables in sub-expressions of operator application:

(Fun1)
A ⊢ expr1 : τ1 . . . A ⊢ exprn : τn

A ⊢ ω(expr1, . . . , exprn) : τ
, ω : τ1 × · · · × τn → τ,

n ≥ 1, ω /∈ atr(C)

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
ty
p
–

48/56

Environment Introduction and Logical Variables

• If expr is of type τ , then it is of type τ in any type environment:

(EnvIntro)
⊢ expr : τ

A ⊢ expr : τ

• Care for logical variables in sub-expressions of operator application:

(Fun1)
A ⊢ expr1 : τ1 . . . A ⊢ exprn : τn

A ⊢ ω(expr1, . . . , exprn) : τ
, ω : τ1 × · · · × τn → τ,

n ≥ 1, ω /∈ atr(C)

• If expr is a logical variable such that w : τ occurs in A,
then we say w is of type τ ,

(Var)
w : τ ∈ A

A ⊢ w : τ

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
ty
p
–

48/56

Type Environment Example

(EnvIntro)
⊢ expr : τ

A ⊢ expr : τ

(Fun1)
A ⊢ expr

1
: τ1 . . . A ⊢ exprn : τn

A ⊢ ω(expr
1
, . . . , exprn) : τ

, ω : τ1 × · · · × τn → τ,
n ≥ 1, ω /∈ atr(C)

(Var)
w : τ ∈ A

A ⊢ w : τ

Example:

• w + 3, A = w : Int

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
ty
p
–

49/56

All Instances and Attributes in Type Environment

• If expr refers to all instances of class C, then it is of type Set(τC),

(AllInst)
⊢ allInstancesC : Set(τC)

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
ty
p
–

50/56

All Instances and Attributes in Type Environment

• If expr refers to all instances of class C, then it is of type Set(τC),

(AllInst)
⊢ allInstancesC : Set(τC)

• If expr is an attribute access of an attribute of type τ for an object of
C as denoted by expr1, then the premise is that expr1 is of type τC :

(Attr0)
A ⊢ expr1 : τC
A ⊢ v(expr1) : τ

, v : τ ∈ atr(C), τ ∈ T

(Attr0,10)
A ⊢ expr1 : τC

A ⊢ r1(expr1) : τD
, r1 : D0,1 ∈ atr(C)

(Attr∗0)
A ⊢ expr1 : τC

A ⊢ r2(expr1) : Set(τD)
, r2 : D∗ ∈ atr(C)

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
ty
p
–

50/56

Attributes in Type Environment Example

(Attr0)
A ⊢ expr

1
: τC

A ⊢ v(expr
1
) : τ

, v : τ ∈ atr(C), τ ∈ T

(Attr0,1
0

)
A ⊢ expr

1
: τC

A ⊢ r1(expr1
) : τD

, r1 : D0,1 ∈ atr(C)

(Attr∗

0)
A ⊢ expr

1
: τC

A ⊢ r2(expr1
) : Set(τD)

, r2 : D∗ ∈ atr(C)

C

x : Int

D

y : Int
r

0.1

• self : τC ⊢ self .x

• self : τC ⊢ self .r.x

• self : τC ⊢ self .r.y

• self : τD ⊢ self .x

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
ty
p
–

51/56

Iterate

• If expr is an iterate expression, then

• the iterator variable has to be type consistent with the base set, and

• initial and update expressions have to be consistent with the result
variable:

(Iter)
A ⊢ expr1 : Set(τ1) A′ ⊢ expr2 : τ2 A′ ⊢ expr3 : τ2

A ⊢ expr1->iterate(w1 : τ1 ; w2 : τ2 = expr2 | expr3) : τ2

where A′ = A⊕ (w1 : τ1)⊕ (w2 : τ2).

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
ty
p
–

52/56

Iterate Example

(AllInst)
⊢ allInstancesC : Set(τC)

(Attr)
A ⊢ expr

1
: τC

A ⊢ v(expr
1
) : τ

(Iter)
A ⊢ expr

1
: Set(τ1) A′ ⊢ expr

2
: τ2 A′ ⊢ expr

3
: τ2

A ⊢ expr
1
->iterate(w1 : τ1 ; w2 : τ2 = expr

2
| expr

3
) : τ2

where A′ = A⊕ (w1 : τ1)⊕ (w2 : τ2).

Example: (S = ({Int}, {C}, {x : Int}, {C 7→ {x}))

allInstancesC -> iterate(self : C;w : Bool = true | w ∧ self . x = 0)

allInstancesC -> forAll(self : C | self . x = 0)

context self : C inv : self . x = 0

context C inv : x = 0

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
ty
p
–

53/56

First Recapitulation

• I only defined for well-typed expressions.

• What can hinder something, which looks like a well-typed OCL
expression, from being a well-typed OCL expression...?

S = ({Int}, {C,D}, {x : Int , n : D0,1}, {C 7→ {n}, {D 7→ {x})

• Plain syntax error:

context C : false

• Subtle syntax error:

context C inv : y = 0

• Type error:

context self : C inv : self . n = self . n . x

–
0
5
–
2
0
1
2
-1
1
-0
7
–
S
o
cl
ty
p
–

54/56

References

–
0
5
–
2
0
1
2
-1
1
-0
7
–
m
a
in

–

55/56

References

[Cabot and Clarisó, 2008] Cabot, J. and Clarisó, R. (2008). UML-OCL verification in
practice. In Chaudron, M. R. V., editor, MoDELS Workshops, volume 5421 of
Lecture Notes in Computer Science. Springer.

[Cengarle and Knapp, 2001] Cengarle, M. V. and Knapp, A. (2001). On the
expressive power of pure OCL. Technical Report 0101, Institut für Informatik,
Ludwig-Maximilians-Universität München.

[Cengarle and Knapp, 2002] Cengarle, M. V. and Knapp, A. (2002). Towards
OCL/RT. In Eriksson, L.-H. and Lindsay, P. A., editors, FME, volume 2391 of
Lecture Notes in Computer Science, pages 390–409. Springer-Verlag.

[Flake and Müller, 2003] Flake, S. and Müller, W. (2003). Formal semantics of static
and temporal state-oriented OCL constraints. Software and Systems Modeling,
2(3):164–186.

[Jackson, 2002] Jackson, D. (2002). Alloy: A lightweight object modelling notation.
ACM Transactions on Software Engineering and Methodology, 11(2):256–290.

[Oestereich, 2006] Oestereich, B. (2006). Analyse und Design mit UML 2.1, 8.

Auflage. Oldenbourg, 8. edition.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version

–
0
5
–
2
0
1
2
-1
1
-0
7
–
m
a
in

–

56/56

