Software Design, Modelling and Analysisin UML

Lecture 05: Class Diagrams|

2012-11-07

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Recall: Corner Cases

Course Map

2 [N

b

-+ e wy = (03, cons,, Snd;)

Closed Object Diagrams vs. Dangling References

)

B =(Qsp.a0, Az, —sp, Fsp)

ien

Find the 10 differences! (Both diagrams shall be complete.)

26

Contents & Goals

Last Lecture:
= OCL Semantics
= Object Diagrams

This Lecture:
« Educational Objectives: Capabilities for following tasks/questions.
+ What is a class diagram?
« For what purposes are class diagrams useful?
+ Could you please map this class diagram to a signature?

= Could you please map this signature to a class diagram?

« Content:
+ Object Diagrams Cont'd.
o Study UML syntax.
« Prepare (extend) definition of signature.
* Map class diagram to (extended) signature.
« Stereotypes — for documentation.

356

Closed Object Diagrams vs. Dangling References

Find the 10 differences! (Both diagrams shall be complete.)

Definition. Let o be a system state. We say attribute v € Vo,1,« has
a dangling reference in object u € dom(c) if and only if the attribute's
value comprises an object which is not alive in o, i.e. if

o(u)(v) ¢ dom

We call o closed if and only if no attribute has a dangling reference in
any object alive in o




Closed Object Diagrams vs. Dangling References Special Notation Aftermath

o S = {Int}, {C} {n,p: C.}.{C = {n.p}}). We slightly deviate from the standard (for reasons):
« In the course, Cp ;1 and C..-typed attributes only have sets as values.
UML also considers multisets, that is, they can have

Find the 10 differences! (Both diagrams shall be complete.)

= Instead of

1lo:C n 5c:C
we want to write (This is not an object diagram in the sense of our definition because of the
Definition. Let o be a system state. We say attribute v € Vp ;.. has le:C requirement on the edges E. Extension is straightforward but tedious.)
a dangling reference in object u € dom(c) if and only if the attribute’s p=0
value comprises an object which is not alive in o, i.e. if or « We allow to give the valuation of Cy ;- or C,-typed attributes in the
d b values compartment.
o(W)(©) ¢ dom(o) N rna il §

We call o closed if and only if no attribute has a dan i : o Allows us to indicate that a certain r is not referring to another object.
any object alive in o 2 g = Allows us to represent “dangling references”, i.e. references to objects
which are not alive in the current system state.

to explicitly indicate that attribute p : C. has value {} (also for p : Cy1).

Observation: Let G be the (1) complete object diagram of a closed system state o.
Then the nodes in G are labelled with 7-typed attribute/value pairs only. 5 2 « We introduce a graphical representation of {) values.
5/56 6/56 ! 56

The Other Way Round

« If we only have a picture as below, we typically assume that it's meant
to be an object diagram wrt. some signature and structure.
we v [mD Example: Object Diagrams for Documentation

=

The Other Way Round

In the example, we can conclude (by “good will") that the author is

referring to some signature . = (7,6, V, atr) with at least

. fedyce

s TET

o il G Ty

o {]} Cak(c)

< a3 g j
! 5 and a structure with 5
g g o fuuf €D )
g i . fug <O

g™ 956

105

' 85 .



Example: Data Sructure [ Schumann et al., 2008]

BaseNode o

+parent: BaseNode* \
‘BaseNode® — terator
+operator++

+nextSibling: BaseNode* | 1

Node
+dataT

+Node(data: T)

1156

OCL Satisfaction Relation

In the following, .& denotes a signature and Z a structure of .%.

Definition (Satisfaction Relation).
Let ¢ be an OCL constraint over .7 and o € % a system state.
We write

« 0 |= ¢ ("o satisfies ¢") if and only if T[] (0, 0) = true.

« o [~ ¢ if and only if I[¢](c,0) = false.

Note: In general we can’t conclude from (o |= ) to o i ¢ or vice versa.

1475

Example: Illustrative Object Diagram [ Schumann et al., 2008]

Object Diagrams and OCL

“
« Let G be an object diagram of signature .%’ wrt. structure 7. ¢
Let expr be an OCL expression over ..

We say G satisfies eapr, denoted by G |= eapr, if and only if

VoeG ol eapr.  GF allbstavarg>Enb(Ec]

« If G is complete, we can also talk about “j=".

(Otherwise, to avoid confusion, avoid “[£": G~ could comprise system states
in which expr evaluates to true, false, and L.)

x> n\

1575

OCL Consistency

1356

Object Diagrams and OCL

« Let G be an object diagram of signature .# wrt. structure Z
Let ezpr be an OCL expression over ..

We say G satisfies expr, denoted by G' |= expr, if and only if
VoeG o= epr.
o If G is complete, we can also talk about “j=".

(Otherwise, to avoid confusion, avoid “i£": G~ could comprise system states
in which ezpr evaluates to true, false, and L.)

« Example: (complete — what if not complete wrt. object/attribute/both?)

15,56



OCL Consistency OCL Inconsistency Example Deciding OCL Consistency

» Whether a set of OCL constraints is satisfiable or not is in general not
as obvious as in the made-up example.

Definition (Consistency). A set Inv = {¢1,...,¢n} of OCL
constraints over .7 is called consistent (or satisfiable) if and only i
there exists a system state of .% wrt. Z which satisfies all of them,
e. if

» Wanted: A procedure which decides the OCL satisfiability problem.

JoesZ koA Aok g,

and inconsistent (or unrealizable) otherwise.

o context Location inv
name = "Lobby’ implies meeting ~> isEmpty()

« context Meeting inv :
] title = 'Reception’ implies location . name = ” Lobby

o alllnstances seeting => exists(w : Meeting | w . title = 'Reception’)

16756 i 17556 ! 1856
Deciding OCL Consistency Deciding OCL Consistency Deciding OCL Consistency

» Whether a set of OCL constraints is satisfiable or not is in general not « Whether a set of OCL constraints is satisfiable or not is in general not » Whether a set of OCL constraints is satisfiable or not is in general not

as obvious as in the made-up example. as obvious as in the made-up example. as obvious as in the made-up example.
» Wanted: A procedure which decides the OCL satisfiability problem. « Wanted: A procedure which decides the OCL satisfiability problem. » Wanted: A procedure which decides the OCL satisfiability problem.
« Unfortunately: in general undecidable « Unfortunately: in general undecidable. « Unfortunately: in general undecidable.

Otherwise we could, for instance, solve diophantine equations Otherwise we could, for instance, solve diophantine equations Otherwise we could, for instance, solve diophantine equations

azyt 4t eprp = d. )t 4 e = et + o e =

Encoding in OCL:

Encoding in OCL:

alllnstancesc -> exists(w : C | ey w0, + -+« 4 + w2l = d). alllnstancesc -> exists(w : C | e W + -+« + ey + WA = d).

And now? Options: [Cabot and Clarisé, 2008]
= « Constrain OCL, use a less rich fragment of OCL.
» Revert to finite domains — basic types vs. number of objects.

185 18756 ! 1856



OCL Critique

« Expressive Power:

.

“Pure OCL expressions only compute primitive recursive functions, but not
[Cengarle and Knapp, 2001]

recursive functions in genera
Evolution over Time: “finally self.a > 0"

Proposals for fixes e.g. [Flake and Milller, 2003]. (Or: sequence diagrams.)
Real-Time: “Objects respond within 10s"

Proposals for fixes e.g. [Cengarle and Knapp, 2002]

Reachability: “After insert operation, node shall be reachable.

Fix: add transitive closure.

19556

UML Class Diagram Syntax [ Oestereich, 2006]

o ThCes - behact cltses ZN.\V e
a
Klassendiagramm Z L
StereolypT, Stereoyp2» steseofspes
Paket: lasse
atribut o] TPM
Klasse Abstrakte operation() bﬁ&}ﬂu .BLJT
t — o'
attribut = wert -/ bk
N — Ly -
AN A bity,
[2 [Mlipiizitat Ordnung] = Initialwert {EigenschaftsweKe}
), (fdered)\composic} St e, Gt of
Syntax i Operationen’ whiel
et ety
sehatci Paran) .g‘m.a.ms.“_sjmsm. yp = Standardwert e (i bl)
* publc lement Eigensipafisuerte: {que
 hroteced clemen (k] Riontngci, ot mout \Fﬁ« )
= private element Cia,
~ackage ement (uf) et
¥ <

T
e
s.!5 e / et tondinig Lt rr..s..ru%
Cless
A 2155

OCL Critique

« Expressive Power:
“Pure OCL expressions only compute pri e recursive functions, but not
recursive functions in general.” [Cengarle and Knapp, 2001]
Evolution over Time: “finally self.z > 0"

Proposals for fixes e.g. [Flake and Miiller, 2003]. (Or: sequence

grams.)
« Real-Time: “Objects respond within 10s"

Proposals for fixes e.g. [Cengarle and Knapp, 2002]
= Reachability: “After insert operation, node shall be reachable.

ix: add transitive closure.

» Concrete Syntax

“The syntax of OCL has been cri

~ for being hard to read and write.

* OCL's expressions are stacked in the style of Smalltalk, which makes it hard

to see the scope of quantified variables.
Navigations are applied to atoms and not sets of atoms, although there is a
collect operation that maps a function over a set.
Attributes, [...], are partial functions in OCL, and result in expressions with
undefined value.” [Jackson, 2002]

ed - e.g., by the authors of Catalysis [...]

What Do We (Have to) Cover? Eﬁ

A class

195

« has a set of stereotypes,

« has a name, Paket::Klasse

“Stereotyp1 Stereotyp2»

M7 | o belongs to a package Abstrakte =
.
elongs to a package, atrakd operation)
Stereotypin
e

.
can be abstract, atiribut = we

can be active,

Syntax i Attribute:

has a set of operations,

Eigenschafiswete: {feadOny), {ordered), {composi]

o has a set of attributes. | Syntaxfir Operaonen:
" Sihibaret Parameteriste: Richtung Name : Typ = Standardvert
Each attribute has +public element Eigenschaftswerte {query}
#protected element Richtung: i, oul, nout

 a visibilit,
2 v ~ package element

 aname, a type,
s W f o a multiplicity, an order,

© an initial value, and

H a st of properties, such as readOnly, ordered, etc.

¢ Wanted: places in the signature to represent the information from the picture

22/5

UML Class Diagrams: Stocktaking

Extended Signature

20756

2356



Recall: Signature

% = (,%,V, atr) where
o (basic) types 7 and classes ¢, (both finite),
o typed attributes V, 7 from 7 or Cy, or C,, C € €

 atr : ¢ — 2" mapping classes to attributes.

Too abstract to represent class diagram, e.g. no “place” to put class stereo-
types or attribute visibility.

So: Extend definition for classes and attributes: Just as attributes already
have types, we will assume that
« classes have (among other things) stereotypes and

« attributes have (in addition to a type and other things) a visi

Extended Attributes

« From now on, we assume that each attribute v € V' has
(in addition to the type):

& € {public, private, protected, package}
=t == = =~

« an initial value expr, given as a word from language for initial
values, e.g. OCL expresions.

(If using Java as action language (later) Java expressions would be fine.
= a finite (possibly empty) set of properties P,
We define Pgg analogously to stereotypes.
v

2456

26/56

Extended Classes

From now on, we assume that each class C' € ¢’ has:
« a finite (possibly empty) set Sc: of stereotypes,
« a boolean flag a € B indicating whether C' is abstract,
« a boolean flag t € B indicating whether C' is active.

We use Sy to denote the set | Sc of stereotypes in ..

(Alternatively, we could add a set St as 5-th component to .#” to provides the stereo-
types (names of stereotypes) to choose from. But: too unimportant to care.)

Extended Classes

From now on, we assume that each class C € ¢ has:

« a finite (possibly empty) set S of stereotypes,

« a boolean flag a € B indicating whether C is abstract,

+ a boolean flag t € B indicating whether C' is active.
We use S¢ to denote the set Cﬁmﬁ Sc of stereotypes in .7
(Alternatively, we could add a set St as 5-th component to %" to provides the stereo-
types (names of stereotypes) to choose from. But: too unimportant to care.)
Convention:

* We write
(C,Sc,atye?

when we want to refer to all aspects of C.

« If the new aspects are irrelevant (for a given context),

we simply write C' € 4 i.e. old definitions are still valid.
2556



Extended Attributes

« From now on, we assume that each attribute v € V' has
(in addition to the type):

& € {public, private, protected, package}
—_———— —— =
=+ = —# =~

al

e an al value expr given as a word from language for
values, e.g. OCL expresions.

(If using Java as action language (later) Java expressions would be fine.)
= a finite (possibly empty) set of properties P,.
We define Py analogously to stereotypes.

Convention:

o We write (v : 7,§, expry, P,) € V when we want to refer to all aspects of

« Write only v : 7 or v if details are irrelevant.
2656

ns we have up to now principally still apply as they are
stated in terms of, e.g., C' € ¥ — which still has a meaning with the
extended view.

For instance, system states and object diagrams remain mostly
unchanged.

The other way round: most of the newly added aspects don’t con-
tribute to the constitution of system states or object diagrams.

2756



And?

» Note:
All definitions we have up to now principally still apply as they are
stated in terms of, e.g., C' € ¢ — which still has a meaning with the
extended view.

For instance, system states and object diagrams remain mostly
unchanged.

The other way round: most of the newly added aspects don’t con-
tribute to the constitution of system states or object diagrams.

Then what are they useful fol
First of all, to represent class diagrams.

+ And then we'll see.

2756

What If Things Are Missing?

« For instance, what about the box above?
« v has no visibility, no initial value, and (strictly speaking) no properties.

30756

Mapping UML CDs to Extended Sgnatures

v 2856
What If Things Are Missing?
v Int
« For instance, what about the box above?
« v has no visibility, no initial value, and (strictly speaking) no properties.
It depends.
+ What does the standard say? [OMG, 2007a, 121]
“Presentation Options.
The type, visibility, default, multiplicity, property string may be
suppressed from being displayed, even if there are values in the model.
— an attribute has a visibility in the
(extended) signature.
Some (and we) assume public as default, but conventions may vary.
; o Initial value: some assume it given by domain (such as “leftmost value",
but what is “leftmost” of Z?).
Some (and we) inistic initialisati
h « Properties: probably safe to assume () if not given at all.
3058

From Class Boxes to Extended Signatures

A class box n induces an (extended) signature class as follows:

J=(C.{S1,..., Sk}, a(n), t(n))
{(vr 7€, v01f AP - Prmg oo (ve 76 € v, {Pes -+, Pem D}
atr(n) == {C — {v1e..v7))

where
« “abstrac

s determined by the font: « “active” is determined by the frame:

=[] ELE .

false , otherwise 29756

orn =

ifn=
-

false , otherwise

From Class Diagrams to Extended Sgnatures

+ We view a class diagram CD as a graph with nodes {n,...,ny}
(each “class rectangle” is a node). o, T
4

m c

o« €(CD) = UY o) = F ) [16i¢

- V(CD) :=UN, V(ni)
o atr(CD) == UY., atr(n;)

o Ina UML model, we can have finitely many class
%7 = (CDy,....CDA},

which induce the following signature:

k k k
(©9) = 7.|Je ), |Jvep), | arcp:)

(Assuming 7 given. In
class diagram then cont

3156



Isthe Mapping a Function? |s the Mapping a Function?

< Is (¢ %) well-defined? (2) An attribute v may appear in multiple classes:
Two possible sources for problems:
(1) A class C may appear in multiple class — Mi Class Diagram Semantics
(i) ’

CDy
c Two approaches:
v : Int  Require unique attribute names.
viewing v as an abbreviation for
Ciw o
CDy CDy
e c . depending on the context. (C::v : Bool and D:v : Int are unique.)
— — m«a ,‘, o Subtle, formalist's approach: observe that
E (v:Bool,...) and (v:Int,. 3
) are different things in V. But we don’t follow that path. .. h
Simply forbid the case (i) — easy syntactical check on diagram. 3256 v 3358 v 3475

Semantics Semantics Semantics

» The semantics of a set of class diagrams €% first of al » The semantics of a set of class diagrams ¢’ first of the induced » The semantics of a set of class diagrams €%

(extended) signature . (€'7). (extended) signature . (¢'7). (extended) signature . (¢'7).
« The signature gives rise to a set of system states given a structure 2. « The signature gives rise to a set of system states given a structure 2. » The signature gives rise to a set of system states given a structure 2
» Do we need to redefine/extend 27 » Do we need to redefine/extend 2?7 No. = Do we need to redefine/extend 7?7 No.

we considered the definition of enumeration types in class (Would be different if we considered the definition of enumeration types in class
e. the set 7(), would grams. Then the domain of an enumeration type 7, i.e. the set Z(r), would
e) be determined by the class

(Would be different
diagrams. Then the domain of an enumeration type 7,
be determined by the class diagram, and not free for ch

gram, and not free for choice.)

« What is the effect on %27

3556 35/5 ! 3556



Semantics

The semantics of a set of class diagrams %7 first of all is the induced
(extended) signature . (€'7).
The signature gives rise to a set of system states given a structure 2.

Do we need to redefine/extend 27 No.

(Would be different if we considered the definition of enumeration types in class
diagrams. Then the domain of an enumeration type 7, i.e. the set Z(), would
be determined by the class diagram, and not free for choice.)

What is the effect on £%7 Little.

For now, we only remove abstract class instances, i.e
o D(C)» (V- (2(T)U2(¢.)))
is now only called system state if and only if, for all (C,S¢,1,t) € €.

dom(a) N 2(C) = 0.

With a = 0 as default “abstractness”, the earlier def
‘We'll revisit this when discussing inheritance.

ons apply directly.

Sereotypes as Labels or Tags

« So, a class
(C.Sc,a.t)

with a the abstractness flag, ¢ aci

« What are Stereotypes?
« Not represented in system states.

« Not contributing to typing rules.
(cf. later lecture on type theory for UML)

« [Oestereich, 2006]:
View stereotypes as (additional) “labe

2" (“tags") or as “grouping”.

Useful for documentation and MDA.

+ Documentation: e.g. layers of an architecture.
Sometimes, packages (cf. the standard) are sufficient and “right".

» Model Driven Architecture (MDA): later.

3556

eness flag, and S¢ a set of stereotypes.

3856

What About The Rest?

« Classes:
« Active: not represented in o.
Later: relevant for behaviour, i.e., how system states evolve over time.

a minute.

» Stereotypes:

o Attributes:
« Initial value: not represented in o.
Later: provides an initial value as effect of “creation action

» Visibility: not represented in o.
Later: viewed as additional typing information for well-formedness
of system transformers; and with inheritance.

Properties: such as readOnly, ordered, composite
(Deprecated in the standard.)

» readOnly — later treated similar to visi
» ordered — too fine for our representation.
« composite — cf. lecture on associations.

ity.

36/56

Example: Sereotypes for Documentation

« Example: Timing Diagram Viewer
[Schumann et al., 2008]
o Architecture of four layers:
g o core, data layer
. o abstract view layer
toolkit-specific view layer /widget ;i

application using widget

* Stereotype “=" layer =" colour 307

Stereotypes

3756

Sereotypes as |nheritance

« Another view (due to whom?): distinguish
o Technical Inheritance
If the target platform, such as the programming language for the implementation of
the blueprint, is object-oriented, assume a 1-on-1 relation between inheritance in the
model and on the target platform

Conceptual Inheritance

h a common idea of what stereotypes stand for. For instance,
. Or with

Only meaningful
one could label each class with the team that is responsible for real
ensing information (e.g., LGPL and proprietary).

Or one could have labels understood by code generators (cf. lecture on MDSE).

« Confusing:

relation.

= Inheritance is often referred to as the “is a”
Sharing a stereotype also expresses “being something”.

» We can always (ab-)use Core i

UML-inheritance for the
conceptual case, e.g. i c

o |

40756



Excursus: Type Theory (cf. Thiemann, 2008)

4156

A Type System for OCL

! 4356

Type Theory
Recall: In lecture 03, we introduced OCL expressions with types, for instance:
expr = w iT ... logical variable w
| true | false : Bool .. constants
[0 =1|1]... :Int ...constants
| eapry + expry : Int x Int — Int ...operation
|size(eapry)  : Set(r) — Int

Wanted: A procedure to tell well-typed, such as (w : Bool)
notw
from not well-typed, such as,
size(w).

A Type System for OCL

We will give a e set of type rules (a type system) of the form
“premises”
(“name”) T side condition”
‘conclusion’

4256

4450

Type Theory

Recall: In lecture 03, we introduced OCL expressions with types, for instance:
expr w i T ... logical variable w
[ true | false : Bool ..constants
[O]=1]1]... :Int ... constants
| expry + expry :Int x Int — Int ... operation
| size(expry) : Set(r) — Int

Wanted: A procedure to tell well-typed, such as (w : Bool)
not w
from not well-typed, such as,
size(w).

Approach: Derivation System, that is, a finite set of derivation rules.
We then say exzpr is well-typed if and only if we can derive

ACtexpr:T (read: “expression ezpr has type

for some OCL type 7, i.e. 7 € Ty U Ty U {Set(ro) | 7 € Tp UTy}, C € 6. 425

A Type System for OCL

We will give a finite set of type rules (a type system) of the form

“premises”
“conclusion”

(“name”)

These rules will establish well-typedness statements (type sentences)
of three different “qualities’

(i) Universal well-typedness:
Feapr: T
F14+2:Int

(if) Well-typedness in a type envi A: (for logical variables)
At eapr
self = 7o b self v : Int

T

Well-typedness in type environment A and context D:

A,DF expr:T
self : 7o, C'F self .r.v: Int A4y56



Constants and Operations

o If expr is a boolean constant, then expr is of type Bool:

(BOOL)

Constants and Operations Example

B : Bool '

B € {true, false}

(BOOL) = B € {true, false}
(INT) B Ne{01,-1,
im ..k iTn
w(eapry, .., empry) i T w5 ()
Example:
© not true
o true+3

4556

46756

Constants and Operations

o If eapr is a boolean constant, then eapr is of type Bool:

(BOOL) g B € {true.false}

o If eapr is an integer constant, then expr is of type Int:

(INT) TN Ne{0,1,-1,...}
i 4555
Type Environment
« Problem: Whether
w+3
well-typed or not depends on the type of logical variable w € W.
; 4775

Constants and Operations

o If expr is a boolean constant, then eapr is of type Bool:

(BOOL) B € {true, false}

= B: Bool '

o If expr is an integer constant, then expr is of type Int:

INT) ————, Ne{0,1,-1,...
UNT) T e }
o If expr is the application of operation w : 7y X -+ X T, — T to expressions
expry, ..., expr, which are of type 71,...,7,, then expr is of type 7:
F expr : ke :
(Punq) m@} n ms?;:. T wiT XX T T,
wleapry,... eapry) : 7 n>1,wé atr(?)

(Note: this rule also covers ‘=", ‘isEmpty’, and ‘size’.)

4556
Type Environment
» Problem: Whether
w+3
well-typed or not depends on the type of logical variable w € W.
« Approach: Type Environments
Definition. A type environment is a (possibly empty) finite se-
quence of type declarations.
The set of type environments for a given set W of logical variables
and types T is defined by the grammar
. Ac=0|Aw:T
3 where w € W, 7 € T.
‘ Clear: We use this definition for the set of OCL logical variables W and
5 the types T = T U Tiw U {Set(ry) | 7o € T U Ty}
' 475



Environment Introduction and Logical Variables

Environment Introduction and Logical Variables

Environment Introduction and Logical Variables

o If expr is of type 7, then it is of type 7 in any type environment: o If expr is of type T, then it is of type T in any type environment:
- expr: T

o If eapr is of type 7, then it is of type T in any type environment:
AF eapr: 7

Feapr it
Enuvli Enuvl _ Envint
(EnvIntro) (EnvIntro) AT eopr 7 (EnvIntro)

» Care for logical variables in sub-expressions of operator application:

« Care for logical variables in sub-expressions of operator application:

(R AT ETT A (P AT ERT Al eprn
Abw(ezpry,... epr,): T n>1 wé¢ atr(€) Abwlempry,... expr,) - 7 n>1w¢atr(€)
£ o If expr is a logical variable such that w : 7 occurs in A,
i then we say w is of type T,
w:TEA
i er) Fras
4856 b 4856 48/56
Type Environment Example All Instances and Attributes in Type Environment All Instances and Attributes in Type Environment
(st —CCEw
AF expr:T o If expr refers to all instances of class C, then it is of type Set(7¢), o If expr refers to all instances of class C, then it is of type Set(7¢),
Al empry Ty ... Ab expr, :Tn
(Funy) SR D BT oy XX T,
Al >@i T 21 wg ar(e) (Allnst) e ancese Set(r0) (AllInst) - e ancese s Sei(0)
(@) FiaTa
o If expr is an attribute access of an attribute of type 7 for an object of
Example: C' as denoted by expr), then the premise is that ezpr, is of type 7¢:
cwt3, A=w:Int
AF expry i 70
(Attrg) AT o(eapr) 7 creatr(C), 7€T
Al eapr i 7
0.1 Pry i Te .
. . Ut ey g T Doa € atr(©)
3 3 3 . AF eapry i 7c )
(Attry) T ratemr) Satny 2iDe€ atr(C)
5056

50756

4956



Iterate Example

Attributes in Type Environment Example Iterate

AF eapry 170 At eapry 10
At ——— iT€atr(C), T€T . B N Al _— 2
(Attro) ey 7 087G (O 7 o If ezpr is an iterate expression, then i) e s foe) ¥ AL o) o7

(Ard%) \_ﬂr eapry it 11 : Doy € atr(C) « the iterator variable has to be type consistent with the base set, and @) AF expry : Set(n1) A'Fempry:m Ak empryim
riespry) : 7o « initial and update expressions have to be consistent with the result At expr,->iterate(w; : T1 ; w2 : T2 = expry | expry) i T2
. At eapr, 7o ) variable ,
(Attrg) AF ralemr ) Setlrs) imésw Seitm)’ D. € atr(C) where A" = A® (w1 : 71) & (w2 : 72)
- » (lter) Example: (' = ({Int},{C}. {z : Int},{C — {2}))
T r ] At expri->iterate(wy : 7y ; wy : T2 = expry | expry): Ty
I

where A' = A® (wy : 71) & (wy : T2).

.

self : 7o F self @

self : 7o b self.ra

.

self : ¢ & self ry
context C'inv: x =0

2110

5356

self +7p F self .
' 515 i

52/56

References

First Recapitulation

. [Cabot and Clarisé, 2008] Cabot, J. and Clarisé, R. (2008). UML-OCL verification in
* I only defined for well-typed expressions. practice. In Chaudron, M. R. V., editor, MoDELS Workshops, volume 5421 of
« What can hinder something, which looks like a well-typed OCL Lecture Notes in Computer Science. Springer.
pression, from being a typed OCL expression...? References [Cengarle and Knapp, 2001] Cengarle, M. V. and Knapp, A. (2001). On the
expressive power of pure OCL. Technical Report 0101, Institut fiir Informatik,
Ludwig-Maximilians-Universitat Miinchen
[Cengarle and Knapp, 2002] Cengarle, M. V. and Knapp, A. (2002). Towards
OCL/RT. In Eriksson, L.-H. and Lindsay, P. A., editors, FME, volume 2391 of
Lecture Notes in Computer Science, pages 390-409. Springer-Verlag
[Flake and Miiller, 2003] Flake, S. and Miiller, W. (2003). Formal semantics of static
° and temporal state-oriented OCL constraints. Software and Systems Modeling,
context C'inv:y =0 2(3):164-186.
[Jackson, 2002] Jackson, D. (2002). Alloy: A lightweight object modelling notation.
i ACM Transactions on Software Engineering and Methodology, 11(2):256-290.
£ [Oestereich, 2006] Oestereich, B. (2006). Analyse und Design mit UML 2.1, 8
context self : C'inv: self .n = self .n.x H i Auflage. Oldenbourg, 8. edition
. [OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
55/56 2.1.2. Technical Report formal/07-11-04

S = ({Int},{C, D}, {z : Int,n: Doa},{C  {n},{D > {z})

context C': false

07 - 50

56/56.

! 54756



