Software Design, Modelling and Analysis in UML

Lecture 06: Type Systems and Visibility

2012-11-13

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents \& Goals

Last Lecture:

- Representing class diagrams as (extended) signatures - for the moment without associations (see Lectures 07 and 08).
- And: in Lecture 03 , implicit assumption of well-typedness of OCL expressions.

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
- Is this OCL expression well-typed or not? Why?
- How/in what form did we define well-definedness?
- What is visibility good for?
- Content:
- Class diagram semantics.
- Stereotypes - for documentation.
- Recall: type theory/static type systems.
- Well-typedness for OCL expression.
- Visibility as a matter of well-typedness.

Recall: From Class Boxes to Extended Signatures

Extended Classes

From now on, we assume that each class $C \in \mathscr{C}$ has:

- a finite (possibly empty) set S_{C} of stereotypes,
- a boolean flag $a \in \mathbb{B}$ indicating whether C is abstract,
- a boolean flag $t \in \mathbb{B}$ indicating whether C is active.

We use $S_{\mathscr{C}}$ to denote the set $\bigcup_{C \in \mathscr{C}} S_{C}$ of stereotypes in \mathscr{S}.
(Alternatively, we could add a set $S t$ as 5 -th component to \mathscr{S} to provides the stereotypes (names of stereotypes) to choose from. But: too unimportant to care.)

Convention:

- We write

$$
\left\langle C, S_{C}, a, t\right\rangle \in \mathscr{C}
$$

when we want to refer to all aspects of C.

- If the new aspects are irrelevant (for a given context), we simply write $C \in \mathscr{C}$ i.e. old definitions are still valid.

Extended Attributes

- From now on, we assume that each attribute $v \in V$ has (in addition to the type):
- a visibility

$$
\xi \in\{\underbrace{\text { public }}_{:=+}, \underbrace{\text { private }}_{:=-}, \underbrace{\text { protected }}_{:=\#}, \underbrace{\text { package }}_{:=\sim}\}
$$

- an initial value $\exp r_{0}$ given as a word from language for initial values, e.g. OCL expresions.
(If using Java as action language (later) Java expressions would be fine.)
- a finite (possibly empty) set of properties P_{v}.

We define $P_{\mathscr{C}}$ analogously to stereotypes.

Convention:

- We write $\left\langle v: \tau, \xi, \operatorname{expr} r_{0}, P_{v}\right\rangle \in V$ when we want to refer to all aspects of v.
- Write only $v: \tau$ or v if details are irrelevant.

From Class Boxes to Extended Signatures

A class box n induces an (extended) signature class as follows:

Class Diagram Semantics

Semantics

- The semantics of a set of class diagrams $\mathscr{C} \mathscr{D}$ first of all is the induced (extended) signature $\mathscr{S}(\mathscr{C} \mathscr{D})$.
- The signature gives rise to a set of system states given a structure \mathscr{D}.
- Do we need to redefine/extend \mathscr{D} ? No.
(Would be different if we considered the definition of enumeration types in class diagrams. Then the domain of an enumeration type τ, i.e. the set $\mathscr{D}(\tau)$, would be determined by the class diagram, and not free for choice.)

Semantics

- The semantics of a set of class diagrams $\mathscr{C} \mathscr{D}$ first of all is the induced (extended) signature $\mathscr{S}(\mathscr{C} \mathscr{D})$.
- The signature gives rise to a set of system states given a structure \mathscr{D}.
- Do we need to redefine/extend \mathscr{D} ? No.
(Would be different if we considered the definition of enumeration types in class diagrams. Then the domain of an enumeration type τ, i.e. the set $\mathscr{D}(\tau)$, would be determined by the class diagram, and not free for choice.)
- What is the effect on $\Sigma_{\mathscr{S}}^{\mathscr{D}}$? Little.

For now, we only remove abstract class instances, i.e.

$$
\sigma: \mathscr{D}(\mathscr{C}) \nrightarrow\left(V \nrightarrow\left(\mathscr{D}(\mathscr{T}) \cup \mathscr{D}\left(\mathscr{C}_{*}\right)\right)\right)
$$

is now only called system state if and only if, for all $\left\langle C, S_{C}, 1, t\right\rangle \in \mathscr{C}$,

$$
\operatorname{dom}(\sigma) \cap \mathscr{D}(C)=\emptyset
$$

With $a=0$ as default "abstractness", the earlier definitions apply directly. We'll revisit this when discussing inheritance.

What About The Rest?

- Classes:

- Active: not represented in σ.

Later: relevant for behaviour, i.e., how system states evolve over time.

- Stereotypes: in a minute.

- Attributes:

- Initial value: not represented in σ.

Later: provides an initial value as effect of "creation action".

- Visibility: not represented in σ.

Later: viewed as additional typing information for well-formedness of system transformers; and with inheritance.

- Properties: such as readOnly, ordered, composite (Deprecated in the standard.)
- readOnly - later treated similar to visibility.
- ordered - too fine for our representation.
- composite - cf. lecture on associations.

Stereotypes

- So, a class is

$$
\left\langle C, S_{C}, a, t\right\rangle
$$

with a the abstractness flag, t activeness flag, and S_{C} a set of stereotypes.

- What are Stereotypes?
- Not represented in system states.
- Not contributing to typing rules.
(cf. type theory for UML later)
- [Oestereich, 2006]:

View stereotypes as (additional) "labelling" ("tags") or as "grouping".
Useful for documentation and MDA.

- Documentation: e.g. layers of an architecture.

Sometimes, packages (cf. the standard) are already sufficient and "right".

- Model Driven Architecture (MDA): Iater.

Example: Stereotypes for Documentation

- Example: Timing Diagram Viewer [Schumann et al., 2008]
- Architecture of four layers:
- core, data layer
- abstract view layer
- toolkit-specific view layer/widget
- application using widget
- Stereotype "=" layer "=" colour

Stereotypes as Inheritance

- Another view (due to whom?): distinguish
- Technical Inheritance

If the target platform, such as the programming language for the implementation of the blueprint, is object-oriented, assume a 1 -on-1 relation between inheritance in the model and on the target platform.

- Conceptual Inheritance

Only meaningful with a common idea of what stereotypes stand for. For instance, one could label each class with the team that is responsible for realising it. Or with licensing information (e.g., LGPL and proprietary).
Or one could have labels understood by code generators (cf. lecture on MDSE).

- Confusing:

- Inheritance is often referred to as the "is a"-relation. Sharing a stereotype also expresses "being something".
- We can always (ab-)use UML-inheritance for the conceptual case, e.g.

Excursus: Type Theory (cf. Thiemann, 2008)

Type Theory

Recall: In lecture 03, we introduced OCL expressions with types, for instance:

$\operatorname{expr}::=$	w	$: \tau$	\ldots logical variable w
	\mid true \mid false	$:$ Bool	\ldots constants
	$\|0\|-1\|1\| \ldots$	$:$ Int	\ldots constants
	$\mid \operatorname{expr}_{1}+\operatorname{expr}_{2}$	$: \operatorname{Int} \times$ Int \rightarrow Int	\ldots operation
	$\mid \operatorname{size}\left(\operatorname{expr}_{1}\right)$	$: \operatorname{Set}(\tau) \rightarrow$ Int	

Wanted: A procedure to tell well-typed, such as ($w:$ Bool)
not w
from not well-typed, such as, size (w).

Approach: Derivation System, that is, a finite set of derivation rules. We then say expr is well-typed if and only if we can derive
$A, C \vdash \operatorname{expr}: \tau \quad$ (read: "expression expr has type τ ")
for some OCL type τ, i.e. $\tau \in T_{B} \cup T_{\mathscr{C}} \cup\left\{\operatorname{Set}\left(\tau_{0}\right) \mid \tau_{0} \in T_{B} \cup T_{\mathscr{C}}\right\}, C \in \mathscr{C}$.

A Type System for OCL

A Type System for OCL

We will give a finite set of type rules (a type system) of the form

$$
\text { ("name") } \frac{\text { "premises" }}{\text { "conclusion" }} \text { "side condition" }
$$

These rules will establish well-typedness statements (type sentences) of three different "qualities":
(i) Universal well-typedness:

$$
\begin{gathered}
\vdash \operatorname{expr}: \tau \\
\vdash 1+2: \text { Int }
\end{gathered}
$$

(ii) Well-typedness in a type environment A (for logical variables)

$$
\begin{gathered}
A \vdash \operatorname{expr}: \tau \\
\text { self }: \tau_{C} \vdash \text { self.v }: \text { Int }
\end{gathered}
$$

(iii) Well-typedness in type environment A and context B : (for visibility)
$A, B \vdash \operatorname{expr}: \tau$
self : $\tau_{C}, C \vdash$ self. $r . v:$ Int

- If expr is a boolean constant, then expr is of type Bool:

$$
(B O O L) \quad \overline{\vdash B: \text { Sol }}, \quad B \in\{\text { true, false }\}
$$

- If expr is an integer constant, then expr is of type Int:

$$
(\text { INT }) \quad \overline{\vdash N: \text { Int }}, \quad N \in\{0,1,-1, \ldots\}
$$

- If expr is the application of operation $\omega: \tau_{1} \times \cdots \times \tau_{n} \rightarrow \tau$ to expressions $\operatorname{expr}_{1}, \ldots, \operatorname{expr}_{n}$ which are of type $\tau_{1}, \ldots, \tau_{n}$, then expr is of type τ :

$$
\begin{array}{ll}
\left(\text { Fun }_{0}\right) \quad \frac{\vdash \operatorname{expr}_{1}: \tau_{1} \ldots \vdash \operatorname{expr}_{n}: \tau_{n}}{\vdash \omega\left(\operatorname{expr}_{1}, \ldots, \operatorname{expr}_{n}\right): \tau}, \quad & \omega: \tau_{1} \times \cdots \times \tau_{n} \rightarrow \tau \\
& n \geq 1, \omega \notin \operatorname{atr}(\mathscr{C})
\end{array}
$$

(Note: this rule also covers ' $={ }_{\tau}$ ', 'isEmpty', and 'size'.)

Constants and Operations Example

Example:

- not true

- istapot $(\{1,2\})$:
is Expiry (i\{ 1,2$)$)

Type Environment

- Problem: Whether

$$
w+3
$$

is well-typed or not depends on the type of logical variable $w \in W$.

- Approach: Type Environments

Definition. A type environment is a (possibly empty) finite sequence of type declarations.
The set of type environments for a given set W of logical variables and types T is defined by the grammar

$$
A::=\emptyset \mid A, w: \tau
$$

where $w \in W, \tau \in T$.

Clear: We use this definition for the set of OCL logical variables W and the types $T=T_{B} \cup T_{\mathscr{C}} \cup\left\{\operatorname{Set}\left(\tau_{0}\right) \mid \tau_{0} \in T_{B} \cup T_{\mathscr{C}}\right\}$.

Environment Introduction and Logical Variables

- If expr is of type τ, then it is of type τ in any type environment:

$$
\left(\text { EnvIntro) } \frac{\vdash \operatorname{expr}: \tau}{A \vdash \operatorname{expr}: \tau}\right.
$$

- Care for logical variables in sub-expressions of operator application:

$$
\left(\text { Fun }_{1}\right) \quad \frac{A \vdash \operatorname{expr}}{1}: \tau_{1} \ldots A \vdash \operatorname{expr} r_{n}: \tau_{n}, \quad \omega: \tau_{1} \times \cdots \times \tau_{n} \rightarrow \tau
$$

- If expr is a logical variable such that $w: \tau$ occurs in A, then we say w is of type τ,

$$
\text { (Var) } \frac{w: \tau \in A}{A \vdash w: \tau}
$$

Type Environment Example

$$
\begin{array}{rcl}
\text { (EnvIntro) } & \frac{\vdash \operatorname{expr}: \tau}{A \vdash \operatorname{expr}: \tau} \\
& \text { Fun } \left._{1}\right) & \frac{A \vdash \operatorname{expr} r_{1}: \tau_{1} \ldots A \vdash \operatorname{expr} r_{n}: \tau_{n}}{A \vdash \omega\left(\operatorname{expr} r_{1}, \ldots, \operatorname{expr} r_{n}\right): \tau}, \\
& \frac{w: \tau \in A}{A \vdash w: \tau} & n \geq 1, \omega \notin \operatorname{atr}(\mathscr{C}) \\
(\text { Var }) & &
\end{array}
$$

Example:

- $w+3, A=w:$ Int

C_{b} wiS well-tuperd in tope envitument A

All Instances and Attributes in Type Environment

- If expr refers to all instances of class C, then it is of type $\operatorname{Set}\left(\tau_{C}\right)$,

$$
\text { (AllInst) } \overline{\vdash \text { alllnstances }_{C}: \operatorname{Set}\left(\tau_{C}\right)}
$$

- If expr is an attribute access of an attribute of type τ for an object of C as denoted by $\operatorname{expr} r_{1}$, then the premise is that expr_{1} is of type τ_{C} :

$$
\begin{aligned}
& \left(A t t r_{0}\right) \quad \frac{A \vdash \operatorname{expr}}{1}: \tau_{C} \quad\left(\underset{\sim}{\left.\exp r_{1}\right): \tau}, \quad v \in \operatorname{atr}(\stackrel{C}{C}), \tau \in \mathscr{T}\right. \\
& \left(\operatorname{Attr}_{0}^{0,1}\right) \quad \frac{A \vdash \operatorname{expr}_{1}: \tau_{C}^{\stackrel{r}{C}}}{A \vdash r_{1}\left(\operatorname{expr} r_{1}\right): \tau_{D}}, \quad r_{1}: \underbrace{D_{0} \in \operatorname{atr}(}_{0,1}(\underset{C}{(}) \\
& \left(A t t r_{0}^{*}\right) \quad \frac{A \vdash \operatorname{expr}_{1}: \tau_{C}}{A \vdash r_{2}\left(\operatorname{expr}_{1}\right): \operatorname{Set}(\underbrace{\tau_{D}})}, \quad r_{2}: \underbrace{D^{*}} \in \operatorname{atr}(C)
\end{aligned}
$$

Attributes in Type Environment Example

- self : $\tau_{C} \vdash$ self .x: Int well. .teed by (Al to), (Var)
- self: $\tau_{C} \vdash$ self.r: τ_{D} well-4yped by (Att $),\left(V_{N}\right)$

Iterate

- If expr is an iterate expression, then
- the iterator variable has to be type consistent with the base set, and
- initial and update expressions have to be consistent with the result variable:

Iterate Example

$$
\begin{aligned}
& \text { (AllInst) } \left.\quad \begin{array}{l}
\\
\vdash \text { allInstances }_{C}: \operatorname{Set}\left(\tau_{C}\right)
\end{array} \quad(\text { Att }) \quad \frac{A \vdash \operatorname{expr}_{1}: \tau_{C}}{A \vdash v(\operatorname{expr}}{ }_{1}\right): \tau \\
& \text { (ster) } \frac{A \vdash \operatorname{expr}_{1}: \operatorname{Set}\left(\tau_{1}\right) \quad A \vdash \operatorname{expr}_{2}: \tau_{2} \quad A^{\prime} \vdash \operatorname{expr}_{3}: \tau_{2}}{A \vdash \operatorname{expr}}->\operatorname{iterate}\left(w_{1}: \tau_{1} ; w_{2}: \tau_{2}=\operatorname{expr}_{2} \mid \operatorname{expr}_{3}\right): \tau_{2} \quad \\
& \text { where } A^{\prime}=A \oplus\left(w_{1}: \tau_{1}\right) \oplus\left(w_{2}: \tau_{2}\right) \text {. }
\end{aligned}
$$

Example: $\quad(\mathscr{S}=(\{\operatorname{Int}\},\{C\},\{x: \operatorname{Int}\},\{C \mapsto\{x\}))$

First Recapitulation

- I only defined for well-typed expressions.
- What can hinder something, which looks like a well-typed OCL expression, from being a well-typed OCL expression...?

$$
\mathscr{S}=\left(\{\text { Int }\},\{C, D\},\left\{x: \text { Int }, n: D_{0,1}\right\},\{C \mapsto\{n\},\{D \mapsto\{x\})\right.
$$

- Plain syntax error:

- Type cor:

- Type error:

References

References

[Oestereich, 2006] Oestereich, B. (2006). Analyse und Design mit UML 2.1, 8.
Auflage. Oldenbourg, 8. edition.
[OMG, 2006] OMG (2006). Object Constraint Language, version 2.0. Technical Report formal/06-05-01.
[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2. Technical Report formal/07-11-04.
[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2. Technical Report formal/07-11-02.
[Schumann et al., 2008] Schumann, M., Steinke, J., Deck, A., and Westphal, B. (2008). Traceviewer technical documentation, version 1.0. Technical report, Carl von Ossietzky Universität Oldenburg und OFFIS.

