— 06 — 2012-11-13 — main —

Software Design, Modelling and Analysis in UML

Lecture 06: Type Systems and Visibility
2012-11-13

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 06 — 2012-11-13 — Sprelim —

Last Lecture:

Representing class diagrams as (extended) signatures — for the moment
without associations (see Lectures 07 and 08).

And: in Lecture 03, implicit assumption of well-typedness of OCL expressions.

This Lecture:
Educational Objectives: Capabilities for following tasks/questions.
Is this OCL expression well-typed or not? Why?
How /in what form did we define well-definedness?

What is visibility good for?

Content:
Class diagram semantics.
Stereotypes — for documentation.
Recall: type theory/static type systems.
Well-typedness for OCL expression.
Visibility as a matter of well-typedness.

2/44

— 06 — 2012-11-13 — main

— 06 — 2012-11-13 — main —

Recall: From Class Boxes to Extended Sgnatures

344

Extended Classes

— 05 — 2012-11-07 — Sextsig —

From now on, we assume that each class C' € € has:
a finite (possibly empty) set S¢ of stereotypes,
a boolean flag a € B indicating whether C' is abstract,
a boolean flag t € B indicating whether C' is active.

We use S¢ to denote the set | J. . Sc of stereotypes in ..

(Alternatively, we could add a set St as 5-th component to . to provides the stereo-
types (names of stereotypes) to choose from. But: too unimportant to care.)

Convention:

We write
(C,Sc,a,t) €€

when we want to refer to all aspects of C.

If the new aspects are irrelevant (for a given context),
we simply write C' € % i.e. old definitions are still valid.

25/56

444

— 06 — 2012-11-13 — main

— 06 — 2012-11-13 — main —

Extended Attributes

— 05 — 2012-11-07 — Sextsig —

o From now on, we assume that each attribute v € V has
(in addition to the type):

« a visibility
& € {public, private, protected, package}
—— —— —— ——

=4 =— = =

e an initial value expr, given as a word from language for initial
values, e.g. OCL expresions.
(If using Java as action language (later) Java expressions would be fine.)
o a finite (possibly empty) set of properties P,,.
We define Px analogously to stereotypes.

Convention:
o We write (v : 7,&, expry, P,) € V when we want to refer to all aspects of v.

o Write only v : 7 or v if details are irrelevant.
26/56

5/aa

From Class Boxes to Extended Sgnatures

— 05 — 2012-11-07 — Scdmap —

V(n
atr(n) :={C — {vi,. .., ve}}
where
o “abstract” is determined by the font: o “active” is determined by the frame:

A class box n induces an (extended) signature class as follows:

= (C,{S1,..., Sk}, a(n), t(n))
) = {{v1 s 71, &, 00,1 {Pr1s -, Proma 1) - (oo 70, €, v0,0, { Pt - -+, Pem, 1)}

false , otherwise false , otherwise

a(n)z{true ,ifn:orn: t(n){true ,ifn:orn:

29/56

6/44

Class Diagram Semantics

— 06 — 2012-11-13 — main

7 /24

Semantics

The semantics of a set of class diagrams ¥ 2 first of all is the induced
(extended) signature ¥ (€' 2).

The signature gives rise to a set of system states given a structure 2.

Do we need to redefine/extend 27 No.

(Would be different if we considered the definition of enumeration types in class
diagrams. Then the domain of an enumeration type 7, i.e. the set Z2(7), would
be determined by the class diagram, and not free for choice.)

2
eovn T /\’—'P j):({Tj' "‘f
} 3) D(T)=54.8.C

— 06 — 2012-11-13 — Scdsem —

844

Semantics

— 06 — 2012-11-13 — Scdsem —

The semantics of a set of class diagrams ¥ 2 first of all is the induced
(extended) signature . (¢ 2).

The signature gives rise to a set of system states given a structure 9.

Do we need to redefine/extend 27 No.

(Would be different if we considered the definition of enumeration types in class
diagrams. Then the domain of an enumeration type 7, i.e. the set 2(7), would
be determined by the class diagram, and not free for choice.)

What is the effect on 2,7 Little.

For now, we only remove abstract class instances, i.e.
7:2(€) + (V+ (2(7)UD(%.)))
is now only called system state if and only if, for all (C,S¢,1,t) € €,
dom(c) N 2(C) = 0.

With a = 0 as default “abstractness”, the earlier definitions apply directly.

We'll revisit this when discussing inheritance. o
/44

What About The Rest?

— 06 — 2012-11-13 — Scdsem —

Classes:

Active: not represented in o.
Later: relevant for behaviour, i.e., how system states evolve over time.

Stereotypes: in a minute.

Attributes:

Initial value: not represented in o.
Later: provides an initial value as effect of “creation action”.

Visibility: not represented in o.
Later: viewed as additional typing information for well-formedness
of system transformers; and with inheritance.

Properties: such as readOnly, ordered, composite
(Deprecated in the standard.)

readOnly — later treated similar to visibility.
ordered — too fine for our representation.
composite — cf. lecture on associations.

9/44

— 06 — 2012-11-13 — main

Sereotypes

10/44

Sereotypes as Labels or Tags

— 06 — 2012-11-13 — Sstereo —

So, a class is
<C7 SCv a, t>

with a the abstractness flag, ¢ activeness flag, and S¢ a set of stereotypes.

What are Stereotypes?
Not represented in system states.

Not contributing to typing rules.
(cf. type theory for UML later)

[Oestereich, 2006]:
View stereotypes as (additional) “labelling” (*“tags") or as “grouping”.

Useful for documentation and MDA.

Documentation: e.g. layers of an architecture.
Sometimes, packages (cf. the standard) are already sufficient and “right”.

Model Driven Architecture (MDA): later.
11/44

Example: Stereotypes for Documentation

— 06 — 2012-11-13 — Sstereo —

_ !iew/Q!

s View

4 TN
Core .
\ v,

'
|
V . A
—a— ,
i [] | 5| [B 5 [Pk 0
. . o ;
— =] T T
— - x
- e
£
S | o
Toow| S || g - -
' | [Y
. . . = 5 » i ¢
Example: Timing Diagram Viewer S e] |]| L
S O] [L
[Schumann et al., 2008] i ; Vi =,
. i i] - i
Architecture of four layers: i || e [FERGeR] | [Seg
o < |
core, data layer e SR N
. 5 == [e e]
abstract view layer | B

. .pe . . T 3 | G o
toolkit-specific view layer/widget I

application using widget

m

=" layer “=" colour

“

Stereotype
1244

Sereotypes as Inheritance

— 06 — 2012-11-13 — Sstereo —

Another view (due to whom?): distinguish
Technical Inheritance
If the target platform, such as the programming language for the implementation of
the blueprint, is object-oriented, assume a 1-on-1 relation between inheritance in the
model and on the target platform.
Conceptual Inheritance

Only meaningful with a common idea of what stereotypes stand for. For instance,
one could label each class with the team that is responsible for realising it. Or with
licensing information (e.g., LGPL and proprietary).

Or one could have labels understood by code generators (cf. lecture on MDSE).

Confusing:
Inheritance is often referred to as the “is a”"-relation.
Sharing a stereotype also expresses “being something” .

We can always (ab-)use
UML-inheritance for the
conceptual case, e.g.

13/44

— 06 — 2012-11-13 — main

Excursus: Type Theory (cf. Thiemann, 2008)

1444

Type Theory

— 06 — 2012-11-13 — Stypth —

Recall: In lecture 03, we introduced OCL expressions with types, for instance:

erpr = w iT ... logical variable w
| true | false : Bool ...constants
|0 —=1]1]... :Int ...constants
| expry + expry @ Int x Int — Int ...operation
| size(expry) : Set(1) — Int

Wanted: A procedure to tell well-typed, such as (w : Bool)
not w
from not well-typed, such as,
size(w).

Approach: Derivation System, that is, a finite set of derivation rules.
We then say expr is well-typed if and only if we can derive
A CtFexpr:T (read: “expression expr has type 7")

for some OCL type 7, i.e. 7 € T UTw U {Set(ry) | 70 € T UTw}, C € F. 15,
44

— 06 — 2012-11-13 — main

A Type System for OCL

- 06 — 2012-11-13 — Socltyp —

A Type System for OCL
We will give a finite set of type rules (a type system) of the form
“premises”
(“name” p—| “side condition”
conclusion
These rules will establish well-typedness statements (type sentences)
of three different “qualities”:
(i) Universal well-typedness:
Foexpr:T
F142:Int
(i) Well-typedness in a type environment A: (for logical variables)
At expr:T
self 1 1o & self.v: Int
(i) Well-typedness in type environment A and context B: (for visibility)

A Bt expr:T
self :17¢,CFself .r.v: Int

16/44

1744

Constants and Operations

o If expr is a boolean constant, then expr is of type Bool:

(BOOL)

F B : Bool '

B € {true, false}

o If expr is an integer constant, then ezpr is of type Int:

INT _—
() FN:Int'’

Ne{0,1,-1,...}

o If expr is the application of operation w: 7 X -+ X 7, — T to expressions
expry, ..., expr, which are of type 71,...,7,, then expr is of type 7:

Fexpry T ...

Fexpr, : T,
y WITE X s X Ty T,

F
(Funo) Fw(expry, ...,

— 06 — 2012-11-13 — Socltyp —

expr,) : T n>1, wé¢ atr(%)

(Note: this rule also covers ‘=", ‘isEmpty’, and ‘size’.)

1844

Constants and Operations Example

(BOOL) m, B e {true, false}
(INT) — Ne{0,1,-1,...}
(Funo) l—exprlzn...l—ezprn:m’ 95 55, 52 00 52 G =5 G
Fw(expry,...,expr,) : 7 n>1,w¢ atr()
Example:
* not true o byl (11,23):
' beels(f(
I
VEY 7'2))
F hod ~ou - Baf
e gs
el . . A
o true+3 ﬂﬂ‘l‘ R Lé) —(t)
0(/ o dt\i, rules (‘\‘— 1t By)kt

% C(’“w.

Pl e F3Re

fog 4 3 7 Int .
L‘;i.n.-"z ’b"’}*‘muw

— 06 — 2012-11-13 — Socltyp —

(")
F3(7,2): set(nt)

Fny) —
= FisE¥ (1(12)) - Bwr

19/44

Type Environment

— 06 — 2012-11-13 — Socltyp —

Problem: Whether
w—+ 3

is well-typed or not depends on the type of logical variable w € W.

Approach: Type Environments

.)

Definition. A type environment is a (possibly empty) finite se-

quence of type declarations.
The set of type environments for a given set W of logical variables

and types T is defined by the grammar
Aw=0|Aw:T

where w e W, 7 €T.

\ J

Clear: We use this definition for the set of OCL logical variables W and
the types T =Tp U Ty U {Set(To) | 0 €T U T<g}

20714
Environment Introduction and Logical Variables
If expr is of type 7, then it is of type 7 in any type environment:
Fexpr:T

Envl _

(EnvIntro) Al expr:T
Care for logical variables in sub-expressions of operator application:

Atrexpri:m ... Atk expr, 7, wiT XX

Funy)
(At w(expry,...,expr,) T n>1, wé atr(%)

If expr is a logical variable such that w : 7 occurs in A,
then we say w is of type T,
w:T €A
(Var)

Artw:T

- 06 — 2012-11-13 — Socltyp —

21/2a

Type Environment Example

— 06 — 2012-11-13 — Socltyp —

Fexpr T
(Env]ntro) m
Abrexpri:m ... A expr, :
P Cw: e S s
{eien) At w(expry,...,expr,): T : Zﬁl,xw ¢ ;t:(‘f) i
w:TEA
(Var) AFwr
Example:
o w+3, A=w: Int
A —— (i)
r~ QY.
bt € L laf Pkt
g SHEHE e (i
oirokt whtrde o
1
Qb F o3 ket)
o

A
Co w2 wltdped b Fe ewimmond A

22/44

All Instances and Attributes in Type Environment

— 06 — 2012-11-13 — Socltyp —

o If expr refers to all instances of class C, then it is of type Set(7¢),

Alllnst
(Altinst) F alllnstancesc : Set(7¢)

o If expr is an attribute access of an attribute of type 7 for an object of
C as denoted by ezpry, then the premise is that expr; is of type 7¢:

Al expry: T'c: >
A :
(Attro) —— o(eapry) :Me atr(C), 7€ T

0.1 Al expry: 7'51
(Attry™) r1: Doq € atr(C)

At ri(expry) : TU
. Al expry: o
Att , : D, tr(C
(Attrg) At ro(expry) : Set(Tp) 2 § € atr(C)

2314

Attributes in Type Environment Example

— 06 — 2012-11-13 — Socltyp

(atro) GELIE wirean(O)re s
1) 8
0.1 Ak expry : ¢ } Agp""u‘/
(Attry™) Ar ri(eapry): D" r1: Doq € atr(C) A“[’
. Al expr, : ¢) ,1,3‘
(Attrs) A& ro(expry) : Set(mp)’ ra: Ds € atr(C) ‘_"go\."‘(A
anst ikl >
c S - R -
x: Int o y: Int o Te
f - F e &
Nl 772
o self : 1o F self.y : Int o) I(,’:Q}—y(u#}:l«t
(p nol well ‘é’x’/
o self 17 b oself.x: Int el -iged by (W), ()

o self :7c & self.r : 7p mU*—";‘f“‘ by ()4#(,), (w)

o self : 1o F self.r.x: Int not er-‘b/m/, K&A‘(‘ (3))

o ny : T+ :4‘{-(-3\ [+ uu""s{‘«/

Iterate

o If expr is an iterate expression, then

A=E D)
Ari(dg))
- (A%

Ak yle (el) bt

24 /44

o the iterator variable has to be type consistent with the base set, and
e initial and update expressions have to be consistent with the result

variable:

Ab exg, St(7;) AFegn:T,

/‘\II’CXK:g ‘G

(Iter)

\

S e - -

w)h : T2).

“ “reseld ©

[ém o Uty A

(s 1t ks sope)

where A’ =

— 06 — 2012-11-13 — Socltyp —

~- .

At expr1 >|terate(LI T1 Wyt T2 = €apry | eacpr3)
/

/

25/14

|terate Example

— 06 — 2012-11-13 — Socltyp —

AF expr, : ¢

Alllnst
(Allnst) F alllnstancesc : Set(7¢) (Attr) At ov(expry): 7
(Iter) AF expry : Set(t1) A& expry:Te Al expry:m

A& expr,->iterate(wy : 71 ; w2 : T2 = expry | expry) : T2

where A/ =A D (’LU1 B 7'1) (&) (’U)z 8 Tz).

Example: (& = ({Int},{C},{x: Int},{C — {z}))

“ . e Al

(wa) AT o I+M)
TN (fuwkh)

(u,fj_‘ﬂ— Abrlep): bt AI—OLI- 4}

S RN R CECT
bl hekontes, - SeE (T F He: Bonl © Bal | 2T od [, (g 0)’)
Pl = teake () fes: Bal = mlw(ar,é(x(f) })) Box k)
 context Cinv:x =0 : 8w/
Q)L/U‘Jyf)c
26/44

First Recapitulation

I only defined for well-typed expressions.
What can hinder something, which looks like a well-typed OCL
expression, from being a well-typed OCL expression...?

= ({Int},{C,D},{x: Int,n: Do1},{C +— {n},{D — {z})

(wv
o »I».LM et
context C': false
t st of
- et abdut of
context C'inv:y =0

Tope etso¥: Py é :lut
* 2 —

r~—t—
context self : C'inv: self .n=self .n.x

— 06 — 2012-11-13 — Socltyp —

27 /24

— 06 — 2012-11-13 — main

— 06 — 2012-11-13 — main

References

4344

References

[Oestereich, 2006] Oestereich, B. (2006). Analyse und Design mit UML 2.1, 8.
Auflage. Oldenbourg, 8. edition.

[OMG, 2006] OMG (2006). Object Constraint Language, version 2.0. Technical
Report formal/06-05-01.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

[Schumann et al., 2008] Schumann, M., Steinke, J., Deck, A., and Westphal, B.
(2008). Traceviewer technical documentation, version 1.0. Technical report, Carl
von Ossietzky Universitat Oldenburg und OFFIS.

44 /44

