Sdtware Design, Modelling andAnalysisin UML

Ledure 07: ClassDiagramsl|
201211-14

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

— 07 — 2012-11-14 — main —

Contents & Goals

Last Lectures:

class diagram — except for associations; visibility within OCL type system

This Lecture:
Educational Objectives: Capabilities for following tasks/questions.
Please explain this class diagram with associations.
Which annotations of an association arrow are semantically relevant?
What's a role name? What's it good for?
What's “multiplicity” ? How did we treat them semantically?
What is “reading direction”, “navigability”, “ownership”, ...7

What's the difference between “aggregation” and “composition”?

Content:
Complete visibility
Study concrete syntax for “associations”.
(Temporarily) extend signature, define mapping from diagram to signature.
Study effect on OCL.

07 — 2012-11-14 — Sprelim

Where do we put OCL constraints? 265

— 07 — 2012-11-14 — main

Casting in the Type System

One Possble Extension: | mplicit Casts

07 — 2012-11-14 — Scast

We may wish to have
F 1 and false : Bool (%)

In other words: We may wish that the type system allows to use
0,1 : Int instead of true and false without breaking well-typedness.

Then just have a rule:
At expr: Int
Al expr : Bool

(Cast)

With (Cast) (and (Int), and (Bool), and (Funy)),
we can derive the sentence (x), thus conclude well-typedness.

But: that's only half of the story — the definition of the interpretation
function T that we have is not prepared, it doesn't tell us what (x) means...

T(ad) TSl S5 T (ool \—= Tpost |

3/65

4/65

Implicit Casts Cont’d

07 — 2012-11-14 — Scast

So, why isn't there an interpretation for (1 and false)?
First of all, we have (syntax)

expry and expry @ Bool X Bool — Bool

Thus,
I(and) : I(Bool) x I(Bool) — I(Bool)

where I(Bool) = {true, false} U { L pooi}-

By definition,
I[1 and false] (o, 5) = I(and)(I[1](o,B), I[false](o,s)),

and there we’re stuck.

Implicit Casts: Quickfix

07 — 2012-11-14 — Scast

Explicitly define

b1 Aby , if b1 # LBoot # b2
L Boor , otherwise

Ifand(eapry, eapry)](o, B) = {

where

by := toBool(I[expr,] (o, 3)),
by := toBool(I[exprsy] (o, 3)),
and where
toBool : I(Int) U I(Bool) — I(Bool)
true , if x€ fhue) o T(UEINIO, Lief

xS false | if x€ {hb, 0F
1 Boor , Otherwise

5/65

6/65

Bottomline

07 — 2012-11-14 — Scast

— 07 — 2012-11-14 — main

There are wishes for the type-system which require changes in both,
the definition of I and the type system.
In most cases not difficult, but tedious.

Note: the extension is still a basic type system.

Note: OCL has a far more elaborate type system which in particular
addresses the relation between Bool and Int (cf. [?]).

7/65

Misihility in the Type System

8/65

< = ({Int},{C,D},{n: Do,
m: Do, (z : Int,&, expry, D)},

Misibility — The Intuition

07 — 2012-11-14 — Svisityp

{C = {n}, D — {z,m}}

Let's study an Example:

D
C & x: Int = expr

and

Assume w1 : 7¢ and ws : Tp are logical variables. Which of the following syntacti-
cally correct (?) OCL expressions shall we consider to be well-typed?

& of x: public private protected package

wi.n.x=0 [4 0l later not
g g 0w <———fﬁwl i by clas,
7 ? [A wt by dtf
a we.m.z=0| 0 a— DA/ later not
g O 0wl
5 ? ?

Contex
Example: A problem?
r D
C — v : Int :I r
0,1

Dt Dbt
self :p b self .r.v>0 v

self »ro t/ self .r.v>0 X

That is, whether an expression involving attributes with visibility is
well-typed depends on the class of objects for which it is evaluated.

Therefore: well-typedness in type environment A and context B € ¢

A, BFexpr:T
e docgn't umdk,

In particular: prepare to treat “protected” later (when doing inheritance).

9/65

10765

Attribute Accessin Context

— 07 — 2012-11-14 — Svisityp —

o If expr is of type 7 in a type environment, then it is in any context:
1

At expr:T
(C’ontext@) A[BIF expr: T

o Accessing attribute v of a C-object via logical variable w is well-typed if

o . ot .
AFw: T
(Attrq) A, w (v: 7€ expry, Pg) € atr(B)
o Accessing attribute v of a C-object of via expression expr; is

well-typed in context B if
o v is public, or expr; denotes an object of class B:

" -

ABF !
: O T (v:1,& expry, Py) € atr(C),
A,BFuv(expry): 7 f=+ orC=B

(Att’l"g)

o Acessing Co 1- or C,-typed attributes: similar.

Contex in Operator Application

- 07 - 2012-11-14 — Svisityp —

pplication:

11/65

A,BF expry:

B - expry : 7'2'

A, B F expr,—>iter

TTL W 1 T3 Tpry | exprs)

12/65

Attribute Accessin Context Example

07 — 2012-11-14 — Svisityp

B AFexpr:T
APB& expr : T

(Attrg) —BEERIITC . 1 g capry, Pe) € atr(C),
’ il) v E=+,orf=—and C =8B

(Contextlptad)
D

th

Q’l\!:
+T D v J
C —wv:Int :I r m :D
: 0,1 =<
0,1

v=0
E le: <l
xample ¢ eA_ ()
L S B—T
b\ S"S b M((jf)e-'))fc (ﬂ”f)_) 1—0— Z:v/[)\‘.)
. V(o ‘Tt R
D=k VW T 10 }
, sz, v Cnlggl) Tt
Arv('('-](vl)n ~— —
“lnt self : 1o F selfnr.v >0
&) e e AN Y

13/65

The Semantics of Visibility

e Observation:
o Whether an expression does or does not respect visibility is a matter
of well-typedness only.

o We only evaluate (= apply I to) well-typed expressions.

— We need not adjust the interpretation function I to support visibility.

07 - 2012-11-14 — Svisityp

14/65

07 — 2012-11-14 — Svisityp

— 07 — 2012-11-14 — main

0,1

What is Msibility Good For? A

Visibility is a property of attributes — —
n :
is it useful to consider it in OCL? He

In other words: given the picture above,
is it useful to state the following invariant (even though x is private in D)

context C inv:n.x >07

It depends. (cf. [?], Sect. 12 and 9.2.2)

Constraints and pre/post conditions:
Visibility is sometimes not taken into account. To state “global” requirements,
it may be adequate to have a “global view", be able to look into all objects.

But: visibility supports “narrow interfaces”, “information hiding", and
similar good design practices. To be more robust against changes, try to
state requirements only in the terms which are visible to a class.

Rule-of-thumb: if attributes are important to state requirements on design
models, leave them public or provide get-methods (later).

Guards and operation bodies:
If in doubt, yes (= do take visibility into account).

Any so-called action language typically takes visibility into account. 1565

Recpitulation

16/65

Recpitulation

07 — 2012-11-14 — Srecap

— 07 — 2012-11-14 — main

Class Diagrams €2
% induces
extended (!) signature (¢ 9)
% gives rise to

Basic Type System
ype >y e +3

N o1
L/“"' T 43),
We extended the type system for "DM*(M)+3 1@; okt
casts (requires change of I) and /""’”ﬁﬂ"
visibility (no change of I). @E*B(IZWJ/IZ*NJ»,IBV

Later: navigability of associations.

Good: well-typedness is decidable for these type-systems. That is, we can have
automatic tools that check, whether OCL expressions in a model are well-typed.

17/65

Associations: Syntax

18/65

UML ClassDiagram Syntax [?]

Stereotyp1, Stereotyp2y
Paket::Klasse

attribut
operation()

StereotypT
attribut = wert

Entity Control

Objektdiagramm

Boundary

Parameteriste: Richtung Name : Typ = Standardvier
Eigenschafiowers: {00}
Richtung:in, ou, inout

o
protected element
~ pivate element

~ package element

Sy Atriute:
et

Eigenschaftswerte: {readOny), (odered), (composite} Parametrisierte

Syntax fiir Operationen: Klasse<Parameter>

Sichtbarkei

Objekt

Vererbung

Klasset Klasse2

w; gerichtete Assoiation

qualifizierte Assoziation

Assoziation

Ganzes

‘ ¢ "\\ A7

Aggregation
S Teil
Komposition
Existenz.
abhangiges
Tell

Klasse1

‘Assoziation
Klasse2

; Multiplizitit
9 Vi Leserichtung
9 Schnitstelle W ey x
[e |20 [e] - Pl - ST -
L ole Sichtbarkeit olle
< s /
o tecker”
o erigeste Anbiter l4>| schmiieA e
- ‘Schnittstelle
N genutzte
a Schnitistelle operationt()
5
© 2006 by oose.de GmbH UML-Notationsiibersicht
Aktuelle Fassung, Info und Download: http://www.oose.de/uml Teil 1/4 19/65
UML ClassDiagram Syntax [?]
Klasse1 |——L2re0ung 1 iassez Klasset | Aflributierte Assoziation | yaqqer
|
i
4 o Assoziations-
Klasse1 Assoziation Klasse2 klasse
erichtete Assoziation K> Aggregation
Klasse1 g Klasse2 Ganzes Tel
’—‘” —
Existenz-
abhéingiges
qualifizierte Assoziation . . ‘ Teil
Klasse1 | Qualifizierer |————————| Klasse2 \Ya : JL((ZA‘ (]
Mehrgliedrige
N— N Assoziation
. Klasse1 Klasse2
Klassel |----- R— ea Iislef ung___. Klasse2
-, 1 /"
Lo Ura Ml‘k"lﬂﬂﬂ Khgsed MH\,&MQ
Abhangige Abhéngigkeit hérr:ai "
Klasse [~7 777777 TTTTTTOOZ i 1Y
Klasse o r
Multiplizitat
eserichtuflg
Schnitstelle X / N) 4
Anbieter Og----------- 1 /v i * {ordered}
Klasse1 = Klasse2
ru\le/ (‘; Sichtbarkeit rolle
5
9 "Stecker” —
8 bereitgestellte Anbieter |- - - - T gepnittstelle-A cinterface»
K4 ereitge O -
% Schnittstelle Klasse Schm{ttelle
< genutzte — operatibn1()
o “Buchse" | Nutzer } o 7>| cinterface» &l{-u |, Operati InZ()
&
= Pe UDe sy
N © 2006 by oose.de GmbH """‘u % UML-Notationsibersicht
S Aktuelle Fassung, Info und Download: http://www.oose.de/uml Teil 1/4
;_0/65

UML ClassDiagram Syntax [?, 61;43]

/ me.x&}o

iendA endB
M
* Binary

ionAB ¥

a b “ Figure 7.19 - Graphic notation indicating exactly one association end owned by the association
1.4 2.5
c d
N
1..4 2.5
e f
1..4 2.5
g h
: :
1.4 2.5 b
i i
]
1.4 2.5
g Figure 7.23 - Examples of navigable ends A N
3 -
s
E Figure 7.20 - Combining line path graphics
s
5
21/65
What Do We (Haveto) Cover?
An association has i o bt b Kiasset [y SICNCCASSORAON of pqep
a
v e J6
a name, e rondes »
. . . & qualifizierte Assoziation
— o a reading direction, and % 7 Klasse1 | Qualfizerer |———| Klasse2
v e at least two ends.
Each end has Klassel Attributierte Assoziation Klasse2
7 o arole name, sssozisions.
» e a multiplicity,
v o a set of properties, Ganzes
such as unique, ordered, etc. Existenz-
abhgrgsi]ligss
o a qualifier, (tst ol waf 40&}/
Mehrgliedrige
7 @ a VISIbIlIty, Assoziation
Klasse1 Klasse2
c v e a navigability, \(
3 . Klasse3
% v e an ownership,
3
% ¢ e and possibly a diamond. (m/ake,) Multplizitit)
= Leserichtung
9 ,—4 «Stereotyp»
& Wanted: places in the signature to rep- Kiasset (: LAY |y P
o - p g p _mua/ (Sichtbarke\lmp
5 resent the information from the picture.
22/65

(Temporarily) Extend Sgnaure: Asciations

07 — 2012-11-14 — Sassocsyn

Only for the course of Lectures 07/08 we assume that each attribute in V'

o either is (v : 7,&, expry, P,) with 7 € F (as before),

e or is an association of the form

(r: (roley : C1, p1, P1,&1,v1,01),

<T'0l€n : Cna s Pn7£na Un, 0n>>

where

n > 2 (at least two ends),
r, role; are just names, C; € €, 1 <i<mn,
the multiplicity u; is an expression of the form

,u:::>0<|N|N..M|N..>)<\,L¢'7uZ (N,M € IN)

P; is a set of properties (as before),

&€ {+,—,#,~} (as before),
v; € {x,—,>} is the navigability,

0; € B is the ownership.
23/65

(Temporarily) Extend Sgnaure: Asciations

07 — 2012-11-14 — Sassocsyn

Only for the course of Lectures 07/08 we assume that each attribute in V'

o either is (v : 7, &, expry, Py) with 7 € 7 (as before),

e Oor

is an association of the form

(r: (roley : C1.p01. P1. &, v1.01)

Alternative syntax for multiplicities:

RV (wN-~M|N--*|M7M (N, M € NU {x})
_ o 0.% Ny

and define *dwd N as abbrewatlonyea. “

Note: N could abbreviate 0..N, 1..N, or N..N. We use last one.

T, TOLE; dlc Just naines, U; © o0, 1 >~ 1 X1,

the multiplicity p; is an expression of the form
pwu=x%| N|N.M|N.x|p,p (N,M € IN)

P; is a set of properties (as before),

§ € {+,—, #,~} (as before),
v; € {x,—, >} is the navigability,

0; € B is the ownership.
23/65

(Temporarily) Extend Sgnaure: Basic Type Attributes

Also only for the course of 3 lectures 07’08

» we only consider basic type attributes to “belong” to a class
(to appear in atr(C)),

» associations are not “owned” by a particular class
(do not appear in atr(C)), but live on their own.

Formally: we only call
(7.€,V, atr)

a signature (extended for associations) if

atr + € — 2{1}6\/\1):7'7769}.

07 — 2012-11-14 — Sassocsyn

24 /65

From Association Lines to Extended Sgnatures
43.5()6;'\‘:"» _QU"JDM ﬁv “Jac,'qa('m.\':

ham
ey Yo ade/
C — beulisy dirchin not
W&tﬂé‘{
C’VL
] (r: (roley : C1, 1, P1,&1,11,01)

<7”Ol€n 2 Chy pins Py &y Un, On>>

| & || roles | 7
Ci
p /11] V\ p(ssika,. does viof matke /
weel Fplicihy

|]
oiZ{l & vi=<¢— ,if

07 — 2012-11-14 — Sassocsyn

25/65

Asciation Example

07 — 2012-11-14 — Sassocsyn

—c r 0.¥ D
C ® x : Int
0..x th
Signature: abgs ot e e dniy — bter

7= (188, €03, be,
<f 3([-‘('{ 0--¥,fuuW§.’,X, 4>I
(0D, 0%, fumput}, 4 >, 05,

$CP 1y besc b abibuds bar !
DH{xé)k IjF(

What If Things Are Missng?

07 — 2012-11-14 — Sassocsyn

Most components of associations or association end may be omitted.
For instance [?, 17], Section 6.4.2, proposes the following rules:

o Name: Use
A(CY)_- - (Cy

<

if the name is missing.

Example:

ACD
for

H
H

o Reading Direction: no default.
o Role Name: use the class name at that end in lower-case letters

Example:

for

H
o
u
H

Other convention: (used e.g. by modelling tool Rhapsody)

H

26/65

27 /65

What If Things Are Missng?

0-%
Multiplicity: 1
In my opinion, it's safer to assume 0..1 or * if there are no fixed, written,
agreed conventions (“expect the worst").

Properties: 0 (Juse : {M’m})
Visibility: public
Navigability and Ownership: not so easy. [?, 43]

“Various options may be chosen for showing navigation arrows on a diagram.

In practice, it is often convenient to suppress some of the arrows and crosses and just
show exceptional situations:

Show all arrows and x’s. Navigation and its absence are made completely explicit.

Suppress all arrows and x’s. No inference can be drawn about navigation.
This is similar to any situation in which information is suppressed from a view.

Suppress arrows for associations with navigability in both directions, and show
arrows only for associations with one- way navigability.

In this case, the two-way navigability cannot be distinguished from situations
where there is no navigation at all; however, the latter case occurs rarely in
practice.”

%)
<
&
=3
13
~
S

28/65

Wait, If Omitting Things...

...is causing so much trouble (e.g. leading to misunderstanding),
why does the standard say “In practice, it is often convenient...”?

Is it a good idea to trade convenience for precision/unambiguity?

It depends.
Convenience as such is a legitimate goal.

In UML-As-Sketch mode, precision “doesn’t matter”,
so convenience (for writer) can even be a primary goal.

In UML-As-Blueprint mode, precision is the primary goal.
And misunderstandings are in most cases annoying.

But: (even in UML-As-Blueprint mode)

If all associations in your model have multiplicity *,
then it's probably a good idea not to write all these x's.
So: tell the reader about it and leave out the *'s.

07 — 2012-11-14 — Sassocsyn

29/65

References

64/65

— ulew — $T-T1-¢10C — L0 —

65/65

— utew — $T-TT-210C — L0 —

