Software Design, Modelling and Analysis in UML

Lecture 08: Class Diagrams III

2012-11-21

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Overview

What's left? Named association with at least two typed ends, each having

- a role name, a set of properties,
 a navigability, and an ownership.
- a multiplicity, a visibility,

- Extend system states, introduce so-called links as instances of associations depends on name and on type and number of ends.
- Integrate role name and multiplicity into OCL syntax/semantics.
- Extend typing rules to care for visibility and navigability
- Consider multiplicity also as part of the constraints set $\mathit{Inv}(\mathcal{CD})$.
- Properties: for now assume $P_v = \{ \text{unique} \}.$
- Properties (in general) and ownership: later.

4/82

Contents & Goals

This Lecture:

- Last Lectures:

 Studied syntax of associations in the general case.
- Educational Objectives: Capabilities for following tasks/questions.
 Cont'd: Please explain this class diagram with associations.
- When is a class diagram a good class diagram?
 What are purposes of modelling guidelines? (Example?)
 Discuss the style of this class diagram.

- Association semantics and effect on OCL.
 Treat "the rest".

Where do we put OCL constraints?

Modelling guidelines, in particular for class diagrams (following [Ambler, 2005])
 Examples: modelling games (made-up and real-world examples)

Association Semantics

3/52

Associations in General

Recall: We consider associations of the following form:

 $\langle r: \langle role_1: C_1, \mu_1, P_1, \xi_1, \nu_1, o_1 \rangle, \ldots, \langle role_n: C_n, \mu_n, P_n, \xi_n, \nu_n, o_n \rangle \rangle$

Only these parts are relevant for extended system states:

 $\langle r: \langle role_1: C_1, \neg, P_1, \neg, \neg, \neg \rangle, \dots, \langle role_n: C_n, \neg, P_n, \neg, \neg, \neg \rangle$

Association Semantics: The System State Aspect

(recall: we assume $P_1=P_n=\{\mathtt{mique}\}$).

The UML standard thinks of associations as n-ary relations which "live on their own" in a system state.

That is, links (= association instances)

- do not belong (in general) to certain objects (in contrast to pointers, e.g.)
- are "first-class citizens" next to objects,
- are (in general) not directed (in contrast to pointers).

Links in System States

 $\langle r: \langle role_1: C_1, \neg, P_1, \neg, \neg - \rangle, \dots, \langle role_n: C_n, \neg, P_n, \neg, \neg, - \rangle$

Only for the course of lectures 07/08 we change the definition of system states:

A system state of $\mathscr S$ wit. $\mathscr D$ is a $\underline{\operatorname{paj}}(\sigma,\lambda)$ consisting of what for a type-consistent mapping $\sigma: \mathscr D(\mathscr B) \to (\operatorname{ar}(\mathscr B) \to \mathscr D(\mathscr D)), \quad \text{which while and a point of the partial partial$ Definition. Let ${\mathscr D}$ be a structure of the (extended) signature ${\mathscr S}=({\mathscr T},{\mathscr E},V,dr).$ • a mapping λ which assigns each association $\langle r: \langle role_1:C_1\rangle, \ldots, \langle role_n:C_n\rangle\rangle \in V \text{ a relation}$ $\lambda(r)\subseteq \mathscr{D}(C_1)\times \cdots \times \mathscr{D}(C_n)$ (i.e. a set of type-consistent n-tuples of identities).

Extended System States and Object Diagrams

Legitimate question: how do we represent system states such as

 $\sigma = \{1_C \mapsto \emptyset, 3_D \mapsto \{x \mapsto 1\}, 7_D \mapsto \{x \mapsto 2\}\}$ $\lambda = \{A_C_D \mapsto \{(1_C, 3_D), (1_C, 7_D)\}\}$

as object diagram?

See to and 8.

The sector of th Example order of assoc, outs in I don't matter OBJECT DIAGRAKI: WE WILL NOT FRANKLY DEPONE THAT 33-54 Go we would used hisporeaged \$4.\$4.5...) \$4.5...)

A system state of ${\mathscr S}$ (some reasonable ${\mathscr D}$) is (σ,λ) with:

 $\{C\mapsto\emptyset,D\mapsto\{x\}\})$

 $\langle n:D,0..*,+,\{\mathtt{unique}\},>,0\rangle\rangle\},$

the of $\mathscr G$ (some reasonable $\mathscr G$) is (σ,λ) with: puis are con by $\sigma = \{1_C \mapsto \emptyset, 3_D \mapsto \{x \mapsto 1\}, 7_D \mapsto \{x \mapsto 2\}\}$ be defined disjusted and pui by pui and pui be a signal disjusted. $\lambda = \{A.C.D \mapsto \{(1_C,3_D),(1_C,7_D)\}\}$ when 1_C is related to 3_D and 2_D by A.C.N

source. $\mathcal{S} = (\{Int\}, \{C, D\}, \{x: Int, \mathcal{S}\})$ $\langle A.C.D: (c: C, 0..*, +, \{\text{unique}\}, \times, 1), \mathcal{S} \}$

Association/Link Example

Associations and OCL

Recall: OCL syntax as introduced in Lecture 03, interesting part:

OCL and Associations: Syntax

$$\begin{split} \exp r ::= \dots & | r_1(expr_1) : \tau_C \to \tau_D & r_1 \colon D_{0,1} \in atr(C) \\ & | r_2(expr_1) : \tau_C \to Set(\tau_D) & r_2 \colon D_* \in atr(C) \end{split}$$

Now becomes

OCL and Associations Syntax: Example

```
cooket Maga, inv. Set (such(4)) > 0 or carbot Maga, inv. Set (such(4)) > 0 or carbot Maga, inv. Set (such(4)) > 0 or carbot Maga inv. Set (such(4)) > 0 or or carbot Maga inv. Set (such(4)) > 0 or or carbot Maga inv. Set (such(4)) > 0 or carbot Mag inv. 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               \langle r:\dots,\langle role:D,\mu,\dots,\dots,\rangle,\dots,\langle role':C,\dots,\dots,\rangle,\dots\rangle\in V \text{ or }
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           , \langle role': C, \_, \_, \_, \_ \rangle, \dots, \langle role: D, \mu, \_, \_, \_ \rangle, \dots \rangle \in V, role \neq role'.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \ role(expr_1) \ | \ :\tau_C \to \tau_D \\ | \ role(expr_1) \ | \ :\tau_C \to Set(\tau_D) \\ | \ otherwise 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Team
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Suddy by a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           \mu=0..1 or \mu=1
```

OCL and Associations Example

14/52

10/ss

OCL and Associations: Semantics

Recall: (Lecture 03)

```
\bullet \ I[\![r_1(expr_1)]\!](\sigma,\beta) \coloneqq \begin{cases} u & \text{, if } u_1 \in \text{dom}(\sigma) \text{ and } \sigma(u_1)(r_1) = \{u\} \\ \bot & \text{, otherwise} \end{cases}
                                                                                                                                                                                                                                                                                                                                                                                                              \text{ssume } expr_1:\tau_C \text{ for some } C\in \mathscr{C}. \text{ Set } u_1:=I[\![expr_1]\!](\sigma,\beta)\in \mathscr{D}(\tau_C).
I[\![r_2(expr_1)]\!](\sigma,\beta) := \begin{cases} \sigma(u_1)(r_2) & \text{if } u_1 \in \text{dom}(\sigma) \\ \bot & \text{, otherwise} \end{cases}
```

Now needed:

- rule denotes the position of the D's in the tuples constituting the value of r.

 $I[\![role(expr_1)]\!]((\sigma,\lambda),\beta)$

• We cannot simply write $\sigma(u)(role)$. Recall: role is (for the moment) not an attribute of object u (not in atr(C)).

• What we have is $\lambda(r)$ (with r, not with role!) — but it yields a set of n-tuples, of which some relate u and other some instances of D.

12/52

OCL and Associations: Semantics Cont'd

 $\textbf{Assume} \ expr_1: \tau_C \ \text{for some} \ C \in \mathscr{C}. \ \text{Set} \ u_1:=I[\![expr_1]\!]((\sigma,\lambda),\beta) \in \mathscr{D}(\tau_C).$

$$\bullet \ I[[vile(\mathit{capr}_1)]]((\sigma,\lambda),\beta) := \begin{cases} u & \text{. if } u_1 \in \mathrm{dom}(\sigma) \text{ and } L(vile)(u_1,\lambda) = \{u\} \\ \bot & \text{. otherwise} \end{cases}$$

 $\bullet \ I[\![mle(expr_1)]\!]((\sigma,\lambda),\beta) := \begin{cases} L(mle)(u_1,\lambda) & \text{. if } u_1 \in \text{dom}(\sigma) \\ \bot & \text{. otherwise} \end{cases}$

Given a set of $n\text{-tuples}\,A,\,A\downarrow i$ denotes the element-wise projection onto the i-th component.

13/52

Visibility

Not so surprising: Visibility of role-names is treated completely similar to visibility of attributes, namely by typing rules.

Question: given

Associations: The Rest

is the following OCL expression well-typed or not (wrt. visibility):

context C inv : self.role.x > 0 NOT if s=p into

 $\begin{array}{ll} (Assoc_1) & A_1B \vdash expr_1 : \tau_C \\ A_2B \vdash role(expr_1) : \tau_D & \xi = +, \text{ or } \xi = - \text{ and } C = B \\ \langle r : \dots \langle role : D, \mu, -\xi, -\rangle \dots \langle role' : C, --, -\rangle, \dots \rangle \in V \end{array}$

Basically same rule as before: (analogously for other multiplicities)

16/52

Navigability

Navigability is similar to visibility: expressions over non-navigable association ends ($\nu=\times$) are basically type-correct, but forbidden.

Question: given

is the following OCL expression well-typed or not (wrt. navigability): context D inv : self.role.x > 0 with well-typed

The standard says:
- '-': navigation is possible '>': navigation is efficient 'x': navigation is not possible

But: Pointers/references can faithfully be modelled by UML associations.

So: In general, UML associations are different from pointers/references!

17/sz

Visibility and Marigasling:

Multiplicities as Constraints

Recall: The multiplicity of an association end is a term of the form:

$$\mu ::= \ast \mid N \mid N..M \mid N..\ast \mid \mu,\mu \qquad \qquad (N,M \in \mathbb{N})$$

Proposal: View multiplicities (except 0..1, 1) as additional invariants/constraints

Recall: we can normalize each multiplicity to the form

 $N_1...N_2,...,N_{2k-1}...N_{2k}$

where $N_i \leq N_{i+1}$ for $1 \leq i \leq 2k$, $N_1, \ldots, N_{2k} \in \mathbb{N}$, $N_{2k} \in \mathbb{N} \cup \{*\}$.

 $\mu_{\rm OCL} = {\rm context} \ C \ {\rm inv}$: $(N_1 \leq role \text{->} \operatorname{size}() \leq N_2) \ \text{ and } \dots \text{ and } (N_{2k-1} \leq role \text{->} \operatorname{size}() \leq N_{2k})$

for each $\langle r : \dots, \langle role : D, \mu, _, \dots, \langle role' : C, _, _, \dots \rangle \in V$ or $\langle role : D, \mu, _, \dots, \langle role' : C, _, _, \dots \rangle \in V$ or $\langle role : D, \mu, _, \dots, \rangle \in V$ or $\langle role : D, \neg, \dots, \rangle \in V$ or $\langle role : D, \neg, \dots, \rangle \in V$ or $\langle role : D, \neg, \dots, \rangle \in V$ or $\langle role : D, \neg, \dots, \rangle \in V$ or $\langle role : D, \neg, \dots, \rangle \in V$ or $\langle role : D, \neg, \dots, \rangle \in V$ or $\langle role : D, \neg, \dots, \rangle \in V$ or $\langle role : D, \neg, \dots, \rangle \in V$ or $\langle role : D, \neg, \dots, \rangle \in V$ $\langle r: \ldots, \langle mle': C, _, _, _, _ \rangle, \ldots, \langle role: D, \mu, _, _, _ \rangle, \ldots \rangle \in V, mle \neq mle'.$

Note: in n-ary associations with n>2, there is redundancy.

Multiplicities as Constraints of Class Diagram

Recall:

From now on: $\mathit{Inv}(\mathscr{C}\mathscr{D}) = \{ \text{constraints occurring in notes} \} \cup \{ \mu_{\mathsf{OCL}} \mid \}$

 $\langle r:\dots,\langle role:D,\mu,\neg,\neg,\neg\rangle,\dots,\langle role':C,\neg,\neg,\neg,\neg\rangle,\dots\rangle\in V \text{ or }$ $\langle r: \ldots, \langle role': C, \neg, \neg, \neg, \neg \rangle, \ldots, \langle role: D, \mu, \neg, \neg, \neg \rangle, \ldots \rangle \in V,$ $vale \neq role', \mu \notin \{0..1, 1\}\}.$

20/52

The Rest

Recapitulation: Consider the following association:

- $\langle r: \langle role_1: C_1, \mu_1, P_1, \xi_1, \nu_1, o_1 \rangle, \ldots, \langle role_n: C_n, \mu_n, P_n, \xi_n, \nu_n, o_n \rangle \rangle$
- Association name r and role names/types role_i/C_i induce extended system states λ.
- \bullet Multiplicity μ is considered in OCL syntax.
- $\bullet~$ Visibility $\xi~$ and navigability $\nu~$ give rise to well-typedness rules.

Now the rest:

- Multiplicity μ : we propose to view them as constraints.
- Ownership o: getting closer to pointers/references. Properties P_i: even more typing.

Diamonds: exercise.

18/52

Multiplicities as Constraints Example

 $\mu_{\rm OCL} = {\rm context}~C~{\rm inv}:$ $(N_1 \leq mle -> {\rm size}() \leq N_2)~{\rm and}~\dots~{\rm and}~(N_{2k-1} \leq mle -> {\rm size}() \leq N_{2k})$

21,52

Why Multiplicities as Constraints?

More precise, can't we just use types? (cf. Slide 36)

- $\mu = 0..1$, $\mu = 1$:
- many programming language have direct correspondences (the first corresponds to type pointer, the second to type reference) this is why we excluded them.
- could be represented by a set data-structure type without fixed bounds no problem with our approach, we have $\mu_{OCL}=true$ anyway.
- use array of size 4 if model behaviour (or the implementation) adds 5th identity, we'll get a runtime error, and thereby see that the constraint is violated. Principally acceptable, but: checks for array bounds everywhere...?
- µ = 5.7;
 hut few programming languages data structure libraries allow lower bounds for arrays (other than 0). If we have 5 identities and the model behaviour removes one, this should be a violation of the constraints imposed by the model.
 The implementation which does this removal is wrong. How do we see this..?

22/52

Multiplicities Never as Types...?

Well, if the target platform is known and fixed, and the target platform has, for instance,

- reference types,
- ullet range-checked arrays with positions $0,\dots,N$,
- set types,

then we could simply restrict the syntax of multiplicities to

 $\mu ::= 1 \mid 0..N \mid *$

and don't think about constraints (but use the obvious 1-to-1 mapping to types)...

In general, unfortunately, we don't know.

23/52

Back to the Main Track

concepts of pointers/references.

Actually, ownership is seldom seen in UML diagrams. Again: if target platform is clear, one may well live without (cf. [OMG, 2007b, 42] for more details).

So: if multiplicity of mle is 0..1 or 1, then the picture above is very close to

Association r is not a "thing on its own" (i.e. provided by λ), but association end "role" is owned by C (1). (That is, it's stored inside C object and provided by σ).

Not clear to me:

 C_2

25/52

Ownership

Intuitively it says:

D

26/52

Properties

We don't want to cover association **properties** in detail, only some observations (assume binary associations):

Property	Intuition	Semantical Effect
unique	one object has at most one <i>r</i> -link to a current setting single other object	current setting
bag	one object may have multiple r -links to have $\lambda(r)$ yield a single other object multi-sets	have $\lambda(r)$ yield multi-sets
ordered,	an r -link is a sequence of object identi-	have $\lambda(r)$ yield se-
sequence	ties (possibly including duplicates)	quences

	bag $ au_D$	unique $ au_{E}$	Property OCL Typing o
$\tau_D \rightarrow Seq(\tau_C)$	$\rightarrow Bag(\tau_C)$	$_0 \rightarrow Set(\tau_C)$	of expression $rote(expr)$

For subsets, redefines, union, etc. see [OMG, 2007a, 127].

24,52

Back to the main track:

Recalt: on some earlier slides we said, the extension of the signature is **only** to study associations in "full beauty".

For the remainder of the course, we should look for something simpler...

Proposal:

from now on, we only use associations of the form

(And we may omit the non-navigability and ownership symbols.)

- ullet Form (i) introduces $role:C_{0,1},$ and form (ii) introduces $role:C_{\star}$ in V.
- In both cases, role ∈ atr(C).
- We drop λ and go back to our nice σ with $\sigma(u)(role) \subseteq \mathcal{D}(D)$.

27,52

References

[Ambler, 2005] Ambler, S. W. (2005). The Elements of UML 2.0 Style. Cambridge University Press.
[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.12. Technical Report formal/07-11-04.
[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.12. Technical Report formal/07-11-02.