Software Design, Modelling and Analysisin UML

Lecture 08: Class DiagramsiI1
2012-11-21

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Overview

What's left? Named associ n with at least two typed ends, each having
o a role name, « aset of properties, « a navigability, and

* a multiplicity, * a visibility, « an ownership.

The Plan:
» Extend system states, introduce so-called links as instances of
associations — depends on name and on type and number of ends.

ity into OCL syntax/semantics.

.

Integrate role name and multip!

Extend typing rules to care for ity and navigability

Consider multiplicity also as part of the constraints set /nv(CD).

« Properties: for now assume P, = {unique}.

» Properties (in general) and ownership: later

Contents & Goals

Last Lectures:

« Studied syntax of associations in the general case.

This Lecture:

« Educational Objectives: Capabilities for following tasks/questions.
o Cont'd: Please explain this class diagram with associ

« When is a class diagram a good class diagram?
« What are purposes of modelling guidelines? (Example?)

« Discuss the style of this class diagram.

» Content:
« Association semantics and effect on OCL.
o Treat “the rest”

* Where do we put OCL constraints?

grams (following [Ambler, 2005])

ng games (made-up and real-world examples)

« Modelling guidelines,

particular for class

Association Semantics: The System State Aspect

Association Semantics

Associationsin General

ons of the following form:

(roley : C1, p1, Py, &1, v1,01), .y (rolen = Cry fin, Poy §ny Vny 0n))

Only these parts are relevant for extended system states:

(r (roley : Cu, Py)y (rolen < Cry s Pas oy)

(recall: we assume P; = P, = {unique}).

The UML standard thinks of associations as n-ary relations
which “live on their own” in a system state.

That is, links (= association

stances)

+ do not belong (in general) to certain objects (in contrast to pointers, e.g.)

» are st-class citizens” next to objects,

o are (in general) not directed (in contrast to pointers).

Linksin System Sates

i (r < {roler : C1, - Py,), (r0len : Coy s Py) |

Only for the course of lectures 07/08 we change the definition of system states:

Definition. Let 2 be a structure of the (extended) signature
S =(7,%6.V, atr).
A system state of .7 wrt. 2 is a wmh (o, \) consisting of

« a type-consistent mapping b\f»: H
~ E_m.rmn
0 D(B) » (atr(€) » D(T)), *H o

+ a mapping A which assigns each association
(role, : Cy)) €V a relation

(i.e. a set of type-consistent n-tuples of identities).

Extended System Sates and Object Diagrams

Legitimate question: how do we represent system states such as

o= {10~ 0,3p = {z+ 1}, Tp — {z — 2}}
A={AC.D+ {(1¢,3p). (1c,7p)}}

as object diagram?

See o ad 8.

Wi,
bl by of wnats 3 <t Mﬁhz,v
n S ks wette ko8,
latmn
le s b
a.mri.twa.w_.NwLea&burFxs By wfmvnnf
[
g emd (15,83), wntrt vy s sl
\w ! (fs.225,%). - “ m...mc
o) (2050, 60} gl inls g s bave claglig efermies
o) (36,235,390 | ote Shient may ek o4 ples (i t & aof e,
As) Ko dd a tadeid el S wr ek sec and steshv)

ORIECT DARMY:
e
F<

WE Wac U FRmLy 0ERME THAT

b ve ol wed hypedsa

2

Associations and OCL

10/

Association/Link Example

B

Signature:

by Ceatin

S = ({Int},{C, D} {z : Int,

E‘Q‘G\An«“ 7,0.%, + {unique}, x, 1),
(n: D,0..,+, {unique}, >,0))},

{C—=0.D— {a}})

. A system state of .’ (some reasonable 2) is (o,) with: fuis ense gom ke
H ropeesded by
4 o={lg—0.3p— {x—1},7p — {z— 2}} < dojecd dinpiain

- A= {ACD {(1¢.3p), (1¢.7p)}}
nl\ufu mrw\. fo I mud Py by ACN

i et e ¢
. 82
OCL and Associations: Syntax
Recall: OCL syntax as introduced in Lecture 03, interesting part:
eaprii=... |mlempry) e — 7o 1: Doy € atr(C)
| ra(eapry) :7e — Set(rp) r2: D, € atr(C)
Now becomes
eapr i=... |role(eapr) 7o —Tp p=0.lorp=1
b . ;
- EFQ\HW)%L .@/\./mm:@u otherwise
LA \ re PERS
o if b o777 T
e (reo(role: Dy,)., (role’ 1 C, L. L),...) €V or
olss =
wabos ((rc .., (role’ : C, L,), (role: D,),...) € V.role # role’.
= Note:
4 « Association name as such doesn't occur in OCL syntax, role names do.
g o eapr, has to denote an object of a class which “participates” in the association.
' 11

OCL and Associations Syntax: Example

| role(eapry) e — o p=0.lorp=1
| role(eapr,) : e — Set(rp) otherwise

(role s Dyjt, - - -,

role’ : O,y -, -,)
(re... (role’ : C, o), (role s Dyt oyo,)

YEVor
<1) €V, role # role’.

< Playedinyear

Figure 7.21 - Binary and ternary associations [OMG, 2007b, 44]
o codet Mages v, Shelyou (2f)) >0 ok
o et Nego i s (e (tf) >0 »er ok
o Codet Pluge ins: site (swanGe)>0 Ok

o ol ags e see(alp) 50 ok

10752

OCL and Associations Example

L(role)(ur,\) , if uy € dom(a)
i , otherwise

Ifrole(eapry)]((@,), B) == ﬁ

L(role)(u, A) = {(u1, ., un) € A(r)

o={lc0.3p > {z— 1},7p — {&— 2}}

A={A.C.D — {(1c.3p).(1c.Tp)}}
~p
Iself -n]((.\). {self — 1c}) = ICnCe)3(G),)

= LO)CBOEY N) = L6 A) = £ (0B, (205 L2+ £30305

14/

OCL and Associations: Semantics

mz 112

Recall: (Lecture 03)

Assume eapr, : 70 for some C' € €. Set uy = I[eapr,[(o, B) € D(rc).

.\g;::mn__uiieaq?v?vu@
o Iri(ezpry)](o, B) = ﬁ._. " otherwise

* Tlra(epri)l(e:) := otherwise

o(w)(ra) |, if ur € dom(o)
1

Now needed:
ITrole(ezpry)]((o. A), B)

« We cannot simply write o (u)(role).
Recall: role is (for the moment) not an attribute of object u (not in atr(C)).

* What we have is A(r) (with r, not with role!) — but it yields a set of n-tuples,
of which some relate u and other some instances of D.

« role denotes the position of the D's in the tuples constituting the value of r.
12752

Associations: The Rest

15/5

OCL and Associations: Semantics Cont'd

Assume expr : ¢ for some C € €. Set uy := I[eapr,]((0, \), B) € P(7¢).

u ., if ui € dom(c) and L(role)(us,) = {u}
e

+ AlroleCerpry)l((e,). 0) = T otherwise ok o rls el g A"
. - o

« Irote(emry)l((e:2),8) = ﬁ?&mxs;v u1 € dom(o)

, otherwise
where 1&«&»&1 o v
=L (mpaat
\ lwmind-eise
L(role)(u, \) ?_:,;._i €M) ue {un)i
Rleck rouas. rtu “ oecus
if
(o {10ler t sy Dy (r0len © sy s o), rOle = 0L

Given a set of n-tuples A, A | i denotes the element-wise projection onto the
i-th component.

135

\isibility

Not so surprising: Visibility of role-names is treated completely simi
ty of attributes, namely by typing rules.

1
c o Int
U & role

is the following OCL expression well-typed or not (wrt.

Question: given
D

context Cinv : self role.t >0 Wor if §=peke

Basically same rule as before: (analogously for other multi

(Assocy) ABVepriite o=,
=t orf=—andC=B

role : Doty €), (role! :C, L)) EV

A, BF role(expry) : 7o

16/52

Navigability

Navigability is similar to visibility: expressions over non-navigable association
ends (v = x) are basically type-correct, but forbidden.

Question: given

w: Int D
role

is the following OCL expression well-typed or not (wrt. naviga

y):
context Dinv : self role.x >0 UdT uell-fypeed

The standard says:

 navigation is possible "x': navigation is not possible

.o >

navigation is efficient

So: In general, UML associations are different from pointers/ references!

But: Pointers/references can faithfully be modelled by UML associations.
17/

Multiplicities as Constraints

Recall: The multiplicity of an association end is a term of the form:
pi=s | N|N.M| Nos | pp (N, M € N)

Proposal: View multiplicities (except 0..1, 1) as additional invariants/constraints.

Recall: we can normalize each multiplicity to the form

N1..Na,.oo Nogq..Noj
where N; < Niyy for 1 <i <2k, Ni,... Npp €N, Nop € NU{+}.
Define

pocL = context C'inv :

(Ny < role ->size() < Ny) and ... and (Naj_1 < role => size() < Nog)
for each
(r: role : D, p, -)., {role’ : C,,_,_,_,),...) €V or
(rio(role’ s Cy oy ey (role s Dojty o),) € V,role # role’.

Note: in n-ary associations with n > 2, there is redundancy.
1952

The Rest

Recapitulation: Consider the following association:

(r: (roley : C1, 1, Pr.&1, v, 01) roley : Cr, fins Prs &y Vny 0n)

Association name 7 and role names/types
role; /C; induce extended system states \.

ity u is considered in OCL syntax.

.

bility v give rise to well d rules.
eV
Now the rest:
« Multiplicity pi: we propose to view them as constraints.
L « Properties P;: even more typing.
H » Ownership o: getting closer to pointers/references.
“ » Diamonds: exercise.
' 1852
Multiplicities as Constraints of Class Diagram Multiplicities as Constraints Example
Recall: HocL = context C inv :
€% = {CDy,...,CD,} . B 5
\ I3 / (N; < role ->size() < Np) and ... and (Nap_; < role ->size() < Nay.)
signature .7 (€ %) invariants InV(€7)
CD:]
Amzﬁsm}/ roley C
basic extended 0.1 Tt 1
attributes) rolea
roles | 3.
From now on: Inv(¢'%) = {constraints occurring in notes} U { pioct. | Inv(CD) =
(.. (role: D, pt, o), (role' < C oy L),) €V or .
(re..(role’ = Oy Yy {role s Doy ooy,) € VL .
3 role # role’, p ¢ {0..1,1}}. 3
20752 0 2152

Why Multiplicities as Constraints?

More precise, can't we just use types? (cf. Slide 36)

p=0.1,p=1
many programming language have direct correspondences (the first corresponds
to type pointer, the second to type reference) — th why we excluded them.

o p=
could be represented by a set data-structure type without fixed bounds — no
problem with our approach, we have jioc. = true anyway.

p=0.3:
use array of size 4 — if model behaviour (or the implementation) adds 5th
identity, we'll get a runtime error, and thereby see that the constraint is
violated. Principally acceptable, but: checks for array bounds everywhere...?
=57
could be represented by an array of size 7 — but: few programming
languages/data structure libraries allow lower bounds for arrays (other than 0).
If we have 5 identities and the model behaviour removes one, this should be a
violation of the constraints imposed by the model.
wrong. How do we see this...?

The implementation which does this removal

2252

So: if multiplicity of role is 0..1 or 1, then the picture above is very close to
concepts of pointers/references

Actually, ownership is seldom seen in UML diagrams. Again: if target platform
is clear, one may well live without (cf. [OMG, 2007b, 42] for more details).

Not clear to me:

Multiplicities Never as Types...?

Well, if the target platform is known and fixed, and the target platform has,

for instance,

« reference types,

« range-checked arrays with positions 0, .. .,
© set types,
then we could simply restrict the syntax of multi

p=1]0.N | *

and don'’t think about constraints
(but use the obvious 1-to-1 mapping to types)...

In general, unfortunately, we don't know.

Back to the Main Track

26/

Properties

We don't want to cover asso ion properties in deta
only some observations (assume binary associations):

Property Intuition Semantical Effect

one object has at most one r-link to a | current setting
single other object

bag one object may have multiple r-links to | have A(r) yield
a single other object multi-sets
ordered, an r-link is a sequence of object identi- | have A(r) yield se-
sequence ties (possibly including duplicates) quences
Property OCL Typing of expression role(ezpr)
unique Tp — Set(r¢)
bag ™ — Bag(rc)
ordered, sequence ™ — Seq(rc)

For subsets, redefines, union, etc. see [OMG, 2007a, 127].

d 2452
Back to the main track:
Recall: on some earlier slides we said, the extension of the signature is only
to study associations in “full beauty”.
For the remainder of the course, we should look for something simpler.
Proposal:
« from now on, we only use associations of the form
. 0.1
(i) c D 7
role
*
T|x D
role
(And we may omit the non-navigability and ownership symbols.
L« Form (i) introduces role : o1, and form (ii) introduces role : C.. in V.
© « In both cases, role € atr(C).
\ = We drop A and go back to our nice o with o(u)(role) C 2(D).
' 27/

20121121 - main -

0

References

51,2

2112

o

References

[Ambler, 2005] Ambler, S. W. (2005). The Elements of UML 2.0 Style. Cambridge
University Press.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

5252

