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Contents & Goals

Last Lectures:

• Started to discuss “associations”, the general case.

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• Cont’d: Please explain this class diagram with associations.

• When is a class diagram a good class diagram?

• What are purposes of modelling guidelines? (Example?)

• Discuss the style of this class diagram.

• Content:

• Treat “the rest”.

• Where do we put OCL constraints?

• Modelling guidelines, in particular for class diagrams (following [Ambler, 2005])

–
0
9
–
2
0
1
2
-1
1
-2
7
–
S
p
re
li
m

–

2/42



Associations: The Rest

–
0
9
–
2
0
1
2
-1
1
-2
7
–
m
a
in

–

3/42

The Rest

Recapitulation: Consider the following association:

〈r : 〈role1 : C1, µ1, P1, ξ1, ν1, o1〉, . . . , 〈rolen : Cn, µn, Pn, ξn, νn, on〉〉

• Association name r and role names/types
rolei/Ci induce extended system states λ.

• Multiplicity µ is considered in OCL syntax.

• Visibility ξ/Navigability ν: well-typedness.

Now the rest:

• Multiplicity µ: we propose to view them as constraints.

• Properties Pi: even more typing.

• Ownership o: getting closer to pointers/references.

• Diamonds: exercise.
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Visibility

Not so surprising: Visibility of role-names is treated completely similar to visi-
bility of attributes, namely by typing rules.

Question: given

C

D

x : Int
1

ξ role

is the following OCL expression well-typed or not (wrt. visibility):

context C inv : self .role.x > 0
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Visibility

Not so surprising: Visibility of role-names is treated completely similar to visi-
bility of attributes, namely by typing rules.

Question: given

C

D

x : Int
1

ξ role

is the following OCL expression well-typed or not (wrt. visibility):

context C inv : self .role.x > 0

Basically same rule as before: (analogously for other multiplicities)

(Assoc1)
A,B ⊢ expr1 : τC

A,B ⊢ role(expr1) : τD
, µ = 0..1 or µ = 1,

ξ = +, or ξ = − and C = B

〈r : . . . 〈role : D,µ, , ξ, , 〉, . . . 〈role ′ : C, , , , , 〉, . . . 〉 ∈ V
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Navigability

Navigability is similar to visibility: expressions over non-navigable association
ends (ν = ×) are basically type-correct, but forbidden.

Question: given

C

x : Int D
role
×

is the following OCL expression well-typed or not (wrt. navigability):

context D inv : self .role.x > 0
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Navigability

Navigability is similar to visibility: expressions over non-navigable association
ends (ν = ×) are basically type-correct, but forbidden.

Question: given

C

x : Int D
role
×

is the following OCL expression well-typed or not (wrt. navigability):

context D inv : self .role.x > 0

The standard says:
• ’−’: navigation is possible

• ’>’: navigation is efficient

• ’×’: navigation is not possible

So: In general, UML associations are different from pointers/references!

But: Pointers/references can faithfully be modelled by UML associations.–
0
9
–
2
0
1
2
-1
1
-2
7
–
S
a
ss
o
cr
es
t
–

6/42



The Rest of the Rest

Recapitulation: Consider the following association:

〈r : 〈role1 : C1, µ1, P1, ξ1, ν1, o1〉, . . . , 〈rolen : Cn, µn, Pn, ξn, νn, on〉〉

• Association name r and role names/types
rolei/Ci induce extended system states λ.

• Multiplicity µ is considered in OCL syntax.

• Visibility ξ/Navigability ν: well-typedness.

Now the rest:

• Multiplicity µ: we propose to view them as constraints.

• Properties Pi: even more typing.

• Ownership o: getting closer to pointers/references.

• Diamonds: exercise.
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Multiplicities as Constraints

Recall: The multiplicity of an association end is a term of the form:

µ ::= ∗ | N | N..M | N..∗ | µ, µ (N,M ∈ N)

Proposal: View multiplicities (except 0..1, 1) as additional invariants/constraints.
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Multiplicities as Constraints

Recall: The multiplicity of an association end is a term of the form:

µ ::= ∗ | N | N..M | N..∗ | µ, µ (N,M ∈ N)

Proposal: View multiplicities (except 0..1, 1) as additional invariants/constraints.

Recall: we can normalize each multiplicity µ to the form

N1..N2, . . . , N2k−1..N2k

where Ni ≤ Ni+1 for 1 ≤ i ≤ 2k, N1, . . . , N2k−1 ∈ N, N2k ∈ N ∪ {∗}.
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Multiplicities as Constraints

µ = N1..N2, . . . , N2k−1..N2k

where Ni ≤ Ni+1 for 1 ≤ i ≤ 2k, N1, . . . , N2k−1 ∈ N, N2k ∈ N ∪ {∗}.
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Multiplicities as Constraints

µ = N1..N2, . . . , N2k−1..N2k

where Ni ≤ Ni+1 for 1 ≤ i ≤ 2k, N1, . . . , N2k−1 ∈ N, N2k ∈ N ∪ {∗}.

Define µC
OCL(role) := context C inv :

(N1 ≤ role -> size() ≤ N2) or . . . or (N2k−1 ≤ role -> size()≤ N2k
︸ ︷︷ ︸

omit if N2k = ∗

)

for each µ 6= 0..1, µ 6= 1,

〈r : . . . , 〈role : D,µ, , , , 〉, . . . , 〈role′ : C, , , , , 〉, . . . 〉 ∈ V or

〈r : . . . , 〈role ′ : C, , , , , 〉, . . . , 〈role : D,µ, , , , 〉, . . . 〉 ∈ V, role 6= role
′

.

And define

µ
C
OCL(role) := context C inv : not(oclIsUndefined(role))

for each µ = 1.

Note: in n-ary associations with n > 2, there is redundancy.
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Multiplicities as Constraints Example

µC
OCL(role) = context C inv :

(N1 ≤ role -> size() ≤ N2) or . . . or (N2k−1 ≤ role -> size() ≤ N2k)

CD :
C

v : Int

role1

0..1

role2

4, 17

role3 3..∗

Inv(CD) =

• {context C inv : 4 ≤ role2 -> size() ≤ 4 or 17 ≤ role2 -> size() ≤ 17}
= {context C inv : role2 -> size() = 4 or role2 -> size() = 17}

• ∪ {context C inv : 3 ≤ role3 -> size()}
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Why Multiplicities as Constraints?

More precise, can’t we just use types? (cf. Slide 26)

• µ = 0..1, µ = 1:
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Why Multiplicities as Constraints?

More precise, can’t we just use types? (cf. Slide 26)

• µ = 0..1, µ = 1:
many programming language have direct correspondences (the first corresponds
to type pointer, the second to type reference) — therefore treated specially.

• µ = ∗:
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Why Multiplicities as Constraints?

More precise, can’t we just use types? (cf. Slide 26)

• µ = 0..1, µ = 1:
many programming language have direct correspondences (the first corresponds
to type pointer, the second to type reference) — therefore treated specially.

• µ = ∗:
could be represented by a set data-structure type without fixed bounds — no
problem with our approach, we have µOCL = true anyway.

• µ = 0..3 :
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Why Multiplicities as Constraints?

More precise, can’t we just use types? (cf. Slide 26)

• µ = 0..1, µ = 1:
many programming language have direct correspondences (the first corresponds
to type pointer, the second to type reference) — therefore treated specially.

• µ = ∗:
could be represented by a set data-structure type without fixed bounds — no
problem with our approach, we have µOCL = true anyway.

• µ = 0..3 :
use array of size 4 — if model behaviour (or the implementation) adds 5th
identity, we’ll get a runtime error, and thereby see that the constraint is
violated. Principally acceptable, but: checks for array bounds everywhere...?

• µ = 5..7 :
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Why Multiplicities as Constraints?

More precise, can’t we just use types? (cf. Slide 26)

• µ = 0..1, µ = 1:
many programming language have direct correspondences (the first corresponds
to type pointer, the second to type reference) — therefore treated specially.

• µ = ∗:
could be represented by a set data-structure type without fixed bounds — no
problem with our approach, we have µOCL = true anyway.

• µ = 0..3 :
use array of size 4 — if model behaviour (or the implementation) adds 5th
identity, we’ll get a runtime error, and thereby see that the constraint is
violated. Principally acceptable, but: checks for array bounds everywhere...?

• µ = 5..7 :
could be represented by an array of size 7 — but: few programming
languages/data structure libraries allow lower bounds for arrays (other than 0).
If we have 5 identities and the model behaviour removes one, this should be a
violation of the constraints imposed by the model.

The implementation which does this removal is wrong. How do we see this...?
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Multiplicities Never as Types...?

Well, if the target platform is known and fixed,
and the target platform has, for instance,

• reference types,

• range-checked arrays with positions 0, . . . , N ,

• set types,

then we could simply restrict the syntax of multiplicities to

µ ::= 1 | 0..N | ∗

and don’t think about constraints
(but use the obvious 1-to-1 mapping to types)...

In general, unfortunately, we don’t know.
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Multiplicities as Constraints of Class Diagram

Recall/Later:

C D = {CD1, . . . , CDn}

signature S (CD) invariants Inv(C D)

basic

(classes and

attributes)

extended

(visibility)

J · K

distinguish

From now on: Inv(CD) = {constraints occurring in notes} ∪
{
µC
OCL(role) |

〈r : . . . , 〈role : D,µ, , , , 〉, . . . , 〈role′ : C, , , , , 〉, . . . 〉 ∈ V or

〈r : . . . , 〈role′ : C, , , , , 〉, . . . , 〈role : D,µ, , , , 〉, . . . 〉 ∈ V,

role 6= role ′, µ /∈ {0..1}
}
.
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Properties

We don’t want to cover association properties in detail,
only some observations (assume binary associations):

Property Intuition Semantical Effect

unique one object has at most one r-link to a
single other object

current setting

bag one object may have multiple r-links to
a single other object

have λ(r) yield
multi-sets

ordered,
sequence

an r-link is a sequence of object identi-
ties (possibly including duplicates)

have λ(r) yield se-
quences
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Properties

We don’t want to cover association properties in detail,
only some observations (assume binary associations):

Property Intuition Semantical Effect

unique one object has at most one r-link to a
single other object

current setting

bag one object may have multiple r-links to
a single other object

have λ(r) yield
multi-sets

ordered,
sequence

an r-link is a sequence of object identi-
ties (possibly including duplicates)

have λ(r) yield se-
quences

Property OCL Typing of expression role(expr)

unique τD → Set(τC)

bag τD → Bag(τC)

ordered, sequence τD → Seq(τC)

For subsets, redefines, union, etc. see [OMG, 2007a, 127].–
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Ownership

C D•
role

r
×

Intuitively it says:

Association r is not a “thing on its own” (i.e. provided by λ),
but association end ‘role’ is owned by C (!).
(That is, it’s stored inside C object and provided by σ).
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Ownership

C D•
role

r
×

Intuitively it says:

Association r is not a “thing on its own” (i.e. provided by λ),
but association end ‘role’ is owned by C (!).
(That is, it’s stored inside C object and provided by σ).

So: if multiplicity of role is 0..1 or 1, then the picture above is very close to
concepts of pointers/references.

Actually, ownership is seldom seen in UML diagrams. Again: if target platform
is clear, one may well live without (cf. [OMG, 2007b, 42] for more details).
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Ownership

C D•
role

r
×

Intuitively it says:

Association r is not a “thing on its own” (i.e. provided by λ),
but association end ‘role’ is owned by C (!).
(That is, it’s stored inside C object and provided by σ).

So: if multiplicity of role is 0..1 or 1, then the picture above is very close to
concepts of pointers/references.

Actually, ownership is seldom seen in UML diagrams. Again: if target platform
is clear, one may well live without (cf. [OMG, 2007b, 42] for more details).

Not clear to me:

C1 C2

...

Cn

role
•⋄

r
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Back to the Main Track
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Back to the main track:

Recall: on some earlier slides we said, the extension of the signature is only
to study associations in “full beauty”.
For the remainder of the course, we should look for something simpler...

Proposal:

• from now on, we only use associations of the form

(i) C D•
0..1

role
×

(ii) C D•
∗

role
×

(And we may omit the non-navigability and ownership symbols.)

• Form (i) introduces role : C0,1, and form (ii) introduces role : C∗ in V .

• In both cases, role ∈ atr(C).

• We drop λ and go back to our nice σ with σ(u)(role) ⊆ D(D).
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OCL Constraints in (Class) Diagrams
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Where Shall We Put OCL Constraints?

Numerous options:

(i) Additional documents.

(ii) Notes.

(iii) Particular dedicated places.
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Where Shall We Put OCL Constraints?

Numerous options:

(i) Additional documents.

(ii) Notes.

(iii) Particular dedicated places.

(i) Notes:

A UML note is a picture of the form

text

text can principally be everything, in particular comments and constraints.

Sometimes, content is explicitly classified for clarity:

OCL:

expr–
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OCL in Notes: Conventions

C

. . .

. . .

expr

stands for

C

. . .

. . .

context C inv : expr

–
0
9
–
2
0
1
2
-1
1
-2
7
–
S
o
cl
d
ia

–

20/42



Where Shall We Put OCL Constraints?

(ii) Particular dedicated places in class diagrams: (behav. feature: later)

C

ξ v : τ {p1, . . . , pn} {expr}

ξ f(v1 : τ, . . . , vn : τn) : τ {p1, . . . , pn} {pre : expr1

post : expr2}
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Where Shall We Put OCL Constraints?

(ii) Particular dedicated places in class diagrams: (behav. feature: later)

C

ξ v : τ {p1, . . . , pn} {expr}

ξ f(v1 : τ, . . . , vn : τn) : τ {p1, . . . , pn} {pre : expr1

post : expr2}

For simplicity, we view the above as an abbreviation for

C

ξ v : τ {p1, . . . , pn}

expr

context f pre : expr1 post : expr2–
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Invariants of a Class Diagram

• Let CD be a class diagram.

• As we (now) are able to recognise OCL constraints when we see them,
we can define

Inv(CD)

as the set {ϕ1, . . . , ϕn} of OCL constraints occurring in notes in CD —
after unfolding all abbreviations (cf. next slides).
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Invariants of a Class Diagram

• Let CD be a class diagram.

• As we (now) are able to recognise OCL constraints when we see them,
we can define

Inv(CD)

as the set {ϕ1, . . . , ϕn} of OCL constraints occurring in notes in CD —
after unfolding all abbreviations (cf. next slides).

• As usual: Inv(C D) :=
⋃

CD∈CD
Inv(CD).

• Principally clear: Inv( · ) for any kind of diagram.
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Invariant in Class Diagram Example

C

v : τ {v > 3}

If C D consists of only CD with the single class C, then

• Inv(CD) = Inv(CD) =
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Semantics of a Class Diagram

Definition. Let CD be a set of class diagrams.

We say, the semantics of C D is the signature it induces and the set of
OCL constraints occurring in CD , denoted

JC DK := 〈S (C D), Inv(CD)〉.

Given a structure D of S (and thus of CD), the class diagrams describe

the system states ΣD
S . Of those, some satisfy Inv(CD) and some don’t.

We call a system state σ ∈ ΣD
S consistent if and only if σ |= Inv(CD).

In pictures: C D = {CD1, . . . , CDn}

signature S (C D) invariants Inv(C D)

basic

(classes and attributes)

extended

(visibility)

(σ ∈) ΣD
S

J · K

distinguish

induce
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Pragmatics

Recall: a UML model is an image or pre-image of a software system.

A set of class diagrams C D with invariants Inv(CD) describes the structure
of system states.

Together with the invariants it can be used to state:

• Pre-image: Dear programmer, please provide an implementation which
uses only system states that satisfy Inv(C D).

• Post-image: Dear user/maintainer, in the existing system, only system
states which satisfy Inv(C D) are used.

(The exact meaning of “use” will become clear when we study behaviour — intuitively: the system states that
are reachable from the initial system state(s) by calling methods or firing transitions in state-machines.)
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Pragmatics

Recall: a UML model is an image or pre-image of a software system.

A set of class diagrams C D with invariants Inv(CD) describes the structure
of system states.

Together with the invariants it can be used to state:

• Pre-image: Dear programmer, please provide an implementation which
uses only system states that satisfy Inv(C D).

• Post-image: Dear user/maintainer, in the existing system, only system
states which satisfy Inv(C D) are used.

(The exact meaning of “use” will become clear when we study behaviour — intuitively: the system states that
are reachable from the initial system state(s) by calling methods or firing transitions in state-machines.)

Example: highly abstract model of traffic lights controller.

TLCtrl

red : Bool

green : Bool

not(red and green)
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Constraints vs. Types

Find the 10 differences:

C

x : Int {x = 3 ∨ x > 17}

C

x : T
D(T ) = {3}

∪{n ∈ N | n > 17}

• x = 4 is well-typed in the left context,
a system state satisfying x = 4 violates the constraints of the diagram.

• x = 4 is not even well-typed in the right context,
there cannot be a system state with σ(u)(x) = 4 because σ(u)(x) is
supposed to be in D(T ) (by definition of system state).
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Constraints vs. Types

Find the 10 differences:

C

x : Int {x = 3 ∨ x > 17}

C

x : T
D(T ) = {3}

∪{n ∈ N | n > 17}

• x = 4 is well-typed in the left context,
a system state satisfying x = 4 violates the constraints of the diagram.

• x = 4 is not even well-typed in the right context,
there cannot be a system state with σ(u)(x) = 4 because σ(u)(x) is
supposed to be in D(T ) (by definition of system state).

Rule-of-thumb:

• If something “feels like” a type (one criterion: has a natural
correspondence in the application domain), then make it a type.

• If something is a requirement or restriction of an otherwise useful type,
then make it a constraint.–
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Design Guidelines for (Class) Diagram

Be careful whose advice you buy, but,
be patient with those who supply it.

Baz Luhrmann/Mary Schmich

(partly following [Ambler, 2005])

–
0
9
–
2
0
1
2
-1
1
-2
7
–
m
a
in

–

27/42

Main and General Modelling Guideline (admittedly: trivial and obvious)

Be good to your audience.
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Main and General Modelling Guideline (admittedly: trivial and obvious)

Be good to your audience.

“Imagine you’re given your diagram D and asked to conduct task T .

• Can you do T with D?

(semantics sufficiently clear? all necessary information available? ...)

• Does doing T with D cost you more nerves/time/money/. . . than it should?”

(syntactical well-formedness? readability? intention of deviations from standard

syntax clear? reasonable selection of information? layout? ...)
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Main and General Modelling Guideline (admittedly: trivial and obvious)

Be good to your audience.

“Imagine you’re given your diagram D and asked to conduct task T .

• Can you do T with D?

(semantics sufficiently clear? all necessary information available? ...)

• Does doing T with D cost you more nerves/time/money/. . . than it should?”

(syntactical well-formedness? readability? intention of deviations from standard

syntax clear? reasonable selection of information? layout? ...)

In other words:

• the things most relevant for T , do they stand out in D?

• the things less relevant for T , do they disturb in D?
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Main and General Quality Criterion (again: trivial and obvious)

• Q: When is a (class) diagram a good diagram?
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Main and General Quality Criterion (again: trivial and obvious)

• Q: When is a (class) diagram a good diagram?

• A: If it serves its purpose/makes its point.
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Main and General Quality Criterion (again: trivial and obvious)

• Q: When is a (class) diagram a good diagram?

• A: If it serves its purpose/makes its point.

Examples for purposes and points and rules-of-thumb:

• Analysis/Design
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Main and General Quality Criterion (again: trivial and obvious)

• Q: When is a (class) diagram a good diagram?

• A: If it serves its purpose/makes its point.

Examples for purposes and points and rules-of-thumb:

• Analysis/Design

• realizable, no contradictions

• abstract, focused, admitting degrees of freedom for (more detailed) design

• platform independent – as far as possible but not (artificially) farer

• Implementation/A
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Main and General Quality Criterion (again: trivial and obvious)

• Q: When is a (class) diagram a good diagram?

• A: If it serves its purpose/makes its point.

Examples for purposes and points and rules-of-thumb:

• Analysis/Design

• realizable, no contradictions

• abstract, focused, admitting degrees of freedom for (more detailed) design

• platform independent – as far as possible but not (artificially) farer

• Implementation/A

• close to target platform

(C0,1 is easy for Java, C∗ comes at a cost — other way round for RDB)

• Implementation/B
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Main and General Quality Criterion (again: trivial and obvious)

• Q: When is a (class) diagram a good diagram?

• A: If it serves its purpose/makes its point.

Examples for purposes and points and rules-of-thumb:

• Analysis/Design

• realizable, no contradictions

• abstract, focused, admitting degrees of freedom for (more detailed) design

• platform independent – as far as possible but not (artificially) farer

• Implementation/A

• close to target platform

(C0,1 is easy for Java, C∗ comes at a cost — other way round for RDB)

• Implementation/B

• complete, executable

• Documentation

–
0
9
–
2
0
1
2
-1
1
-2
7
–
S
el
em

en
ts

–

29/42



Main and General Quality Criterion (again: trivial and obvious)

• Q: When is a (class) diagram a good diagram?

• A: If it serves its purpose/makes its point.

Examples for purposes and points and rules-of-thumb:

• Analysis/Design

• realizable, no contradictions

• abstract, focused, admitting degrees of freedom for (more detailed) design

• platform independent – as far as possible but not (artificially) farer

• Implementation/A

• close to target platform

(C0,1 is easy for Java, C∗ comes at a cost — other way round for RDB)

• Implementation/B

• complete, executable

• Documentation

• Right level of abstraction: “if you’ve only one diagram to spend, illustrate the
concepts, the architecture, the difficult part”

• The more detailed the documentation, the higher the probability for regression

“outdated/wrong documentation is worse than none”
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General Diagramming Guidelines [Ambler, 2005]

(Note: “Exceptions prove the rule.”)

• 2.1 Readability

• 1.–3. Support Readability of Lines
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General Diagramming Guidelines [Ambler, 2005]

(Note: “Exceptions prove the rule.”)

• 2.1 Readability

• 1.–3. Support Readability of Lines

• 4. Apply Consistently Sized Symbols
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General Diagramming Guidelines [Ambler, 2005]

(Note: “Exceptions prove the rule.”)

• 2.1 Readability

• 1.–3. Support Readability of Lines

• 4. Apply Consistently Sized Symbols

• 9. Minimize the Number of Bubbles

–
0
9
–
2
0
1
2
-1
1
-2
7
–
S
el
em

en
ts

–

30/42



General Diagramming Guidelines [Ambler, 2005]

(Note: “Exceptions prove the rule.”)

• 2.1 Readability

• 1.–3. Support Readability of Lines

• 4. Apply Consistently Sized Symbols

• 9. Minimize the Number of Bubbles

• 10. Include White-Space in Diagrams
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General Diagramming Guidelines [Ambler, 2005]

(Note: “Exceptions prove the rule.”)

• 2.1 Readability

• 1.–3. Support Readability of Lines

• 4. Apply Consistently Sized Symbols

• 9. Minimize the Number of Bubbles

• 10. Include White-Space in Diagrams

• 13. Provide a Notational Legend
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General Diagramming Guidelines [Ambler, 2005]

• 2.2 Simplicity

• 14. Show Only What You Have to Show

• 15. Prefer Well-Known Notation over Exotic Notation

• 16. Large vs. Small Diagrams

• 18. Content First, Appearance Second
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General Diagramming Guidelines [Ambler, 2005]

• 2.2 Simplicity

• 14. Show Only What You Have to Show

• 15. Prefer Well-Known Notation over Exotic Notation

• 16. Large vs. Small Diagrams

• 18. Content First, Appearance Second

• 2.3 Naming

• 20. Set and (23. Consistently) Follow Effective Naming Conventions
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General Diagramming Guidelines [Ambler, 2005]

• 2.2 Simplicity

• 14. Show Only What You Have to Show

• 15. Prefer Well-Known Notation over Exotic Notation

• 16. Large vs. Small Diagrams

• 18. Content First, Appearance Second

• 2.3 Naming

• 20. Set and (23. Consistently) Follow Effective Naming Conventions

• 2.4 General

• 24. Indicate Unknowns with Question-Marks

• 25. Consider Applying Color to Your Diagram

• 26. Apply Color Sparingly
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Class Diagram Guidelines [Ambler, 2005]

• 5.1 General Guidelines

• 88. Indicate Visibility Only on Design Models (in contrast to analysis models)
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Class Diagram Guidelines [Ambler, 2005]

• 5.1 General Guidelines

• 88. Indicate Visibility Only on Design Models (in contrast to analysis models)

• 5.2 Class Style Guidelines

• 96. Prefer Complete Singular Nouns for Class Names

• 97. Name Operations with Strong Verbs

• 99. Do Not Model Scaffolding Code [Except for Exceptions]
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Class Diagram Guidelines [Ambler, 2005]

• 5.2 Class Style Guidelines

• 103. Never Show Classes with Just Two Compartments

• 104. Label Uncommon Class Compartments

• 105. Include an Ellipsis (...) at the End of an Incomplete List

• 107. List Operations/Attributes in Order of Decreasing Visibility
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Class Diagram Guidelines [Ambler, 2005]

• 5.3 Relationships

• 112. Model Relationships Horizontally

• 115. Model a Dependency When the Relationship is Transitory

• 117. Always Indicate the Multiplicity

• 118. Avoid Multiplicity “∗”

• 119. Replace Relationship Lines with Attribute Types
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Class Diagram Guidelines [Ambler, 2005]

• 5.4 Associations

• 127. Indicate Role Names When Multiple Associations Between Two Classes
Exist

• 129. Make Associations Bidirectional Only When Collaboration Occurs in
Both Directions

• 131. Avoid Indicating Non-Navigability

• 133. Question Multiplicities Involving Minimums and Maximums
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Class Diagram Guidelines [Ambler, 2005]

• 5.4 Associations

• 127. Indicate Role Names When Multiple Associations Between Two Classes
Exist

• 129. Make Associations Bidirectional Only When Collaboration Occurs in
Both Directions

• 131. Avoid Indicating Non-Navigability

• 133. Question Multiplicities Involving Minimums and Maximums

• 5.6 Aggregation and Composition

• → exercises
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[...] But trust me on the sunscreen.

Baz Luhrmann/Mary Schmich
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Example: Modelling Games
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Task: Game Development

Task: develop a video game. Genre: Racing. Rest: open, i.e.

Degrees of freedom:

• simulation vs. arcade

• platform (SDK or not,
open or proprietary,
hardware capabilities...)

• graphics (3D, 2D, ...)

• number of players, AI

• controller

• game experience
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Task: Game Development

Task: develop a video game. Genre: Racing. Rest: open, i.e.

Degrees of freedom: Exemplary choice: 2D-Tron

• simulation vs. arcade arcade

• platform (SDK or not,
open or proprietary,
hardware capabilities...)

open

• graphics (3D, 2D, ...) 2D

• number of players, AI min. 2, AI open

• controller open (later determined by platform)

• game experience minimal: main menu and game
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Modelling Structure: 2D-Tron
2D-Tron

• arcade
• platform open
• 2D
• min. 2, AI open
• controller open

• only game, no menues

• In many domains, there are canonical
architectures – and adept readers try
to see/find/match this!

• For games:

Main

External inputs

• Keyboard

• Joystick

• . . .

Game Logic

• player scores

• interface inputs/engine

(Physics) Engine

• physical objects

• collision notification

Output

• Graphics (from
ASCII to bitmap;
native or via API)

• Sound

• . . .

notifyupdate ?

?
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Modelling Structure: 2D-Tron
Main

External
inputs

Game Logic

(Physics) Engine

Output

notifyupdate
?

?

Tron

Joystick?

. . .

Keyboard?

Control

Player

colour
score
direction
speed

Gameplay Render

OpenGL?

. . .

aalib?

AI?

Segment

x0, y0
x1, y1
colour

Engine

areawidth
areaheight

1..∗

notifyupdate

0..∗

head

world

1..∗

Conventions:

• default ξ is 1
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References
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