—12 - 2011-12-11 — main —

Sdtware Design, Modelling andAnalysisin UML

Ledure 12: Core Sate Machines ||
201112-11

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

—12 - 2011-12-11 — Sprelim —

Last Lecture:

o The basic causality model

o Ether

This Lecture:
o Educational Objectives: Capabilities for following tasks/questions.
o What does this State Machine mean? What happens if | inject this event?
o Can you please model the following behaviour.

o What is: Signal, Event, Ether, Transformer, Step, RTC.

o Content:
o System Configuration, Transformer
o Examples for transformer
¢ Run-to-completion Step
e Putting It All Together

2/60

—12 - 2011-12-11 — main

—12 - 2011-12-11 — main —

yq

:lw/-

cl.ma.

x2} | [=
‘ Sesa| ety
S xR
NS
‘ 12/64
3/60
? — ol
And @‘ En#0)/z:=2+ 1;n!F @
F/z ::;0:;* f’////n =10
We have to formally define what event occurrence is.
We have to define where events are stored — what the event pool is.
We have to explain how transitions are chosen — “matching”.
We have to explain what the effect of actions is — on state and event pool.
We have to decide on the granularity — micro-steps, steps,
run-to-completion steps (aka. super-steps)?
We have to formally define a notion of stability and RTC-step completion.
And then: hierarchical state machines.
I s \
EE /o\' | —, | o—,
(2]
8 | B/ | B/ B/
4 / | / | /
:)|
= | |
‘ 13/64

4/60

Roadmap: Chrondogically

—12 - 2011-12-11 — main —

— 12 - 2011-12-11 — main —

(i) What do we (have to) cover?
UML State Machine Diagrams Syntax.

(ii) Def.: Signature with signals.

(iii) Def.: Core state machine.

(iv) Map UML State Machine Diagrams O pe ot
\/to core state machines. ;f{ % U
(Z,€,V, atr), SM expr
Semantics: 0
The Basic Causality Model M= (3%, Ay, —su)
7 (v) Def.: Ether (aka. event pool) | \LiD
/(vi) Def.: System configuration. Y R e R
(vii) Def.: Event. %
i G=(N,E,f)
(viii) Def.: Transformer.
(ix) Def.: Transition system, computation. 0 %0

(x) Transition relation induced by core state ma-
chine.

(xi) Def.: step, run-to-completion step.

(xii) Later: Hierarchical state machines.

B = (Qsp,q0, Av,—sp, Fsp)

&

s wre = (04, consy, Snd,)); e

5/60

System Configuration, Ether, Transformer

6/60

— 12 — 2011-12-11 — Sstmsem —

Ether aka. Event Podl

Definition. Let ¥ = (Z,%,V, atq&) be a signature with signals
and 9 a structure.

We call a EH%‘E (Eth, ready, ®, S, [-]) an ether over . and 2
if and only if it provides

a ready operation which yields a set of evgnts that are rea’c(iy for a
H H i dn tosat and aw objec Shin A e
given object, i.e. {w oot ‘fn\ i-(.kaj fl A @3»../- wSt=tCe

? denhAe
ready : Eth x 9(€) — 27(¢) '
a operation to insert an event destined for a given object i.e.
bt "R B O
G : Ethx.@()x@()—»Eths o ol
a operation to remove an event, i.e.
© : Eth x 9(&) — Eth

an operation to clear the ether for a given object, i.e.

[]: Eth x 9(€) — Eth.

— 11 — 2012-12-05 — Sstmsem —

16/64

Ether and[OMG, 20074

—12 - 2011-12-11 — Sstmsem —

The standard distinguishes (among others)

SignalEvent [OMG, 2007b, 450] and Reception [OMG, 2007b, 447].
el place’, P evend

On SignalEvents, it says

“ recoil
hote cw,rfw/,»ﬁl «: discasd s /el.'s/:u/d /
A sw represents the receipt of an asynchronous signal instance. A

signal event may, for example, cause a state machine to trigger a transi-
tion. [OMG, 2007b, 449]

[-] = MeSagas
Semantic Variation Points
The means by which @ are transported to their target depend on the

type of requesting action, the target, the properties of the communication
medium, and numerous other factors.

it may involve Ttransmission delays, of variable duration, loss of requests,
reordering, or duplication.

(See also the discussion on page 421.) [OMG, 2007b, 450]

; In some cases, this is’Tnstantaneous_,and completely reliable while in others

Our ether is a general representation of the possible choices.

7/60

Often seen minimal requirement: order of sending by one object is preserved.

But: we'll later briefly discuss “discarding” of events.

8/60

System Configuration

— 12 — 2011-12-11 — Sstmsem

~
NI,

Definition. Let 4 = (9, %o, Vo, atrg, &) be a signature with signals,
Dy a structure of %, (Eth, ready, ®, S, [-]) an ether over % and %.
Furthermore assume there is one core state machine M per class C € €.

A system confhﬁjri;ion over .Yy, 9y, and Eth is a pair

o tofe vt o ‘
of whrdes in (s shde macine (0,€) € ¥2 x Eth e @(M)=
. Boof ¢ T, e 2l s, 1
where / . ‘A\é he
S =(FHU{Su. | C€F}, % » of i Shte <
0 {{ : 0} it 2 '
Vo U {(stable : Bool, —, true,
: eak coject o e
U {(stc : SMC,+,sm + sw}{:/]
. (af wost te 4t o #
U {(paramsg : Ep1,+,0,0) | E € &}, o et B accrS
oyiCy {Cr atro(C) e
¢ (G U {stable, stc} U{paramsy | E € &} | C € €}, &)
. /_’\ o
D = Py U{Su, — S(Mc) | C € €}, and shies 4“,"{‘;}?"‘

o/

.n)

essty | |ep-r| Yo L»)‘ &Wﬂészz '
<? Di Q“ C D/(\—/ @ Dy ht): 2

‘go-,- ({Ln‘}, {(f,&?), 5)0(“!,3:“;,f('l—sfx,f],EHﬂ,Tl—)écfi/ {Eﬂ»’)j
Al

$oo
‘j)=(iLf.Sﬁj) {C'Eﬂg) i"ifl"" ¢ ot shble: Beo/, St :'Sf’c L g €gy , PSSy '7':"";;
§ ¢ ixg, shil, sd, | o, pr»w;S‘, ErG TP faf}, 35/7:()

D Cint] = D1t
®(‘§Kc) o 750.&-52,V. 2

o ke fom o b

ot FUIR SR R P

@Q@ﬂ 9 (&) = 0 for each u € dom(o) and r € Vg, ., (e ((:/

9/60

(a-
Insmcs o{'f')
S reedy for)"

System Configuation Sep-by-Sep

— 12 — 2011-12-11 — Sstmsem —

o We start with some signature with signals % = (%, %, Vo, atrg, &).

o A system configuration is a pair (o, &) which
comprises a system state o wrt. . (not wrt. .%;).

o Such a system state o wrt. . provides, for each object u € dom(o),

o values for the explicit attributes in 1},
o values for a number of implicit attributes, namely
 a stability flag, i.e. o(u)(stable) is a boolean value,

o a current (state machine) state, i.e. o(u)(st) denotes one of the
states of core state machine M¢,

e a temporary association to access event parameters for each class,
i.e. o(u)(paramsy) is defined for each E € &.

o For convenience require: there is no link to an event except for paramsy.

10/60

Sahility

—12 - 2011-12-11 — Sstmsem —

Definition.
Let (o,¢) be a system configuration over some %y, %, Eth.

We call an object u € dom(c) N P(%)) stable in o if and only if

o(u)(stable) = true.

11/60

Events Are Instances of Sgnds

— 12 — 2011-12-11 — Sstmsem —

4)
Definition. Let %, be a structure of the signature with signals
0 = (%, 6o, Vo, atrg, &) and let E € & be a signal.

Let atr(F) = {v1,...,v,}. We call
e=(E,{vi—di,...,vn —dpn}),

or shorter (if mapping is clear from context)

-

(E7 (d17 000 7dn)> or (E7d)7
an event (or an instance) of signal E (if type-consistent).

We use Evs(8y, Pp) to denote the set of all events of all signals in
S wrt. 9.

J

As we always try to maximize confusion...:

By our existing naming convention, u € 2(FE) is also called instance of the
(signal) class E in system configuration (o, ¢) if u € dom(o).

The corresponding event is then (F, o (u)).

Sgnds? Events...? Ether...?!

-12-11 — Sstmsem —

- 12 - 2011

The idea is the following:
Signals are types (classes).

Instances of signals (in the standard sense) are kept in the system
state component o of system configurations (o, ¢).

Identities of signal instances are kept in the ether.

Each signal instance is in particular an event — somehow “a recording
that this signal occurred” (without caring for its identity)

The main difference between signal instance and event:
Events don't have an identity.

Why is this useful? In particular for reflective descriptions of behaviour,
we are typically not interested in the identity of a signal instance, but only
whether it is an “E" or "F", and which parameters it carries.

12/60

13/60

— 12 — 2011-12-11 — Sstmsem —

Where are we?

—RAA'.S.V! *ﬁ . Fle:=0 /Z]"‘f*@ Aéércv.
(samr tules s il *sef?) Jes se 41

Wanted: a labelled transition relation
i«

(07 E) (cons,Snd) (0_,7 5,)

on system configuration, labelled with the consum
(o', €") being the result (or effect) of one object u, taking a transition
of its state machine from the current state mach. state o (u;)(stc).

Have: system configuration (o,) comprising current state machine state
and stability flag for each object, and the ether.

Plan:

(i) Introduce transformer as the semantics of action annotions.
Intuitively, (¢/,€’) is the effect of applying the transformer
of the taken transition.

(i) Explain how to choose transitions depending on ¢ and when to stop taking
transitions — the run-to-completion “algorithm”.

14/60

—12 - 2011-12-11 — Sstmsem —

Transformer becane o/ pan- deecinism

7)

Definition.
Let X% the set of sysfem configurations over some .%, 2y, Eth.
. “ ‘,J" 1#" 4,
We call a relation /ﬂﬂq iz S v A/% rac// <,
t C D(%) x (2 x Eth) x (£% x Eth)

a (system configuration) transforme:\sfla.. (a,ﬁjq,u(u_ defore
\ J

In the following, we assume that each application of a transformer ¢ to

some system configuration (o, ¢) for object u, is associated with a set of
observations S;""V _}’3)) /'“"**S mkﬂ;c::‘/‘ﬁ)u&d ey
Obs[us)(0,2) € 92(%) 42 (8)x Bus(& U {x,+},2)x 2(%) ety
= \Sbu-’ insha-ce D\rece:lm pe 4:»{;4,;3‘
An observation (wgc, Ue, (E,d), ugst) € Obsi[uz](o,¢€)
represents the information that, as a “side effect” of u, executing t,

-

an event (1) (E,d) has been sent from g, to ugst.

Special cases: creation/destruction.
15/60

Why Transformers?

— 12 — 2011-12-11 — Sstmsem

Recall the (simplified) syntax of transition annotations:
annot = [(event) [‘[(guard)]'] [‘/" (action)] |
Clear: (event) is from & of the corresponding signature.

But: What are (guard) and (action)?

UML can be viewed as being parameterized in expression language
(providing (guard)) and action language (providing (action)).

Examples:
Expression Language:
- OCL
- Java, C4++, ... expressions

Action Language:

- UML Action Semantics, “Executable UML"
- Java, C++, .. .statements (plus some event send action)

16/60

Lo Al 1»“0(4\'*«3, W Considdss

Adj . fslfn,of
uf thc(cw,,v, exfi) /ﬂv/,,e:pv, ¢ UlEy, velS
Ut sed (o, £ 696) | o, o, €lesy, €€EF
v §cenke (€, e v | ope e 02, ceC,vely

uf deshes (o) | o € Ol f

ij: XL episias o ¥

Transformers as Abstract Actions! cmple OCL:

— 12 — 2011-12-11 — Sstmsem —

In the following, we assume that we're given

and

TlepJ (o, u) =
toe . if Tlopl(s,

an expression language FExpr for guards, and

an action language Act for actions, {mzﬂ
. fte, ¢ Tl (s,
that we're given Has wa}

=146e
a semantics for boolean expressions in form of a partial function % Losisise

IL1C,)+ Bapr — (52 x (B 2(%))) M
which evaluates expressions in a given system configuration,

Assuming I to be partial is a way to treat “undefined” during runtime. If I is not
defined (for instance because of dangling-reference navigation or division-by-zero), we

want to go to a designated “error” system configuration.

a transformer for each action: for each act € Act, we assume to have

tact € D(€) x (X2 x Eth) x (X2 x Eth)

17/60

Expressorn/Action Languag Examples

—12 - 2011-12-11 — Sstmsem —

We can make the assumptions from the previous slide because instances exist:

for OCL, we have the OCL semantics from Lecture 03. Simply remove the
pre-images which map to “1"”.

for Java, the operational semantics of the SWT lecture uniquely defines trans-
formers for sequences of Java statements.

We distinguish the following kinds of transformers:

skip: do nothing — recall: this is the default action

send: modifies € — interesting, because state machines are built around
sending/consuming events

create/destroy: modify domain of o — not specific to state machines, but
let's discuss them here as we're at it

update: modify own or other objects’ local state — boring

18/60

Transformer Examples. Presentation

— 12 — 2011-12-11 — Sstmsem —

abstract syntax concrete syntax
op

intuitive semantics
well-typedness
djecd Cexecihin” acha 4p

((0,€), (07,€")) € toplus] iff ...
or
topluz)(0,€) = {(0',€')} where ...

semantics

observables
Obsepluz] = {...}, not a relation, depends on choice

(error) conditions

Not defined if ...

19/60

Transformer: Skip

— 12 - 2011-12-11 — Sstmsem —

abstract syntax concrete syntax
skip hp
intuitive semantics
do nothing
well-typedness o
/ i/ o ords 4
- o (0,£), s
semantics ’
Kwetls o (5,)

t[uz(0,€) = {(0,€)}
observables

Ostkip[um](J, 5) = (Z)

(error) conditions

20/60

Transformer: Updae

— 12 — 2011-12-11 — Sstmsem —

abstract syntax concrete syntax | Vi= €&)
update(ezpry, v, exprs) CXpS, V(= &K, (adhr Hlis.v 2
intuitive semantics
Update attribute v in the object denoted by expr, to the value
denoted by expr,.

well-typedness —— =z - .
expry : 7 and v : 7 € atr(C); expry I T;
expry, expry obey visibility and nawgablllty

semantics efl M/cﬁdg
tupdate(ezprl,v,ezpr2)[UZKU7E) = {(0,78)} — Seu,.&.a‘(s l/ E
where o’ = o[u — o(u)[v — I[expry] (o, B)]] with (v o s OCC/

u = I[expr,] (o, B),|8 = {this — u,}.

observables ({u
Wér a/,,

Obsupclate(ezp'r1 U, €TpTy)

.
A-Ih"

(error) conditions

Not defined if I[ezpr,] (o, 8) or I[ezpr;](o, 3) not defined.

ie. {«‘Ak[.-[[vxj(d',t‘) v

21/60

Updae Transformer Example

—12 - 2011-12-11 — Sstmsem —

SMe:

(&) AEsLhE ()

dus x iz s x 41

update(expry, v, exprsy)

tupdate(eapry v,capry) [Ua] (0;€) = (ofu = a(u)[v = I[ezpry] (o, B)]]),
u = I[expry](o, B)

Ux =U1
7 w:C /_/\> up : C o’
z=4 'bu,.(["41(6}2) xr = S'
V=0T (eluntullcn TERETG flomad| v=0

g_/}\,sj)

T[.{(‘“ xj(o-, B) + TT18(0 ot
<41

22/60

References

—12 - 2011-12-11 — main

59/60

References

[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling
with statecharts. |[EEE Computer, 30(7):31-42.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

—12 - 2011-12-11 — main

60/60

