
SoftwareDesign, Modelli ng andAnalysis in UML

Lecture12: CoreStateMachines III

2011-12-11

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

–
1
2

–
2
0
1
1
-1

2
-1

1
–

m
a
in

–

Contents & Goals

Last Lecture:

• The basic causality model

• Ether

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What does this State Machine mean? What happens if I inject this event?

• Can you please model the following behaviour.

• What is: Signal, Event, Ether, Transformer, Step, RTC.

• Content:

• System Configuration, Transformer

• Examples for transformer

• Run-to-completion Step

• Putting It All Together

–
1
2

–
2
0
1
1
-1

2
-1

1
–

S
p
re

li
m

–

2/60

–
1
1

–
2
0
1
2
-1

2
-0

5
–

S
st

m
st

d
–

12/64

–
1
2

–
2
0
1
1
-1

2
-1

1
–

m
a
in

–

3/60

And?
s1 s2

s3

E[n 6= ∅]/x := x + 1; n ! F

/n := ∅F/x := 0

• ...:

• We have to formally define what event occurrence is.

• We have to define where events are stored – what the event pool is.

• We have to explain how transitions are chosen – “matching”.

• We have to explain what the effect of actions is – on state and event pool.

• We have to decide on the granularity — micro-steps, steps,
run-to-completion steps (aka. super-steps)?

• We have to formally define a notion of stability and RTC-step completion.

• And then: hierarchical state machines.

s

s1 s2 s3

s′1 s′2 s′3

E/ E/ E/

E/

–
1
1

–
2
0
1
2
-1

2
-0

5
–

S
st

m
st

d
–

13/64

–
1
2

–
2
0
1
1
-1

2
-1

1
–

m
a
in

–

4/60

Roadmap: Chronologically

(i) What do we (have to) cover?
UML State Machine Diagrams Syntax.

(ii) Def.: Signature with signals.

(iii) Def.: Core state machine.

(iv) Map UML State Machine Diagrams
to core state machines.

Semantics:
The Basic Causality Model

(v) Def.: Ether (aka. event pool)

(vi) Def.: System configuration.

(vii) Def.: Event.

(viii) Def.: Transformer.

(ix) Def.: Transition system, computation.

(x) Transition relation induced by core state ma-
chine.

(xi) Def.: step, run-to-completion step.

(xii) Later: Hierarchical state machines.

UML

M
o
d
e
l

In
s
t
a
n
c
e
s

N

S

W

CD, SM

S = (T,C, V, atr), SM

M = (ΣDS , AS ,→SM)

ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, cons i, Snd i))i∈N

G = (N, E, f) Mathematics

OD UML

✔ ✔

✔ !

!
✔

✔

✔

✔

✔

–
1
2

–
2
0
1
1
-1

2
-1

1
–

m
a
in

–

5/60

System Configuration, Ether, Transformer

–
1
2

–
2
0
1
1
-1

2
-1

1
–

m
a
in

–

6/60

Ether aka. Event Pool

Definition. Let S = (T,C, V, atr) be a signature with signals

and D a structure.

We call a structure (Eth, ready ,⊕,⊖, [·]) an ether over S and D
if and only if it provides

• a ready operation which yields a set of events that are ready for a

given object, i.e.

ready : Eth ×D(C) → 2D(E)

• a operation to insert an event destined for a given object, i.e.

⊕ : Eth ×D(C) ×D(E) → Eth

• a operation to remove an event, i.e.

⊖ : Eth ×D(E) → Eth

• an operation to clear the ether for a given object, i.e.

[·] : Eth ×D(C) → Eth.

–
1
1

–
2
0
1
2
-1

2
-0

5
–

S
st

m
se

m
–

16/64

–
1
2

–
2
0
1
1
-1

2
-1

1
–

S
st

m
se

m
–

7/60

Ether and[OMG, 2007b]

The standard distinguishes (among others)

• SignalEvent [OMG, 2007b, 450] and Reception [OMG, 2007b, 447].

On SignalEvents, it says

A signal event represents the receipt of an asynchronous signal instance. A
signal event may, for example, cause a state machine to trigger a transi-
tion. [OMG, 2007b, 449]
[...]

Semantic Variation Points
The means by which requests are transported to their target depend on the
type of requesting action, the target, the properties of the communication
medium, and numerous other factors.

In some cases, this is instantaneous and completely reliable while in others
it may involve transmission delays of variable duration, loss of requests,
reordering, or duplication.

(See also the discussion on page 421.) [OMG, 2007b, 450]

Our ether is a general representation of the possible choices.

Often seen minimal requirement: order of sending by one object is preserved.
But: we’ll later briefly discuss “discarding” of events.–

1
2

–
2
0
1
1
-1

2
-1

1
–

S
st

m
se

m
–

8/60

System Configuration

Definition. Let S0 = (T0,C0, V0, atr0, E) be a signature with signals,D0 a structure of S0, (Eth, ready ,⊕,⊖, [·]) an ether over S0 and D0.
Furthermore assume there is one core state machine MC per class C ∈ C .

A system configuration over S0, D0, and Eth is a pair

(σ, ε) ∈ ΣDS × Eth

where
• S = (T0 ∪̇ {SMC

| C ∈ C }, C0,

V0 ∪̇ {〈stable : Bool ,−, true, ∅〉}

∪̇ {〈stC : SMC
, +, s0, ∅〉 | C ∈ C }

∪̇ {〈paramsE : E0,1, +, ∅, ∅〉 | E ∈ E0},

{C 7→ atr0(C)

∪ {stable, stC} ∪ {paramsE | E ∈ E0} | C ∈ C }, E0)

• D = D0 ∪̇ {SMC
7→ S(MC) | C ∈ C }, and

• σ(u)(r) ∩D(E0) = ∅ for each u ∈ dom(σ) and r ∈ V0.

–
1
2

–
2
0
1
1
-1

2
-1

1
–

S
st

m
se

m
–

9/60

System Configuration Step-by-Step

• We start with some signature with signals S0 = (T0,C0, V0, atr0, E).

• A system configuration is a pair (σ, ε) which
comprises a system state σ wrt. S (not wrt. S0).

• Such a system state σ wrt. S provides, for each object u ∈ dom(σ),

• values for the explicit attributes in V0,

• values for a number of implicit attributes, namely

• a stability flag, i.e. σ(u)(stable) is a boolean value,

• a current (state machine) state, i.e. σ(u)(st) denotes one of the
states of core state machine MC ,

• a temporary association to access event parameters for each class,
i.e. σ(u)(paramsE) is defined for each E ∈ E .

• For convenience require: there is no link to an event except for paramsE .

–
1
2

–
2
0
1
1
-1

2
-1

1
–

S
st

m
se

m
–

10/60

Stabilit y

Definition.
Let (σ, ε) be a system configuration over some S0, D0, Eth.

We call an object u ∈ dom(σ) ∩D(C0) stable in σ if and only if

σ(u)(stable) = true.

–
1
2

–
2
0
1
1
-1

2
-1

1
–

S
st

m
se

m
–

11/60

Events Are Instances of Signals

Definition. Let D0 be a structure of the signature with signalsS0 = (T0,C0, V0, atr0, E) and let E ∈ E0 be a signal.

Let atr(E) = {v1, . . . , vn}. We call

e = (E, {v1 7→ d1, . . . , vn 7→ dn}),

or shorter (if mapping is clear from context)

(E, (d1, . . . , dn)) or (E, ~d),

an event (or an instance) of signal E (if type-consistent).

We use Evs(E0,D0) to denote the set of all events of all signals inS0 wrt. D0.

As we always try to maximize confusion...:

• By our existing naming convention, u ∈ D(E) is also called instance of the
(signal) class E in system configuration (σ, ε) if u ∈ dom(σ).

• The corresponding event is then (E,σ(u)).

–
1
2

–
2
0
1
1
-1

2
-1

1
–

S
st

m
se

m
–

12/60

Signals? Events...? Ether...?!

The idea is the following:

• Signals are types (classes).

• Instances of signals (in the standard sense) are kept in the system
state component σ of system configurations (σ, ε).

• Identities of signal instances are kept in the ether.

• Each signal instance is in particular an event — somehow “a recording
that this signal occurred” (without caring for its identity)

• The main difference between signal instance and event:

Events don’t have an identity.

• Why is this useful? In particular for reflective descriptions of behaviour,
we are typically not interested in the identity of a signal instance, but only
whether it is an “E” or “F”, and which parameters it carries.

–
1
2

–
2
0
1
1
-1

2
-1

1
–

S
st

m
se

m
–

13/60

Whereare we? s1 s2

s3

E[n 6= ∅]/x := x + 1;n !F

/n := ∅F/x := 0

• Wanted: a labelled transition relation

(σ, ε)
(cons,Snd)
−−−−−−−→ (σ′, ε′)

on system configuration, labelled with the consumed and sent events,
(σ′, ε′) being the result (or effect) of one object ux taking a transition
of its state machine from the current state mach. state σ(ux)(stC).

• Have: system configuration (σ, ε) comprising current state machine state
and stability flag for each object, and the ether.

• Plan:

(i) Introduce transformer as the semantics of action annotions.
Intuitively, (σ′, ε′) is the effect of applying the transformer
of the taken transition.

(ii) Explain how to choose transitions depending on ε and when to stop taking
transitions — the run-to-completion “algorithm”.

–
1
2

–
2
0
1
1
-1

2
-1

1
–

S
st

m
se

m
–

14/60

Transformer

Definition.
Let ΣDS the set of system configurations over some S0, D0, Eth.

We call a relation

t ⊆ D(C) × (ΣDS × Eth) × (ΣDS × Eth)

a (system configuration) transformer.

• In the following, we assume that each application of a transformer t to
some system configuration (σ, ε) for object ux is associated with a set of
observations

Obst[ux](σ, ε) ∈ 2D(C)×D(E)×Evs(E ∪̇ {∗,+},D)×D(C).

• An observation (usrc, ue, (E, ~d), udst) ∈ Obst[ux](σ, ε)
represents the information that, as a “side effect” of ux executing t,

an event (!) (E, ~d) has been sent from usrc to udst .

Special cases: creation/destruction.

–
1
2

–
2
0
1
1
-1

2
-1

1
–

S
st

m
se

m
–

15/60

Why Transformers?

• Recall the (simplified) syntax of transition annotations:

annot ::=
[

〈event〉 [‘[’ 〈guard〉 ‘]’] [‘/’ 〈action〉]
]

• Clear: 〈event〉 is from E of the corresponding signature.

• But: What are 〈guard〉 and 〈action〉?

• UML can be viewed as being parameterized in expression language
(providing 〈guard〉) and action language (providing 〈action〉).

• Examples:

• Expression Language:

· OCL
· Java, C++, . . . expressions
· . . .

• Action Language:

· UML Action Semantics, “Executable UML”
· Java, C++, . . . statements (plus some event send action)
· . . .

–
1
2

–
2
0
1
1
-1

2
-1

1
–

S
st

m
se

m
–

16/60

Transformers asAbstract Actions!

In the following, we assume that we’re given

• an expression language Expr for guards, and

• an action language Act for actions,

and that we’re given

• a semantics for boolean expressions in form of a partial function

IJ · K(· , ·) : Expr → ((ΣDS × ({this} → D(C))) 7→ B)

which evaluates expressions in a given system configuration,

Assuming I to be partial is a way to treat “undefined” during runtime. If I is not

defined (for instance because of dangling-reference navigation or division-by-zero), we

want to go to a designated “error” system configuration.

• a transformer for each action: for each act ∈ Act , we assume to have

tact ⊆ D(C) × (ΣDS × Eth) × (ΣDS × Eth)

–
1
2

–
2
0
1
1
-1

2
-1

1
–

S
st

m
se

m
–

17/60

Expression/Action LanguageExamples

We can make the assumptions from the previous slide because instances exist:

• for OCL, we have the OCL semantics from Lecture 03. Simply remove the
pre-images which map to “⊥”.

• for Java, the operational semantics of the SWT lecture uniquely defines trans-

formers for sequences of Java statements.

We distinguish the following kinds of transformers:

• skip: do nothing — recall: this is the default action

• send: modifies ε — interesting, because state machines are built around
sending/consuming events

• create/destroy: modify domain of σ — not specific to state machines, but
let’s discuss them here as we’re at it

• update: modify own or other objects’ local state — boring

–
1
2

–
2
0
1
1
-1

2
-1

1
–

S
st

m
se

m
–

18/60

Transformer Examples: Presentation

abstract syntax concrete syntax

op

intuitive semantics

. . .

well-typedness

. . .

semantics

((σ, ε), (σ′, ε′)) ∈ top[ux] iff . . .
or

top[ux](σ, ε) = {(σ′, ε′)} where . . .

observables

Obsop[ux] = {. . . }, not a relation, depends on choice

(error) conditions

Not defined if . . .

–
1
2

–
2
0
1
1
-1

2
-1

1
–

S
st

m
se

m
–

19/60

Transformer: Skip

abstract syntax concrete syntax

skip

intuitive semantics

do nothing

well-typedness

./.

semantics

t[ux](σ, ε) = {(σ, ε)}

observables

Obsskip[ux](σ, ε) = ∅

(error) conditions

–
1
2

–
2
0
1
1
-1

2
-1

1
–

S
st

m
se

m
–

20/60

Transformer: Update

abstract syntax concrete syntax

update(expr1, v, expr2)

intuitive semantics

Update attribute v in the object denoted by expr1 to the value

denoted by expr2.

well-typedness

expr1 : τC and v : τ ∈ atr(C); expr2 : τ ;
expr1, expr2 obey visibility and navigability

semantics

tupdate(expr
1
,v,expr

2
)[ux](σ, ε) = {(σ′, ε)}

where σ′ = σ[u 7→ σ(u)[v 7→ IJexpr2K(σ, β)]] with
u = IJexpr1K(σ, β), β = {this 7→ ux}.

observables

Obsupdate(expr
1
,v,expr

2
)[ux] = ∅

(error) conditions

Not defined if IJexpr1K(σ, β) or IJexpr2K(σ, β) not defined.

–
1
2

–
2
0
1
1
-1

2
-1

1
–

S
st

m
se

m
–

21/60

UpdateTransformer Example

SMC :
s1 s2

/x := x + 1

update(expr1, v, expr2)

tupdate(expr
1
,v,expr

2
)[ux](σ, ε) = (σ[u 7→ σ(u)[v 7→ IJexpr2K(σ, β)]], ε),

u = IJexpr1K(σ, β)

σ: u1 : C

x = 4

y = 0

u1 : C

x = 5

y = 0

:σ′

ε: :ε′

–
1
2

–
2
0
1
1
-1

2
-1

1
–

S
st

m
se

m
–

22/60

References

–
1
2

–
2
0
1
1
-1

2
-1

1
–

m
a
in

–

59/60

References

[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling
with statecharts. IEEE Computer, 30(7):31–42.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

–
1
2

–
2
0
1
1
-1

2
-1

1
–

m
a
in

–

60/60

