Software Design, Modelling and Analysis in UML

Lecture 13: Core State Machines IV

2012-12-12

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents \& Goals

Last Lecture:

- System configuration
- Transformer

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
- What does this State Machine mean? What happens if I inject this event?
- Can you please model the following behaviour.
- What is: Signal, Event, Ether, Transformer, Step, RTC.
- Content:
- Transformer cont'd
- Examples for transformer
- Run-to-completion Step
- Putting It All Together

System Configuration

Definition. Let $\mathscr{S}_{0}=\left(\mathscr{T}_{0}, \mathscr{C}_{0}, V_{0}, a t r_{0}, \mathscr{E}\right)$ be a signature with signals, \mathscr{D}_{0} a structure of $\mathscr{S}_{0},($ Eth, ready $, \oplus, \ominus,[\cdot])$ an ether over \mathscr{S}_{0} and \mathscr{D}_{0}.
Furthermore assume there is one core state machine M_{C} per class $C \in \mathscr{C}$.
A system configuration over $\mathscr{S}_{0}, \mathscr{D}_{0}$, and Eth is a pair
a tope name for the zet
of states in C's state machine $(\sigma, \varepsilon) \in \Sigma_{\mathscr{S}}^{\mathscr{S}} \times$ Eth
where $D\left(\mathscr{I}^{\prime \prime} \operatorname{Bo}\left(\$ \mathcal{T}_{0}\right)=\mathbb{B}\right.$

- $\mathscr{S}=\left(\mathscr{T}_{0} \dot{\cup}\left\{S_{M_{C}} \mid C \in \mathscr{C}\right\}, \quad \mathscr{C}_{0}\right.$,
$V_{0} \dot{\cup}\{\langle$ stable : Bool, - , true,$\emptyset\rangle\}$
$\dot{\cup}\left\{\left\langle s t_{C}: S_{M_{C}},+, s_{0}, \emptyset\right\rangle \mid C \in \mathscr{C}\right\}$
$\dot{\cup}\left\{\left\langle\right.\right.$ params $\left.\left._{E}: E_{0,1},+, \emptyset, \emptyset\right\rangle \mid E \in \mathscr{E}_{0}\right\}$,
$\left\{C \mapsto \operatorname{atr}_{0}(C)\right.$
$\cup\left\{\right.$ stable,$\left.^{\text {st }}{ }_{C}\right\} \cup\left\{\right.$ params $\left.\left.\left._{E} \mid E \in \mathscr{E}_{0}\right\} \mid C \in \mathscr{C}\right\}, \quad \mathscr{E}_{0}\right)$
- $\mathscr{D}=\mathscr{D}_{0} \dot{\cup}\left\{S_{M_{C}} \mapsto S\left(M_{C}\right) \mid C \in \mathscr{C}\right\}$, and shiter of state metch
- $\sigma(u)(r) \cap \mathscr{D}\left(\mathscr{E}_{0}\right)=\emptyset$ for each $u \in \operatorname{dom}(\sigma)$ and $r \in V_{0_{\text {d.r, }} *}$ leg. $\left.r \cdot C_{\iota_{n}}\right)$

Where are we?

(save palles as with "sorf")
this. $x+1$

- Wanted: a labelled transition relation

$$
(\sigma, \varepsilon) \xrightarrow[U]{(c o n s, S n d)}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)
$$

on system configuration, labelled with the consumed and sent events, ($\sigma^{\prime}, \varepsilon^{\prime}$) being the result (or effect) of one object u_{x} taking a transition of its state machine from the current state mach. state $\sigma\left(u_{x}\right)\left(s t_{C}\right)$.

- Have: system configuration (σ, ε) comprising current state machine state and stability flag for each object, and the ether.
- Plan:
(i) Introduce transformer as the semantics of action annotions.

Intuitively, $\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$ is the effect of applying the transformer of the taken transition.
(ii) Explain how to choose transitions depending on ε and when to stop taking transitions - the run-to-completion "algorithm".

In the qultoring, we consider
Actg: $=\{$ stap $\}$

$u\left\{\right.$ crante $(C$, exow, $v) \mid$ exor $\left.\in O C E_{\text {for }}, C \in C, v \in V\right\}$

Exply: OCL exprestichs over φ

Transformer: Skip

abstract syntax skip	concrete syntax ship	
intuitive semantics	do nothing	
well-typedness	./.	
semantics	$t\left[u_{x}\right](\sigma, \varepsilon)=\{(\sigma, \varepsilon)\}$	
observables	$O b s_{\text {skip }}\left[u_{x}\right](\sigma, \varepsilon)=\emptyset$	
(error) conditions		

Transformer: Update

Update Transformer Example
$\mathcal{S M}_{C}:$
-this.x:= x+1
-this.x:= x+1
exaN. Cxf/2
exaN. Cxf/2
$t_{\text {update }\left(\text { expr }_{1}, v, \text { expr }_{2}\right)}\left[u_{x}\right](\sigma, \varepsilon)=\left(\sigma\left[u \mapsto \sigma(u)\left[v \mapsto I \llbracket \operatorname{expr}_{2} \rrbracket(\sigma, \beta)\right]\right], \varepsilon\right)$,

$$
u=I \llbracket \exp _{1} \rrbracket(\sigma, \beta)
$$

σ :

$\underline{u_{1}: C}$
$x=4$
$y=0$

$u_{1}: C$
$x=5$
$y=0$

$\varepsilon:$

$: \varepsilon^{\prime}$
$11 / 48$

Transformer: Send

intuitive semantics Object $u_{x}: C$ sends event E to object expr ${ }_{d s t}$, i.e. create a fresh signal instance, fill in its attributes, and place it in the ether.	
well-typedness dosit and to v $\operatorname{atr}(E)=\left\{v_{1}: \tau_{1}, \ldots, v_{n}: \tau_{n}\right\} ; \operatorname{expr}_{i}: \tau_{i}, 1 \leq i \leq n$; all expressions obey visibility and navigability in C	istancer
semantics $t_{\operatorname{send}\left(E\left(\operatorname{expr}_{1}, \ldots, \operatorname{expr}_{n}\right), \operatorname{expr}_{d s t}\right)}\left[u_{x}\right](\sigma, \varepsilon) \ni\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$	naw Jigend istonce
```where }\mp@subsup{\sigma}{}{\prime}=\sigma\dot{\cup}{u\mapsto{\mp@subsup{v}{i}{}\mapsto\mp@subsup{d}{i}{}\|1\leqi\leqn}}; \mp@subsup{\varepsilon}{}{\prime}=\varepsilon\oplus(\mp@subsup{u}{dst}{},u) if }\mp@subsup{u}{dst}{}=I\llbracket\mp@subsup{\operatorname{expr}}{dst}{}\rrbracket(\sigma,\beta)\in\operatorname{dom}(\sigma);\quad\mp@subsup{d}{i}{}=I\llbracket\mp@subsup{\operatorname{expr}}{i}{}\rrbracket(\sigma,\beta)\mathrm{ for 1\leqi\leqn; u\in\mathscr{D}(E) a fresh identity, i.e. }u\not\in\operatorname{dom}(\sigma) }and where ( }\mp@subsup{\sigma}{}{\prime},\mp@subsup{\varepsilon}{}{\prime})=(\sigma,\varepsilon)\mathrm{ if }\mp@subsup{u}{dst}{}\not\in\operatorname{dom}(\sigma);\beta={\mathrm{ this }\mapsto\mp@subsup{u}{x}{}}\mathrm{ .```	
observables $O b s_{\text {send }}\left[u_{x}\right]=\left\{\left(u_{x}, u,\left(E, d_{1}, \ldots, d_{n}\right), u_{d s t}\right)\right\}$	
$\begin{aligned} & \text { (error) conditions } \\ & \left.\qquad \begin{array}{l} I \llbracket \operatorname{expr} \rrbracket(\sigma, \beta) \text { not defined for any } \\ \operatorname{expr} \in\{\operatorname{expr} \\ d s t \end{array}, \operatorname{expr} r_{1}, \ldots, \operatorname{expr}_{n}\right\} \end{aligned}$	

Send Transformer Example
$\mathcal{S} \mathcal{M}_{C}:$


$$
\begin{gathered}
\operatorname{send}\left(E\left(\operatorname{expr}_{1}, \ldots, \operatorname{expr}_{n}\right), \operatorname{expr}_{d s t}\right) \\
\left.t_{\operatorname{send}( } E\left(\operatorname{expr}_{1}, \ldots, \operatorname{expr}_{n}\right), \operatorname{expr}_{d s t}\right)\left[u_{x}\right](\sigma, \varepsilon)=. .
\end{gathered}
$$






13/48

Transformer: Create $\quad \mid\left(r_{s 0} \operatorname{wof}: x:=\operatorname{lnew}\left(c^{\prime}\right), x+\left(\right.\right.$ mut ()$\left.^{\prime}\right) \cdot y$ if meed:

ell-typedness
$\operatorname{expr}: \tau_{D}, v \in \operatorname{atr}(D), \operatorname{atr}(C)=\left\{\left\langle v_{1}: \tau_{1}, \operatorname{expr}_{i}^{0}\right\rangle \mid 1 \leq i \leq n\right\}$
semantics
observables
(error) conditions
$I \llbracket \operatorname{expr} \rrbracket(\sigma, \beta)$ not defined.

- We use an "and assign"-action for simplicity - it doesn't add or remove ( $\boldsymbol{t}$ ) expressive power, but moving creation to the expression language raises all kinds of other problems such as order of evaluation (and thus creation).
- Also for simplicity: no parameters to construction ( $\sim$ parameters of constructor). Adding them is straightforward (but somewhat tedious).



## How To Choose New Identities?

- Re-use: choose any identity that is not alive now, i.e. not in $\operatorname{dom}(\sigma)$.
- Doesn't depend on history.
- May "undangle" dangling references - may happen on some platforms.
- Fresh: choose any identity that has not been alive ever, i.e. not in $\operatorname{dom}(\sigma)$ and any predecessor in current run.
- Depends on history.
- Dangling references remain dangling - could mask "dirty" effects of platform.


## Transformer: Create



## Transformer: Destroy

abstract syntax destroy $(e x p r)$	concrete syntax	
intuitive semantics		
Destroy the object denoted by expression expr.		
well-typedness		
$\operatorname{expr}: \tau_{C}, C \in \mathscr{C}$		
semantics		
observables		
$O b s_{\text {destroy }}\left[u_{x}\right]=\left\{\left(u_{x}, \perp,(+, \emptyset), u\right)\right\}$		
(error) conditions $\quad I \llbracket \operatorname{expr} \rrbracket(\sigma, \beta)$ not defined.		

$\mathcal{S M}_{C}:$

$\left(\sigma_{1}^{\prime \prime} \varepsilon^{\prime \prime}\right)=\left(\sigma_{1}^{\prime}, \varepsilon^{\prime}\right)$

$\sigma$



$\varepsilon:$


## What to Do With the Remaining Objects?

Assume object $u_{0}$ is destroyed. . .

- object $u_{1}$ may still refer to it via association $r$ :
- allow dangling references?
- or remove $u_{0}$ from $\sigma\left(u_{1}\right)(r)$ ?
- object $u_{0}$ may have been the last one linking to object $u_{2}$ :
- leave $u_{2}$ alone?
- or remove $u_{2}$ also?
- Plus: (temporal extensions of) OCL may have dangling references.

Our choice: Dangling references and no garbage collection!
This is in line with "expect the worst", because there are target platforms which don't provide garbage collection - and models shall (in general) be correct without assumptions on target platform.

But: the more "dirty" effects we see in the model, the more expensive it often is to analyse. Valid proposal for simple analysis: monotone frame semantics, no destruction at all.

## Transformer: Destroy

```
abstract syntax
 concrete syntax
 destroy(expr)
intuitive semantics
 Destroy the object denoted by expression expr.
well-typedness
 expr: }\mp@subsup{\tau}{C}{},C\in\mathscr{C
semantics
 t[ux](\sigma,\varepsilon)={(\mp@subsup{\sigma}{}{\prime},\varepsilon)}\quad\mathrm{ _unction rostiction}
 where }\mp@subsup{\sigma}{}{\prime}=\sigma\mathrm{ dom(竌\{u} with }u=I\llbracket\operatorname{expr}\rrbracket(\sigma,\beta)
observables
\[
O b s_{\text {destroy }}\left[u_{x}\right]=\left\{\left(u_{x}, \perp,(+, \emptyset), u\right)\right\}
\]
(error) conditions
\[
I \llbracket \operatorname{expr} \rrbracket(\sigma, \beta) \text { not defined. }
\]
```


## Sequential Composition of Transformers

- Sequential composition $t_{1} \circ t_{2}$ of transformers $t_{1}$ and $t_{2}$ is canonically defined as

$$
\left(t_{2} \circ t_{1}\right)\left[u_{x}\right](\sigma, \varepsilon)=t_{2}\left[u_{x}\right]\left(t_{1}\left[u_{x}\right](\sigma, \varepsilon)\right)
$$

with observation

$$
O b s_{\left(t_{2} \circ t_{1}\right)}\left[u_{x}\right](\sigma, \varepsilon)=O b s_{t_{1}}\left[u_{x}\right](\sigma, \varepsilon) \cup O b s_{t_{2}}\left[u_{x}\right]\left(t_{1}(\sigma, \varepsilon)\right) .
$$

- Clear: not defined if one the two intermediate "micro steps" is not defined.



## Transformers And Denotational Semantics

Observation: our transformers are in principle the denotational semantics of the actions/action sequences. The trivial case, to be precise.


- create/destroy,
$[x] / x-\cdots$
but not possibly diverging loops.

Our (Simple) Approach: if the action language is, e.g. Java, then (syntactically) forbid loops and calls of recursive functions.
Other Approach: use full blown denotational semantics.

No show-stopper, because loops in the action annotation can be converted into transition cycles in the state machine.

## Transition Relation, Computation

Definition. Let $A$ be a set of actions and $S$ a (not necessarily finite) set of of states.
We call

$$
\rightarrow \subseteq S \times A \times S
$$

a (labelled) transition relation.
Let $S_{0} \subseteq S$ be a set of initial states. A sequence

$$
s_{0} \xrightarrow{a_{0}} s_{1} \xrightarrow{a_{1}} s_{2} \xrightarrow{a_{2}} \ldots
$$

with $s_{i} \in S, a_{i} \in A$ is called computation of the labelled transition system $\left(S, \rightarrow, S_{0}\right)$ if and only if

- initiation: $s_{0} \in S_{0}$
- consecution: $\left(s_{i}, a_{i}, s_{i+1}\right) \in \rightarrow$ for $i \in \mathbb{N}_{0}$.

Note: for simplicity, we only consider infinite runs.

## Active vs. Passive Classes/Objects

- Note: From now on, assume that all classes are active for simplicity.

We'll later briefly discuss the Rhapsody framework which proposes a way how to integrate non-active objects.

- Note: The following RTC "algorithm" follows [Harel and Gery, 1997] (i.e. the one realised by the Rhapsody code generation) where the standard is ambiguous or leaves choices.


## From Core State Machines to LTS

Definition. Let $\mathscr{S}_{0}=\left(\mathscr{T}_{0}, \mathscr{C}_{0}, V_{0}, a t r_{0}, \mathscr{E}\right)$ be a signature with signals (all classes active), $\mathscr{D}_{0}$ a structure of $\mathscr{S}_{0}$, and (Eth, ready $\left.\oplus, \ominus,[\cdot]\right)$ an ether over $\mathscr{S}_{0}$ and $\mathscr{D}_{0}$.
Assume there is one core state machine $M_{C}$ per class $C \in \mathscr{C}$.
We say, the state machines induce the following labelled transition relation on states


$$
\cdot(\sigma, \varepsilon) \xrightarrow[u-]{(\text { cons,Snd }))^{-z}}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)
$$

if and only if
(i) an event with destination $u$ is discarded,
(ii) an event is dispatched to $u$, i.e. stable object processes an event, or
(iii) run-to-completion processing by $u$ commences,
i.e. object $u$ is not stable and continues to process an event,
(iv) the environment interacts with object $u$,

- $s \xrightarrow{(\text { cons, } \emptyset)} \# \&$ "Coror"
if and only if
(v) $s=\#$ and cons $=\emptyset$, or an error condition occurs during consumption of cons.


## (i) Discarding An Event

$$
(\sigma, \varepsilon) \xrightarrow[u]{(\text { cons }, S n d)}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)
$$

if

- an $E$-event (instance of signal $E$ ) is ready in $\varepsilon$ for object $u$ of a class $\mathscr{C}$, i.e. if

$$
u \in \operatorname{dom}(\sigma) \cap \mathscr{D}(C) \wedge \exists u_{E} \in \mathscr{D}(\mathscr{E}): u_{E} \in \operatorname{ready}(\varepsilon, u)
$$

- $u$ is stable and in state machine state $s$, i.e. $\sigma(u)($ stable $)=1$ and $\sigma(u)(s t)=s$,
- but there is no corresponding transition enabled (all transitions incident with current state of $u$ either have other triggers or the guard is not satisfied)
and

$$
\begin{aligned}
& \forall\left(s, F, \operatorname{expr}, a c t, s^{\prime}\right) \in \rightarrow\left(\mathcal{S} \mathcal{M}_{C}\right): F \neq E \vee I \llbracket \operatorname{expr} \rrbracket(\tilde{\sigma})=0 \\
& \mathbf{V}_{1} \quad \text { with } \tilde{\sigma}: \text { see slide } 30
\end{aligned}
$$

- the system configuration doesn't change, i.e. $\sigma^{\prime}=\sigma$
- the event $u_{E}$ is removed from the ether, i.e.

$$
\varepsilon^{\prime}=\varepsilon \ominus u_{E}
$$

- consumption of $u_{E}$ is observed, i.e.

$$
\text { cons }=\left\{\left(u^{\text {ue }}\left(E, \sigma\left(u_{E}\right)\right)\right)\right\}, \text { Snd }=\emptyset .
$$

$$
[x>0] / x:=x-1 ; n!J
$$




```
- }\existsu\in\operatorname{dom}(\sigma)\cap\mathscr{D}(C
- \sigma(u)(stable) = 1, \sigma(u)(st)=s,
 \existsu}\mp@subsup{u}{E}{}\in\mathscr{D}(\mathscr{E}):\mp@subsup{u}{E}{}\in\operatorname{ready}(\varepsilon,u
- \forall(s,F, expr,act, s') \in->(\mathcal{SM}
 F\not=E\veeI\llbracketexpr\rrbracket(\sigma)=0 - cons={(u,(E,\sigma(u}\mp@subsup{u}{E}{})))},Snd=
```

(ii) Dispatch

$$
(\sigma, \varepsilon) \xrightarrow[u]{(c o n s, S n d)}\left(\sigma^{\prime}, \varepsilon^{\prime}\right) \text { if }
$$

- $u \in \operatorname{dom}(\sigma) \cap \mathscr{D}(C) \wedge \exists u_{E} \in \mathscr{D}(\mathscr{E}): u_{E} \in \operatorname{ready}(\varepsilon, u)$
- $u$ is stable and in state machine state $s$, i.e. $\sigma(u)($ stable $)=1$, and $\sigma(u)(s t)=s$,
- a transition is enabled, ie.

$$
\exists\left(s, F, \operatorname{expr}, a c t, s^{\prime}\right) \in \rightarrow\left(\mathcal{S} \mathcal{M}_{C}\right): F=E \wedge I \llbracket \operatorname{expr} \rrbracket(\tilde{\sigma})=1
$$

where $\tilde{\sigma}=\sigma\left[u\right.$. params $\left._{E} \mapsto u_{E}\right]$.
and

- $\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$ results from applying $t_{\text {act }}$ to $(\sigma, \varepsilon)$ and removing $u_{E}$ from the ether, i.e.

$$
\begin{gathered}
\left(\sigma^{\prime \prime}, \varepsilon^{\prime}\right)=t_{a c t}\left(\tilde{\sigma}, \varepsilon \ominus u_{E}\right), \\
\sigma^{\prime}=\left.\left(\sigma^{\prime \prime}\left[u . s t \mapsto s^{\prime}, \text { u.stable } \mapsto b, \text { u.params }{ }_{E} \mapsto \emptyset\right]\right)\right|_{\mathscr{D}(\mathscr{C}) \backslash\left\{u_{E}\right\}}
\end{gathered}
$$

where $b$ depends:

- If $u$ becomes stable in $s^{\prime}$, then $b=1$. It does become stable if and only if there is no transition without trigger enabled for $u$ in $\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$.
- Otherwise $b=0$.
- Consumption of $u_{E}$ and the side effects of the action are observed, ie.

$$
\text { cons }=\left\{\left(u,\left(E, \sigma\left(u_{E}\right)\right)\right)\right\}, \text { Sid }=O b s_{t_{\text {act }}}\left(\tilde{\sigma}, \varepsilon \ominus u_{E}\right) .
$$

$$
[x>0] / x:=x-1 ; n!J
$$



- $\sigma(u)($ stable $)=1, \sigma(u)(s t)=s$,
$\exists u_{E} \in \mathscr{D}(\mathscr{E}): u_{E} \in \operatorname{ready}(\varepsilon, u)$
$\begin{array}{cl}\text { • } \exists\left(s, F, \operatorname{expr}, \text { act, } s^{\prime}\right) \in \rightarrow\left(\mathcal{S} \mathcal{M}_{C}\right): & \bullet\left(\sigma^{\prime \prime}, \varepsilon^{\prime}\right)=t_{\text {act }}\left(\tilde{\sigma}, \varepsilon \ominus u_{E}\right) \\ F=E \wedge I \llbracket \operatorname{expr}](\tilde{\sigma})=1 & \text { - } \sigma^{\prime}=\left(\sigma^{\prime \prime}\left[u . s t \mapsto s^{\prime}, \text { u.stab }\right.\right.\end{array}$
$F=E \wedge I \llbracket \operatorname{expr} \rrbracket(\tilde{\sigma})=1$
- $\sigma^{\prime}=\left.\left(\sigma^{\prime \prime}\left[u . s t \mapsto s^{\prime}\right.\right.$, u.stable $\mapsto b$, u.params $\left.\left._{E} \mapsto \emptyset\right]\right)\right|_{\mathscr{D}(\mathscr{C}) \backslash\left\{u_{E}\right\}}$
- $\tilde{\sigma}=\sigma\left[u\right.$. params $\left._{E} \mapsto u_{E}\right] . \quad$ cons $=\left\{\left(u,\left(E, \sigma\left(u_{E}\right)\right)\right)\right\}$, Snd $=$ Obs $_{t_{\text {act }}}\left(\tilde{\sigma}, \varepsilon \ominus u_{E}\right)$
(iii) Commence Run-to-Completion

$$
(\sigma, \varepsilon) \xrightarrow[u]{(\text { cons }, S n d)}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)
$$

if

- there is an unstable object $u$ of a class $\mathscr{C}$, i.e.

$$
u \in \operatorname{dom}(\sigma) \cap \mathscr{D}(C) \wedge \sigma(u)(\text { stable })=0
$$

- there is a transition without trigger enabled from the current state $s=\sigma(u)(s t)$, i.e.

$$
\exists\left(s,_{-}, \operatorname{expr}, a c t, s^{\prime}\right) \in \longrightarrow\left(\mathcal{S} \mathcal{M}_{C}\right): I \llbracket \operatorname{expr} \rrbracket(\sigma)=1
$$

and

- $\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$ results from applying $t_{\text {act }}$ to $(\sigma, \varepsilon)$, i.e.

$$
\left(\sigma^{\prime \prime}, \varepsilon^{\prime}\right) \in t_{a c t}[u](\sigma, \varepsilon), \quad \sigma^{\prime}=\sigma^{\prime \prime}\left[u . s t \mapsto s^{\prime}, u . s t a b l e \mapsto b\right]
$$

where $b$ depends as before.

- Only the side effects of the action are observed, i.e.

$$
c o n s=\emptyset, S n d=O b s_{t_{a c t}}(\sigma, \varepsilon)
$$



## (iv) Environment Interaction

Assume that a set $\mathscr{E}_{e n v} \subseteq \mathscr{E}$ is designated as environment eventatand a set of attributes $v_{e n v} \subseteq V$ is designated as input attributes.

Then

$$
(\sigma, \varepsilon) \xrightarrow[e n v]{(c o n s, S n d)}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)
$$

if

- an environment event $E \in \mathscr{E}_{e n v}$ is spontaneously sent to an alive object
$u \in \mathscr{D}(\sigma)$, i.e.

$$
\sigma^{\prime}=\sigma \dot{\cup} \overbrace{\left\{u_{E} \mapsto\left\{v_{i} \mapsto d_{i} \mid 1 \leq i \leq n\right\}\right.}^{\text {one nes instance of } E}, \quad \varepsilon^{\prime}=\varepsilon \oplus u_{E}
$$

where $u_{E} \notin \operatorname{dom}(\sigma)$ and $\operatorname{atr}(E)=\left\{v_{1}, \ldots, v_{n}\right\}$.

- Sending of the event is observed, i.e. cons $=\emptyset$, $\operatorname{Snd}=\{(e n v, E(\vec{d}))\}$.
- Values of input attributes change freely in alive objects, i.e.

$$
\forall v \in V \forall u \in \operatorname{dom}(\sigma): \sigma^{\prime}(u)(v) \neq \sigma(u)(v) \Longrightarrow v \in V_{e n v} .
$$

and no objects appear or disappear, i.e. $\operatorname{dom}\left(\sigma^{\prime}\right)=\operatorname{dom}(\sigma)$.

- $\varepsilon^{\prime}=\varepsilon$.

Example: Environment




$$
\sigma: \begin{array}{|c|}
\hline \underline{c: C} \\
\hline x=0, z=0, y=2 \\
\text { st }=s_{2} \\
\text { stable }=1 \\
\hline
\end{array}
$$

$\varepsilon:$



```
- \sigma}=\sigma\dot{U}{\mp@subsup{u}{E}{}\mapsto{\mp@subsup{v}{i}{}\mapsto\mp@subsup{d}{i}{}|1\leqi\leqn
- u\in\operatorname{dom}(\sigma)
- }\mp@subsup{\varepsilon}{}{\prime}=\varepsilon\oplus\mp@subsup{u}{E}{}\mathrm{ where }\mp@subsup{u}{E}{}\not\in\operatorname{dom}(\sigma
 -cons}=\emptyset,Snd={(env,E(\vec{d}))}
 and }\operatorname{atr}(E)={\mp@subsup{v}{1}{},\ldots,\mp@subsup{v}{n}{}}\mathrm{ .
```

(v) Error Conditions

if, in (ii) or (iii),

- $I \llbracket \operatorname{expr} \rrbracket$ is not defined for $\sigma$, or
- $t_{\text {act }}$ is not defined for $(\sigma, \varepsilon)$, ie. $\left.t_{c c t}[u](\sigma, \varepsilon)-\phi\right)$
and (i) ( ${ }_{(k)}^{(i i)}$
- consumption is observed according to (ii) or (iii), but $\operatorname{Snd}=\emptyset$.


## Examples:

If tee adder. (x), this is baling to At ort F Fiery

$$
E[x / 0] / \text { act }
$$

- 

$$
s_{2}
$$

- $s_{1} \xrightarrow{E[\text { exp }] / x:=x / 0} s_{2}$
Example: Error Condition




$$
\begin{array}{ll}
\text { - } I \llbracket \operatorname{expr} \rrbracket \text { not defined for } \sigma \text {, or } & \text { - consumption according to (ii) or (iii) } \\
\text { - } t_{a c t} \text { is not defined for }(\sigma, \varepsilon) & \text { - } S n d=\emptyset
\end{array}
$$

## Notions of Steps: The Step

Note: we call one evolution $(\sigma, \varepsilon) \xrightarrow[u]{\left(c_{0 n s, S n d)}\right.}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$ a step.
Thus in our setting, a step directly corresponds to one object (namely $u$ ) takes a single transition between regular states.
(We have to extend the concept of "single transition" for hierarchical state machines.)
That is: We're going for an interleaving semantics without true parallelism.
Remark: With only methods (later), the notion of step is not so clear.
For example, consider

- $c_{1}$ calls f() at $c_{2}$, which calls g() at $c_{1}$ which in turn calls h() for $c_{2}$.
- Is the completion of $h()$ a step?
- Or the completion of $f()$ ?
- Or doesn't it play a role?

It does play a role, because constraints/invariants are typically ( $=$ by convention) assumed to be evaluated at step boundaries, and sometimes the convention is meant to admit (temporary) violation in between steps.

What is a run-to-completion step...?

- Intuition: a maximal sequence of steps, where the first step is a dispatch step and all later steps are commence steps.
- Note: one step corresponds to one transition in the state machine.

A run-to-completion step is in general not syntacically definable - one transition may be taken multiple times during an RTC-step.

## Example:



## References

## References

[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling with statecharts. IEEE Computer, 30(7):31-42.
[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2. Technical Report formal/07-11-04.
[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2. Technical Report formal/07-11-02.

