— 13 - 2012-12-12 — main —

Sdtware Design, Modelling andAnalysisin UML

Ledure 13; Core Sate Machines |V

201212-12

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 13 - 2012-12-12 — Sprelim —

Last Lecture:

o System configuration

o Transformer

This Lecture:
o Educational Objectives: Capabilities for following tasks/questions.
o What does this State Machine mean? What happens if | inject this event?
o Can you please model the following behaviour.

o What is: Signal, Event, Ether, Transformer, Step, RTC.

e Content:
o Transformer cont’d
o Examples for transformer
o Run-to-completion Step
e Putting It All Together

2/48



— 13 - 2012-12-12 — main

System Configuation, Ether, Transformer

348

System Configuration

— 12 - 2011-12-11 — Sstmsem

Definition. Let % = (9, %0, Vo, atro, &) be a signature with signals,
Dy a structure of A, (Eth, ready, ©, S, [-]) an ether over 4 and 2.
Furthermore assume there is one core state machine M¢ per class C' € %.

A system configuration over S, Yo, and Eth is a pair

of whdes 0 (3 Shicmaiue (5 o) e ©7, x Eih ot e D(ee()2 B
i B( & T, o a i bnc,

where / , 4 v

S =(% U {Su. |CeF), %, ol T & sh

Vo U {(stable : Bool, —, true, 0)} ot ek o

U {<Stc : SMC,+,SO,®> | Ce Cg} 4 S);“./ lhf/:(ls

U {(paramsg : Eg1,+,0,0) | E € &}, f:i,::f‘ ':w:zzg

loicy (€ ani©)
A IEES U {stable, stc} U{paramsg | E € &} | C € €}, &)

i /_’\ cle'ne
9 = % 0 {Sue — S(Mo) | C € %}, and “shies o 58 s
- wﬂ 2(&o) = 0 for each u € dom(o) and r € Vi, ., (¢ aQ,)

9/60

— 13 — 2012-12-12 — Sstmsem —

448



ssry | |Gt J/‘d:\@/—& G,
? :%T" ~— @ Dyl ht): 7

Q = (4B, LEER, Sxtud,y:uf], S dirginy), EnP,Tss], {e,qr)j
Ailnt

$us(
?‘(iu' Shcg ) {C'Eﬁg ! g"ifllq Mot shble: 8ol ’fd :‘5”4 , P €0A / ,H““*T‘. E“;/
(g, bl sk, possng, puar3, €n 0, Fofolf, 167)

D (k] = D1t )
D (S, ) = fs0,5.9.9.553

— 13 - 2012-12-12 — Sstmsem —

0: £ ’(‘W’
— ! I”|V“;\
W (an
" insbmce of T
or s Py for 0
L ife {on 30,
oS S e wu-\l'cd Ve
58

— 13 — 2012-12-12 — Sstmsem —

Where are we? /m#wl/f::"xi}‘;n!F

Juis.n 4@ , F/m::d; \\\«/ /n=0 alis
(o e s i) P
o Wanted: a labelled transition relation Lere
i«

((J’, 5) (cons,Snd) (O'/, 5,)

on system configuration, labelled with the consum
(o', €") being the result (or effect) of one object u, taking a transition
of its state machine from the current state mach. state o(u,)(stc).

» Have: system configuration (o, &) comprising current state machine state
and stability flag for each object, and the ether.

« Plan:
(i) Introduce transformer as the semantics of action annotions.
Intuitively, (¢’,¢’) is the effect of applying the transformer
of the taken transition.
(ii) Explain how to choose transitions depending on e and when to stop taking
transitions — the run-to-completion “algorithm”.

— 12 - 2011-12-11 — Sstmsem —

14/60

6/48



— 13 - 2012-12-12 — Sstmsem —

— 13 — 2012-12-12 — Sstmsem —

Transformer becaun o wom- et

12 - 2011-12-11 — Sstmsem

7 A

Definition.
Let Z?ﬂ the set of system configurations over some %y, 9, Eth.
o “ < "
We call a relation /‘Hm éﬂé ““‘HMD o e d;/% m‘/", 4,(/
t C D(€) x (B2 x Eth) x (X% x Eth)

a (system configuration) transformer?\s)slu. (4;“4.(51, efove

In the following, we assume that each application of a transformer ¢ to

some system configuration (o, ¢) for object u, is associated with a set of
£ ikoué st

observations ;“"" \_)gﬁ)) /"’" Pl Syabid oy Inle)

Obsy[us](0,¢) € 02() X2 ()% Bvs(8 U {x,+},2)xD(%)

NS/ sl R recele o Lofirads,

-

An observation (uge, te, (E,d), ugst) € Obsi[uz](c, €)
represents the information that, as a “side effect” of u, executing t,

—

an event (1) (E,d) has been sent from wg. to wgst.

Special cases: creation/destruction.

15/60

L Al ‘fuf&)u\‘-a, Wt considas

AO‘% = § sk
(If d.‘aabl!(- (CEW,,V, &kﬁ;_) /e:v/,,,elpl/l € Aty VeVi
Ut seed (epus, £ 690) | aps,, op, €Wetp EéEf
o Saunde (G equv] | ogec 02, cel v ey

uf deshos (o) | ope € 0lopf

Erpry: L st o ¥

7/48

8/48



Transformer: Skip

— 13 - 2012-12-12 — Sstmsem —

abstract syntax concrete syntax
skip sfap
intuitive semantics

do nothing

well-typedness

semantics
t[uz](0,€) = {(0,€)}
observables

Obsgxiplug)(o,e) =0

(error) conditions

Transformer: Updae

— 13 - 2012-12-12 — Sstmsem —

abstract syntax concrete syntax
update(ezpry, v, expry) e, VT exgpy
intuitive semantics
Update attribute v in the object denoted by expr; to the value
denoted by expr,.

well-typedness

expry i 7c and v : 7 € atr(C); expry: T,

expr,, expry obey visibility and navigability

semantics

tupdate(eapry v,capry) [Ua] (0, €) = {(0”,€)}

where o’ = a[u — o(u)[v — I[ezpry](c, B)]] with

u = Ifexpr{](o,B), B = {this — uy}.
observables
ObSupaate(eapry v, capry) [Ua] = 0

(error) conditions

Not defined if I[expr,](c,3) or I[exprs](o, B) not defined.

9/48

1048



Updae Transformer Example

SMe: Jri=x+1
S1 — - S9o
l‘/L;}X :‘:\)9;1
expd. Gy

update(ezpry,v, exprsy)

tupdate(ezprl,v,expTQ) [uz](av E) = (U[u e U(u) [’U L Iﬂeﬁpﬁ]](av 5)”7 E)’
u = I[expr,](c,B)

o uy : C - u : C o
x = =5
| — 0 y = 0
& e o
| 11/48
Transformer: Send
abstract syntax concrete syntax
send(E(expry, ..., expr,,), €TPT 45;) Ry ! E(p@/,' "‘l m?(,)
intuitive semantics
Object u, : C sends event E to object expr g, i.e. create a fresh
signal instance, fill in its attributes, and place it in the ether.
well-typedness A~ dot seudl o Yl Lestna,
expr 1 Tp, C,D € €\ & E € &; @
atr(E) ={v1 : 11, ... 0 T} expr; i1, 1 <i <y
all expressions obey visibility and navigability in C'
semantics -ﬂ‘( :h'
v f“ﬂ“
tsend(E(ezprl yee 0, €TPT, ), €TPT 44 ) [uw](ga 5) 3 (0/7 8/) iﬁA“'a
where o/ = o U{u— {v;—d; | 1 <i<n}}; & =¢e® (udgst,w);
if wase = I[expr 5.](o, B) € dom(o); d; = I[expr;] (o, 3) for
1<1<n;
ows choice - u € 9(F) afresh identity, i.e. u ¢ dom(o),
Eowt could %and where (¢0/,¢') = (0,¢) if ugss ¢ dom(o); B = {this — u,}.
a "bzo"” b observables
ﬁ“ |’) ho:- Obssend[ux] = {(ulvua (Ea dla" -adn)audst)}
a b e (error) conditions aAn evait
R I[expr](o,B) not defined for any
= expr € {expr 4o, €XPT1, ..., €TPT, }

12/48



Send Transformer Example )

— 13 — 2012-12-12 — Sstmsem —

F
S./\/lci ———
..n!lF 1);...
T e I ™
send(E(expry, ..., expr,,), €TPT 45;)
tsend(égz,E(ezprl ,,,,, ezpr"),ezp'r,m)[U‘z](gvE) = oo
) Cyod (—_}-(KJ,)' s, ,,)[0.,]
uy : C _/\_/\_’)
=25 i"
YC
g 13
4 e v g4
& @ (Uz,U)
v 13/a8
. o,
Transformer: Create P 1 g new ) x t (e (]
7 }f W:
abstract syntax concrete syntax {"f":-' i, (‘I
create(C, expr,v) oxp.v 3= pei € Jupy 12 i
intuitive semantics Wiz upy. x4 by
Create an object of class C' and assign it to attribute v of the object | Awp,:= Ny
denoted by expression expr. oy = AL

well-typedness
expr : 7p, v € atr(D), atr(C) = {{vy : 71, expr?) | 1 < i < n}
semantics

observables

(error) conditions

I[expr](o, B) not defined.

We use an “and assign”-action for simplicity — it doesn’t add or remove (’t)
expressive power, but moving creation to the expression language raises all
kinds of other problems such as order of evaluation (and thus creation).
Also for simplicity: no parameters to construction (~ parameters of construc-
tor). Adding them is straightforward (but somewhat tedious).

1448



Create Transformer Example

SMc:
/...smi=new Cj;... D
52

(5]
r L_
-Ffl create(C, expr, v)
J Ve f
E tcreate(C,ezpr,v) (078) = -

%_)

S
I
=

— 13 - 2012-12-12 — Sstmsem —

15]/’48

How To Choaose New | dentiti es?

Re-use: choose any identity that is not alive now, i.e. not in dom(o). \/

Doesn't depend on history.
May “undangle” dangling references — may happen on some platforms.

Fresh: choose any identity that has not been alive ever, i.e. not in
dom(c) and any predecessor in current run.

Depends on history.
Dangling references remain dangling — could mask “dirty” effects of
platform.

— 13 — 2012-12-12 — Sstmsem —

16/48



Transformer: Create

— 13 - 2012-12-12 — Sstmsem —

abstract syntax concrete syntax
create(C, expr,v)
intuitive semantics
Create an object of class C' and assign it to attribute v of the object
denoted by expression expr.

well-typedness
expr : 7p, v € atr(D), atr(C) = {{vy : 11, expr?) | 1 <i < n} d
Arns g
semantics

wi:h.:"‘: ((0,¢),(c",€") €t add we obpct o

- A — —
iff 0 = olug — o(ug)[v— u]]U{u— {v; —d; |1 <i<n}},

"/_/57?[1/,](6) u € 2(C) fresh, i.e. u ¢ dom(o);

ug = I[expr](o, 8); di = I expril(a, ) if expr) # " and arbitrary

value from 2(r;) otherwise; 5 = {this — u}.

observables
Obscreate[uz] = {(ux: J—, (*7 Q))u ’U,)}

(error) conditions
I[expr](o) not defined.

Transformer: Destroy

— 13 — 2012-12-12 — Sstmsem —

abstract syntax concrete syntax

destroy(expr) delele. espe

intuitive semantics
Destroy the object denoted by expression expr.

well-typedness
expr :7c, C €€

semantics

observables
Obsdestroy[uz] = {(uxa J—» (+7 Q])’ ’U,)}

(error) conditions

I[expr](o, B) not defined.

1748

1848



Destroy Transformer Example

— 13 - 2012-12-12 — Sstmsem —

SMe: (')l

A

@ /...;delete n;. .. @

destroy(ezpr)

€
tdestroy(esz) [uz](av E) = oo &‘Q‘L’

<d

19/'48

What to Do With the Remaining Objeds?

— 13 — 2012-12-12 — Sstmsem —

Assume object ug is destroyed. . .
object u; may still refer to it via association r:
allow dangling references?
or remove ug from o(uq)(r)?
object ugp may have been the last one linking to object us:
leave uy alone?
or remove uy also?

Plus: (temporal extensions of) OCL may have dangling references.

Our choice: Dangling references and no garbage collection!

This isin line with “expect the worst”, because there are target platforms which
don't provide garbage collection — and models shall (in general) be correct
without assumptions on target platform.

But: the more “dirty” effects we see in the model, the more expensive it often
is to analyse. Valid proposal for simple analysis: monotone frame semantics,

no destruction at all.
20/48



Transformer: Destroy

— 13 - 2012-12-12 — Sstmsem —

abstract syntax concrete syntax
destroy(expr)

intuitive semantics
Destroy the object denoted by expression expr.

well-typedness
expr : 170, C €€

semantics o o,
fual(o,6) N Pk o0

where 0’ = 0|qom(0)\{u} With u = I[expr](o, ).

observables

Obsdestroy[um] = {(ura 1, (+7 w)’ u)}

(error) conditions

I[expr] (e, B) not defined.

21/48

Sequential Composition d Transformers

— 13 — 2012-12-12 — Sstmsem —

o Sequential composition t; oty of transformers t; and t5 is canonically
defined as

(2 0 t1)[uz](0, ) = tafus](t1[us](0, €))

with observation

ObS (150 [Uz](0, €) = Obsy, [uz)(0,€) U Obsy, [ug](t1(0, €)).

o Clear: not defined if one the two intermediate “micro steps” is not defined.
—
X=Xt ny=23 ' T
] r, !

t oune (bgane (i)

2248



Transformers And Denaotationd Semantics

— 13 - 2012-12-12 — Sstmsem —

— 13 - 2012-12-12 — main —

Observation: our transformers are in principle the denotational semantics
of the actions/action sequences. The trivial case, to be precise.

_ _ ahile () =-;
Note: with the previous examples, we can capture ~ Bg—————CD

empty statements, skips,
assignments, - fx=0]
conditionals (by normalisation and auxiliary variables),
create/destroy, [<1/¢--

but not possibly diverging loops.

Our (Simple) Approach: if the action language is, e.g. Java,
then (syntactically) forbid loops and calls of recursive functions.

Other Approach: use full blown denotational semantics.

No show-stopper, because loops in the action annotation can be converted into
transition cycles in the state machine.

Run-to-completion Sep

2318

24 /48



Transition Relation, Computation

— 13 - 2012-12-12 — Sstmrtc —

- )
Definition. Let A be a set of actions and S a (not necessarily
finite) set of of states.

We call
— CSxAxS

a (labelled) transition relation.

Let So C S be a set of initial states. A sequence
aop al a
Sg —> 81 —> 82 — ...

with s; € S, a; € A is called computation of the labelled transi-
tion system (S, —,Sy) if and only if
initiation: sy € Sy

consecution: (s;,a;, 8;4+1) €— for i € Ny.

L )

Note: for simplicity, we only consider infinite runs.

Active \s. Passve Class/Objeds

— 13 — 2012-12-12 — Sstmrtc —

Note: From now on, assume that all classes are active for simplicity.

We'll later briefly discuss the Rhapsody framework which proposes a way
how to integrate non-active objects.

Note: The following RTC “algorithm” follows [Harel and Gery, 1997] (i.e.
the one realised by the Rhapsody code generation) where the standard is
ambiguous or leaves choices.

25/48

26,48



From Core Sate Machinesto LTS

— 13 - 2012-12-12 — Sstmrtc —

Definition. Let % = (9, %o, Vo, atro, &) be a signature with signals (all classes
active), 9 a structure of ., and (Eth, ready, ®,©,[]) an ether over ., and %.
Assume there is one core state machine M¢ per class C € €.

We say, the state machines induce the following labelled transition relation on states
S = (52,0 {#]} x Eth) with actions A := (22(€)x(2(#) U {l}?‘Evsw,@w%%)z;

~—""rrerm—m/? o
Tl Wk T

(U’,E/

(cons ,’ST’Ld—) *
- =

~

-

(0,€)
u= S - -

if and only if - - =

(i) an event with destination w is discarded,

(ii) an event is dispatched to w, i.e. stable object processes an event, or

(iii) run-to-completion processing by u commences,
i.e. object u is not stable and continues to process an event,

(iv) the environment interacts with object u,

s (cons,B) #k_\'w"

if and only if
(v) s =# and cons = 0, or an error condition occurs during consumption of cons.

L

(i) Discarding An Event

,Snd
(0,) L5 1 o)
u
if
an FE-event (instance of signal E) is ready in ¢ for object u of a class &, i.e. if
u € dom(o) N 2(C)AJup € D(&) : up € ready(e, u)
u is stable and in state machine state s, i.e. o(u)(stable) = 1 and o(u)(st) = s,
but there is no corresponding transition enabled (all transitions incident with
current state of u either have other triggers or the guard is not satisfied)
VY (s, F, expr, act,s') €— (SMc) : F # EV I[expr](5) =0
and , Wi & e sbols 30

the system configuration doesn't change, i.e. 0’ = o
the event ug is removed from the ether, i.e.

e =eccug,
consumption of ug is observed, i.e.

S
cons = {(u, (E,0(ug)))}, Snd = 0.

— 13 — 2012-12-12 — Sstmrtc —

27/'48

2848



— 13 - 2012-12-12 — Sstmrtc —

. H signal, env
Example: Discard (sig H )
[x>0]/z:=2—1;n!J
SMC’: .\* G[$ > O]/x =y & ({(signal))
[ ] 52 )
H/z:=y/x n G
0,1 z z: Int
y : Int ((env))
1
o c:C o - -
z=1,2=0,y=2 _—/>
st =81 [4
stable = 1 '
€= £0vy

Ju € dom(o) N 2(C)
Jug € (&) : ug € ready(e,u)

Y (s, F, expr, act,s’) €— (SMc¢) :

o(u)(stable) =1, o(u)(st) = s,

o' =0, =e0ug

F # EV I[ezpr](c) =0 cons = {(u, (E,o(ug)))}, Snd =0
29/'48

(i) Dispatch (0,2) LeomssSnd) (o it

u € dom(o) N 2(C) AJup € 2(&) : ug € ready(e, u)

u is stable and in state machine state s, i.e. o(u)(stable) = 1,and o(u)(st) = s,

a transition is enabled, i.e.

3 (s, F, expr,act,s’) €— (SMc) : F = E A [expr](6) =1

where & = olu.params g — ug).
and

(¢’,€") results from applying tqc: to (o,€) and removing ug from the ether, i.e.

(oﬂa EI) = tllCt (&7 S UE), fewve S}‘-/

/

where b depends:

Otherwise b = 0.

— 13 — 2012-12-12 — Sstmrtc —

cons = {(u, (E,o(ur)))}, Snd = Obs¢,,, (6, S ug).

5!

o' = (0" [u.st — s, u.stable — b,u.params i — 0])| o6\ fup}

If u becomes stable in s’, then b = 1. It does become stable if and only if
there is no transition without trigger enabled for u in (¢/,¢’).

Consumption of ug and the side effects of the action are observed, i.e.

30/4s8



({(signal, env))

Example: Dispatch o

[x>0]/z:=2—1;n!J

SMCZ .\@ }\ G[$ > O]/x =y % ({(signal))
G,J

H/z:=y/x n c
0,1 z z: Int
y : Int ((env))

:C
[ < (Gl”)
z=1,2=0,y=2 —_——
st = s1 ¢
stable =1
e
Ju € dom(c) N 2(C) o(u)(stable) =1, o(u)(st) = s,

Jug € (&) : ug € ready(e,u)

3 (s, F, expr, act,s') e— (SMc) :
F = EAI[eapr](5) = 1 o' = (0"[u.st — &', u.stable — b, u.params g — O))| o)\ {us}

cons = {(u, (E,0(ug)))}, Snd = Obs, (5, S ug)
314

(0",€") =tact(0,e S uR)

— 13 - 2012-12-12 — Sstmrtc —

¢ = olu.params g — ug).

(i) Commence Run-to-Completion

(0_7 5) (cons,Snd) (0/76,)
u

if

there is an unstable object u of a class %, i.e.

u € dom(o) N 2(C) A o(u)(stable) =0
there is a transition without trigger enabled from the current state
s=o(u)(st), i.e.
3 (s, -, expr, act,s’) €— (SMc) : [[expr](c) =1

and

(o', €") results from applying t,.; to (o,¢), i.e.

(6",€") € tact[u)(o,€), o =c"[u.st — s u.stable — b]
where b depends as before.
Only the side effects of the action are observed, i.e.

cons = 0, Snd = Obs,,, (0, ¢€).

— 13 — 2012-12-12 — Sstmrtc —

32/48



Example: Comnence o

— 13 - 2012-12-12 — Sstmrtc —

({(signal, env))

[x>0]/z:=2—1;n!J

SMCZ .\@ G[$ > O]/x =y % ({(signal))
G.J

H/z:=y/x n c

0,1 z z: Int
y : Int ((env))

o c:C c:d o
' z=2,2=0,y =2 (J;(“J)) N "J‘J ’
— 7 |t=0,9%2 —
st = 82 c €=,

stable = 0 ’J’v Lshtlez 0 [5

: (3] ac
i5=5@ (Lyy)
4 d

Ju € dom(o) N 2(C) : o(u)(stable) =0 (0",€") = taet(o,€),
3 (57 -, expr, act, 8,) €— (SMC) : Iﬂexpr]](tf) =1 o' = O,I[U'St = S,’U'Sta’ble = b]

o(u)(stable) =1, o(u)(st) = s, cons =0, Snd = Obsy,,,(0,€)

(iv) Environment Interaction

— 13 — 2012-12-12 — Sstmrtc —

Sipn/
Assume that a set &.,, C & is designated as environment kwestsand a set
of attributes v, C V is designated as input attributes.

Then
(O’,&“) (cons,Snd) (O'/,&‘/)
if

an environment event E € &epn, is spontaneously sent to an alive object

u € P(o), ie. s vew instoince fE
—_—
d=cU{ug—{vi—di|1<i<n}, ¢ =cur
where ug ¢ dom(o) and atr(E) = {vi,...,vn}.

Sending of the event is observed, i.e. cons =0, Snd = {(env, E(d))}.
bt

o
=

Values of input attributes change freely in alive objects, i.e.
Vv €V Vu € dom(a) : o' (u)(v) # o(u)(v) = v € Vepo.
and no objects appear or disappear, i.e. dom(c’) = dom(o).

g =¢&.

3318

3448



Exampl e: Environment

— 13 - 2012-12-12 — Sstmrtc

[x>0]/z:=2—1;n!J

({(signal, env))

H

({(signal))
G,J

H/z:=y/x

C

' 0,1 z z: Int
0 N ) D y: Int {env))

o c: C ie® (&,U,,)
z=0,2=0,y =2
ot = \/
stable =1 c )
g:CC:}
e =cU{ug— {vi—d;|1<i<n} o u € dom(o)

o &/ =ePup where ug ¢ dom(o)
and atr(E) = {v1,...,u,}.

o cons =0, Snd = {(env, E(d))}.

(v) Error Condtions

— 13 — 2012-12-12 — Sstmrtc

(coms,Snd)
o R
if, in (i) or (iii),

o I[expr] is not defined for o, or
o tqet is not defined for (o,¢), f-e {ue(“l(clzg"g
and ,)(’d

« consumption is observed according to (ii) or (iii), but Snd = 0.

{ac

Examples: D/
Blw/01/ 0!

:
Eltrue] /yoy

. @ Elexpr]|/z = x/O@

35/48

aded . (], s is b‘zv‘a#wl{(?ﬂ"é

36,48



Example: Error Condtion

— 13 - 2012-12-12 — Sstmrtc —

[x>0]/z:=2—1;n!J

T G 0 =
SMc: (1] [z>0)/z:=y
H/z:=y/x
o c:C
. r=0,2=0,y =27 (I—(,fl} )
st = 89 C #
stable =1

&

({(signal, env))

H

({(signal))
G.J

C

x,z: Int
y : Int ((env))

I[expr] not defined for o, or

tqct is not defined for (o, €)

consumption according to (ii) or (iii)

Snd = ()

Notions of Seps. The Sep

— 13 — 2012-12-12 — Sstmrtc —

Note: we call one evolution (o, ¢)

u

(coms,Snd)
_

(o,¢€") a step.

Thus in our setting, a step directly corresponds to

one object (namely u) takes a single transition between regular states.

(We have to extend the concept of “single transition” for hierarchical state machines.)

That is: We're going for an interleaving semantics without true parallelism.

Remark: With only methods (later), the notion of step is not so clear.

For example, consider

¢y calls £() at cg, which calls g() at ¢; which in turn calls h() for cs.

Is the completion of h() a step?
Or the completion of £()7

Or doesn't it play a role?

It does play a role, because constraints/invariants are typically (= by convention)
assumed to be evaluated at step boundaries, and sometimes the convention is meant

to admit (temporary) violation in between steps.

37/'48

3848



Notions of Seps. The Run-to-Completion Sep

— 13 - 2012-12-12 — Sstmrtc —

— 13 - 2012-12-12 — main —

What is a run-to-completion step...?

o Intuition: a maximal sequence of steps, where the first step is a
dispatch step and all later steps are commence steps.

o Note: one step corresponds to one transition in the state machine.

A run-to-completion step is in general not syntacically definable — one
transition may be taken multiple times during an RTC-step.

Example:

E[z > 0]/
Jri=x—1
ag. 70
=2
E. .a
References

3948

47 /a8



— 13 - 2012-12-12 — main

References

[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling
with statecharts. IEEE Computer, 30(7):31-42.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

4848



