
SoftwareDesign, Modelli ng andAnalysis in UML

Lecture13: Core StateMachines IV

2012-12-12

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

–
1
3

–
2
0
1
2
-1

2
-1

2
–

m
a
in

–

Contents & Goals

Last Lecture:

• System configuration

• Transformer

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What does this State Machine mean? What happens if I inject this event?

• Can you please model the following behaviour.

• What is: Signal, Event, Ether, Transformer, Step, RTC.

• Content:

• Transformer cont’d

• Examples for transformer

• Run-to-completion Step

• Putting It All Together

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
p
re

li
m

–

2/48

System Configuration, Ether, Transformer

–
1
3

–
2
0
1
2
-1

2
-1

2
–

m
a
in

–

3/48

System Configuration

Definition. Let S0 = (T0,C0, V0, atr0, E) be a signature with signals,D0 a structure of S0, (Eth, ready ,⊕,⊖, [·]) an ether over S0 and D0.
Furthermore assume there is one core state machine MC per class C ∈ C .

A system configuration over S0, D0, and Eth is a pair

(σ, ε) ∈ ΣDS × Eth

where
• S = (T0 ∪̇ {SMC

| C ∈ C }, C0,

V0 ∪̇ {〈stable : Bool ,−, true, ∅〉}

∪̇ {〈stC : SMC
, +, s0, ∅〉 | C ∈ C }

∪̇ {〈paramsE : E0,1, +, ∅, ∅〉 | E ∈ E0},

{C 7→ atr0(C)

∪ {stable, stC} ∪ {paramsE | E ∈ E0} | C ∈ C }, E0)

• D = D0 ∪̇ {SMC
7→ S(MC) | C ∈ C }, and

• σ(u)(r) ∩D(E0) = ∅ for each u ∈ dom(σ) and r ∈ V0.

–
1
2

–
2
0
1
1
-1

2
-1

1
–

S
st

m
se

m
–

9/60

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
se

m
–

4/48

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
se

m
–

5/48

Where are we? s1 s2

s3

E[n 6= ∅]/x := x + 1;n !F

/n := ∅F/x := 0

• Wanted: a labelled transition relation

(σ, ε)
(cons,Snd)
−−−−−−−→ (σ′, ε′)

on system configuration, labelled with the consumed and sent events,
(σ′, ε′) being the result (or effect) of one object ux taking a transition
of its state machine from the current state mach. state σ(ux)(stC).

• Have: system configuration (σ, ε) comprising current state machine state
and stability flag for each object, and the ether.

• Plan:

(i) Introduce transformer as the semantics of action annotions.
Intuitively, (σ′, ε′) is the effect of applying the transformer
of the taken transition.

(ii) Explain how to choose transitions depending on ε and when to stop taking
transitions — the run-to-completion “algorithm”.

–
1
2

–
2
0
1
1
-1

2
-1

1
–

S
st

m
se

m
–

14/60

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
se

m
–

6/48

Transformer

Definition.

Let ΣDS the set of system configurations over some S0, D0, Eth.

We call a relation

t ⊆ D(C) × (ΣDS × Eth) × (ΣDS × Eth)

a (system configuration) transformer.

• In the following, we assume that each application of a transformer t to
some system configuration (σ, ε) for object ux is associated with a set of
observations

Obst[ux](σ, ε) ∈ 2D(C)×D(E)×Evs(E ∪̇ {∗,+},D)×D(C).

• An observation (usrc, ue, (E, ~d), udst) ∈ Obst[ux](σ, ε)
represents the information that, as a “side effect” of ux executing t,

an event (!) (E, ~d) has been sent from usrc to udst .

Special cases: creation/destruction.

–
1
2

–
2
0
1
1
-1

2
-1

1
–

S
st

m
se

m
–

15/60

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
se

m
–

7/48

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
se

m
–

8/48

Transformer: Skip

abstract syntax concrete syntax

skip

intuitive semantics

do nothing

well-typedness

./.

semantics

t[ux](σ, ε) = {(σ, ε)}

observables

Obsskip[ux](σ, ε) = ∅

(error) conditions

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
se

m
–

9/48

Transformer: Update

abstract syntax concrete syntax

update(expr1, v, expr2)

intuitive semantics

Update attribute v in the object denoted by expr1 to the value

denoted by expr2.

well-typedness

expr1 : τC and v : τ ∈ atr(C); expr2 : τ ;
expr1, expr2 obey visibility and navigability

semantics

tupdate(expr
1
,v,expr

2
)[ux](σ, ε) = {(σ′, ε)}

where σ′ = σ[u 7→ σ(u)[v 7→ IJexpr2K(σ, β)]] with
u = IJexpr1K(σ, β), β = {this 7→ ux}.

observables

Obsupdate(expr
1
,v,expr

2
)[ux] = ∅

(error) conditions

Not defined if IJexpr1K(σ, β) or IJexpr2K(σ, β) not defined.

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
se

m
–

10/48

UpdateTransformer Example

SMC :
s1 s2

/x := x + 1

update(expr1, v, expr2)

tupdate(expr
1
,v,expr

2
)[ux](σ, ε) = (σ[u 7→ σ(u)[v 7→ IJexpr2K(σ, β)]], ε),

u = IJexpr1K(σ, β)

σ: u1 : C

x = 4

y = 0

u1 : C

x = 5

y = 0

:σ′

ε: :ε′

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
se

m
–

11/48

Transformer: Send
abstract syntax concrete syntax

send(E(expr1, ..., exprn), exprdst)

intuitive semantics

Object ux : C sends event E to object exprdst , i.e. create a fresh

signal instance, fill in its attributes, and place it in the ether.

well-typedness

exprdst : τD, C, D ∈ C \ E ; E ∈ E ;
atr(E) = {v1 : τ1, . . . , vn : τn}; expr i : τi, 1 ≤ i ≤ n;

all expressions obey visibility and navigability in C

semantics

tsend(E(expr
1
,...,expr

n
),exprdst)

[ux](σ, ε) = (σ′, ε′)

where σ′ = σ ∪̇ {u 7→ {vi 7→ di | 1 ≤ i ≤ n}}; ε′ = ε ⊕ (udst , u);
if udst = IJexprdstK(σ, β) ∈ dom(σ); di = IJexpr iK(σ, β) for

1 ≤ i ≤ n;
u ∈ D(E) a fresh identity, i.e. u 6∈ dom(σ),

and where (σ′, ε′) = (σ, ε) if udst 6∈ dom(σ); β = {this 7→ ux}.

observables

Obssend[ux] = {(ux, u, (E, d1, . . . , dn), udst)}

(error) conditions

IJexprK(σ, β) not defined for any
expr ∈ {exprdst , expr1, . . . , exprn}–

1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
se

m
–

12/48

SendTransformer Example

SMC :
s1 s2

/ . . . ; n !F (x + 1); . . .

send(E(expr1, ..., exprn), exprdst)

tsend(exprsrc,E(expr
1
,...,expr

n
),exprdst)

[ux](σ, ε) = ...

σ: u1 : C

x = 5

:σ′

ε: :ε′

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
se

m
–

13/48

Transformer: Create

abstract syntax concrete syntax

create(C, expr , v)

intuitive semantics

Create an object of class C and assign it to attribute v of the object

denoted by expression expr .

well-typedness

expr : τD, v ∈ atr(D), atr(C) = {〈v1 : τ1, expr
0
i 〉 | 1 ≤ i ≤ n}

semantics

. . .

observables

. . .

(error) conditions

IJexprK(σ, β) not defined.

• We use an “and assign”-action for simplicity — it doesn’t add or remove
expressive power, but moving creation to the expression language raises all
kinds of other problems such as order of evaluation (and thus creation).

• Also for simplicity: no parameters to construction (∼ parameters of construc-

tor). Adding them is straightforward (but somewhat tedious).

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
se

m
–

14/48

Create Transformer Example

SMC :
s1 s2

/ . . . ; n := new C; . . .

create(C, expr , v)

tcreate(C,expr,v)(σ, ε) = ...

σ: d : D

n = ∅

:σ′

ε: :ε′

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
se

m
–

15/48

How To Choose New Identities?

• Re-use: choose any identity that is not alive now, i.e. not in dom(σ).

• Doesn’t depend on history.

• May “undangle” dangling references – may happen on some platforms.

• Fresh: choose any identity that has not been alive ever, i.e. not in
dom(σ) and any predecessor in current run.

• Depends on history.

• Dangling references remain dangling – could mask “dirty” effects of
platform.

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
se

m
–

16/48

Transformer: Create

abstract syntax concrete syntax

create(C, expr , v)

intuitive semantics

Create an object of class C and assign it to attribute v of the object

denoted by expression expr .

well-typedness

expr : τD, v ∈ atr(D), atr(C) = {〈v1 : τ1, expr
0
i 〉 | 1 ≤ i ≤ n}

semantics

((σ, ε), (σ′, ε′)) ∈ t

iff σ′ = σ[u0 7→ σ(u0)[v 7→ u]] ∪ {u 7→ {vi 7→ di | 1 ≤ i ≤ n}},
ε′ = [u](ε); u ∈ D(C) fresh, i.e. u 6∈ dom(σ);

u0 = IJexprK(σ, β); di = IJexpr0
i K(σ, β) if expr0

i 6= ‘’ and arbitrary
value from D(τi) otherwise; β = {this 7→ ux}.

observables

Obscreate[ux] = {(ux,⊥, (∗, ∅), u)}

(error) conditions

IJexprK(σ) not defined.

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
se

m
–

17/48

Transformer: Destroy

abstract syntax concrete syntax

destroy(expr)

intuitive semantics

Destroy the object denoted by expression expr .

well-typedness

expr : τC , C ∈ C
semantics

. . .

observables

Obsdestroy[ux] = {(ux,⊥, (+, ∅), u)}

(error) conditions

IJexprK(σ, β) not defined.

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
se

m
–

18/48

Destroy Transformer Example

SMC :
s1 s2

/ . . . ; delete n; . . .

destroy(expr)

tdestroy(expr)[ux](σ, ε) = ...

σ: c : C : Cn :σ′

ε: :ε′

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
se

m
–

19/48

What to Do With theRemaining Objects?

Assume object u0 is destroyed. . .

• object u1 may still refer to it via association r:

• allow dangling references?

• or remove u0 from σ(u1)(r)?

• object u0 may have been the last one linking to object u2:

• leave u2 alone?

• or remove u2 also?

• Plus: (temporal extensions of) OCL may have dangling references.

Our choice: Dangling references and no garbage collection!
This is in line with “expect the worst”, because there are target platforms which
don’t provide garbage collection — and models shall (in general) be correct
without assumptions on target platform.

But: the more “dirty” effects we see in the model, the more expensive it often
is to analyse. Valid proposal for simple analysis: monotone frame semantics,
no destruction at all.

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
se

m
–

20/48

Transformer: Destroy

abstract syntax concrete syntax

destroy(expr)

intuitive semantics

Destroy the object denoted by expression expr .

well-typedness

expr : τC , C ∈ C
semantics

t[ux](σ, ε) = (σ′, ε)

where σ′ = σ|dom(σ)\{u} with u = IJexprK(σ, β).

observables

Obsdestroy[ux] = {(ux,⊥, (+, ∅), u)}

(error) conditions

IJexprK(σ, β) not defined.

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
se

m
–

21/48

Sequential Composition of Transformers

• Sequential composition t1 ◦ t2 of transformers t1 and t2 is canonically
defined as

(t2 ◦ t1)[ux](σ, ε) = t2[ux](t1[ux](σ, ε))

with observation

Obs(t2◦t1)[ux](σ, ε) = Obst1 [ux](σ, ε) ∪ Obst2 [ux](t1(σ, ε)).

• Clear: not defined if one the two intermediate “micro steps” is not defined.

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
se

m
–

22/48

Transformers AndDenotational Semantics

Observation: our transformers are in principle the denotational semantics
of the actions/action sequences. The trivial case, to be precise.

Note: with the previous examples, we can capture

• empty statements, skips,

• assignments,

• conditionals (by normalisation and auxiliary variables),

• create/destroy,

but not possibly diverging loops.

Our (Simple) Approach: if the action language is, e.g. Java,
then (syntactically) forbid loops and calls of recursive functions.

Other Approach: use full blown denotational semantics.

No show-stopper, because loops in the action annotation can be converted into
transition cycles in the state machine.

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
se

m
–

23/48

Run-to-completion Step

–
1
3

–
2
0
1
2
-1

2
-1

2
–

m
a
in

–

24/48

Transition Relation, Computation

Definition. Let A be a set of actions and S a (not necessarily
finite) set of of states.

We call

−→ ⊆ S × A × S

a (labelled) transition relation.

Let S0 ⊆ S be a set of initial states. A sequence

s0
a0−→ s1

a1−→ s2
a2−→ . . .

with si ∈ S, ai ∈ A is called computation of the labelled transi-
tion system (S,−→, S0) if and only if

• initiation: s0 ∈ S0

• consecution: (si, ai, si+1) ∈−→ for i ∈ N0.

Note: for simplicity, we only consider infinite runs.

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
rt

c
–

25/48

Active vs. PassiveClasses/Objects

• Note: From now on, assume that all classes are active for simplicity.

We’ll later briefly discuss the Rhapsody framework which proposes a way
how to integrate non-active objects.

• Note: The following RTC “algorithm” follows [Harel and Gery, 1997] (i.e.
the one realised by the Rhapsody code generation) where the standard is
ambiguous or leaves choices.

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
rt

c
–

26/48

From CoreStateMachines to LTS

Definition. Let S0 = (T0,C0, V0, atr0, E) be a signature with signals (all classes
active), D0 a structure of S0, and (Eth, ready,⊕,⊖, [·]) an ether over S0 and D0.
Assume there is one core state machine MC per class C ∈ C .

We say, the state machines induce the following labelled transition relation on states

S := (ΣDS ∪̇ {#} × Eth) with actions A :=
(

2D(C)×(D(E) ∪̇ {⊥})Evs(E ,D)×D(C)
)2

:

• (σ, ε)
(cons,Snd)
−−−−−−−→

u
(σ′, ε′)

if and only if

(i) an event with destination u is discarded,

(ii) an event is dispatched to u, i.e. stable object processes an event, or

(iii) run-to-completion processing by u commences,
i.e. object u is not stable and continues to process an event,

(iv) the environment interacts with object u,

• s
(cons,∅)
−−−−−→ #

if and only if

(v) s = # and cons = ∅, or an error condition occurs during consumption of cons .

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
rt

c
–

27/48

(i) Discarding An Event

(σ, ε)
(cons,Snd)
−−−−−−−→

u
(σ′, ε′)

if

• an E-event (instance of signal E) is ready in ε for object u of a class C , i.e. if

u ∈ dom(σ) ∩D(C) ∧ ∃uE ∈ D(E) : uE ∈ ready(ε, u)

• u is stable and in state machine state s, i.e. σ(u)(stable) = 1 and σ(u)(st) = s,

• but there is no corresponding transition enabled (all transitions incident with
current state of u either have other triggers or the guard is not satisfied)

∀ (s, F, expr , act , s′) ∈→ (SMC) : F 6= E ∨ IJexprK(σ) = 0

and

• the system configuration doesn’t change, i.e. σ′ = σ

• the event uE is removed from the ether, i.e.

ε′ = ε ⊖ uE ,

• consumption of uE is observed, i.e.

cons = {(u, (E,σ(uE)))},Snd = ∅.

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
rt

c
–

28/48

Example: Discard

SMC : s1 s2
G[x > 0]/x := y

[x > 0]/x := x − 1;n ! J

H/z := y/x

〈〈signal , env〉〉

H

〈〈signal〉〉

G, J

C

x, z : Int

y : Int 〈〈env〉〉

n

0, 1

σ:
c : C

x = 1, z = 0, y = 2

st = s1

stable = 1

ε:
J for c,
G for c

• ∃u ∈ dom(σ) ∩D(C)
∃uE ∈ D(E) : uE ∈ ready(ε, u)

• ∀ (s, F, expr , act , s′) ∈→ (SMC) :
F 6= E ∨ IJexprK(σ) = 0

• σ(u)(stable) = 1, σ(u)(st) = s,

• σ′ = σ, ε′ = ε ⊖ uE

• cons = {(u, (E, σ(uE)))}, Snd = ∅

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
rt

c
–

29/48

(ii) Dispatch
(σ, ε)

(cons,Snd)
−−−−−−−→

u
(σ′, ε′) if

• u ∈ dom(σ) ∩D(C) ∧ ∃uE ∈ D(E) : uE ∈ ready(ε, u)

• u is stable and in state machine state s, i.e. σ(u)(stable) = 1 and σ(u)(st) = s,

• a transition is enabled, i.e.

∃ (s, F, expr , act , s′) ∈→ (SMC) : F = E ∧ IJexprK(σ̃) = 1

where σ̃ = σ[u.params
E
7→ uE].

and

• (σ′, ε′) results from applying tact to (σ, ε) and removing uE from the ether, i.e.

(σ′′, ε′) = tact(σ̃, ε ⊖ uE),

σ′ = (σ′′[u.st 7→ s′, u.stable 7→ b, u.params
E
7→ ∅])|D(C)\{uE}

where b depends:

• If u becomes stable in s′, then b = 1. It does become stable if and only if
there is no transition without trigger enabled for u in (σ′, ε′).

• Otherwise b = 0.

• Consumption of uE and the side effects of the action are observed, i.e.

cons = {(u, (E, σ(uE)))},Snd = Obstact (σ̃, ε ⊖ uE).

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
rt

c
–

30/48

Example: Dispatch

SMC : s1 s2
G[x > 0]/x := y

[x > 0]/x := x − 1;n ! J

H/z := y/x

〈〈signal , env〉〉

H

〈〈signal〉〉

G, J

C

x, z : Int

y : Int 〈〈env〉〉

n

0, 1

σ:
c : C

x = 1, z = 0, y = 2

st = s1

stable = 1

ε:

G for c

• ∃u ∈ dom(σ) ∩D(C)
∃uE ∈ D(E) : uE ∈ ready(ε, u)

• ∃ (s, F, expr , act , s′) ∈→ (SMC) :
F = E ∧ IJexprK(σ̃) = 1

• σ̃ = σ[u.paramsE 7→ uE].

• σ(u)(stable) = 1, σ(u)(st) = s,

• (σ′′, ε′) = tact(σ̃, ε ⊖ uE)

• σ′ = (σ′′[u.st 7→ s′, u.stable 7→ b, u.paramsE 7→ ∅])|D(C)\{uE}

• cons = {(u, (E, σ(uE)))}, Snd = Obstact (σ̃, ε ⊖ uE)

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
rt

c
–

31/48

(iii) CommenceRun-to-Completion

(σ, ε)
(cons,Snd)
−−−−−−−→

u
(σ′, ε′)

if

• there is an unstable object u of a class C , i.e.

u ∈ dom(σ) ∩D(C) ∧ σ(u)(stable) = 0

• there is a transition without trigger enabled from the current state
s = σ(u)(st), i.e.

∃ (s, , expr , act , s′) ∈→ (SMC) : IJexprK(σ) = 1

and

• (σ′, ε′) results from applying tact to (σ, ε), i.e.

(σ′′, ε′) ∈ tact [u](σ, ε), σ′ = σ′′[u.st 7→ s′, u.stable 7→ b]

where b depends as before.

• Only the side effects of the action are observed, i.e.

cons = ∅, Snd = Obstact (σ, ε).

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
rt

c
–

32/48

Example: Commence

SMC : s1 s2
G[x > 0]/x := y

[x > 0]/x := x − 1;n ! J

H/z := y/x

〈〈signal , env〉〉

H

〈〈signal〉〉

G, J

C

x, z : Int

y : Int 〈〈env〉〉

n

0, 1

σ:
c : C

x = 2, z = 0, y = 2

st = s2

stable = 0

ε:

• ∃u ∈ dom(σ) ∩D(C) : σ(u)(stable) = 0

• ∃ (s, , expr , act , s′) ∈→ (SMC) : IJexprK(σ) = 1

• σ(u)(stable) = 1, σ(u)(st) = s,

• (σ′′, ε′) = tact(σ, ε),
σ′ = σ′′[u.st 7→ s′, u.stable 7→ b]

• cons = ∅, Snd = Obstact (σ, ε)

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
rt

c
–

33/48

(iv) Environment Interaction

Assume that a set Eenv ⊆ E is designated as environment events and a set
of attributes venv ⊆ V is designated as input attributes.

Then

(σ, ε)
(cons,Snd)
−−−−−−−→

env
(σ′, ε′)

if

• an environment event E ∈ Eenv is spontaneously sent to an alive object
u ∈ D(σ), i.e.

σ′ = σ ∪̇ {uE 7→ {vi 7→ di | 1 ≤ i ≤ n}, ε′ = ε ⊕ uE

where uE /∈ dom(σ) and atr(E) = {v1, . . . , vn}.

• Sending of the event is observed, i.e. cons = ∅, Snd = {(env , E(~d))}.

or

• Values of input attributes change freely in alive objects, i.e.

∀ v ∈ V ∀u ∈ dom(σ) : σ′(u)(v) 6= σ(u)(v) =⇒ v ∈ Venv .

and no objects appear or disappear, i.e. dom(σ′) = dom(σ).

• ε′ = ε.–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
rt

c
–

34/48

Example: Environment

SMC : s1 s2
G[x > 0]/x := y

[x > 0]/x := x − 1;n ! J

H/z := y/x

〈〈signal , env〉〉

H

〈〈signal〉〉

G, J

C

x, z : Int

y : Int 〈〈env〉〉

n

0, 1

σ:
c : C

x = 0, z = 0, y = 2

st = s2

stable = 1

ε:

• σ′ = σ ∪̇ {uE 7→ {vi 7→ di | 1 ≤ i ≤ n}

• ε′ = ε ⊕ uE where uE /∈ dom(σ)
and atr(E) = {v1, . . . , vn}.

• u ∈ dom(σ)

• cons = ∅, Snd = {(env , E(~d))}.

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
rt

c
–

35/48

(v) Error Conditions

s
(cons,Snd)
−−−−−−−→

u
#

if, in (ii) or (iii),

• IJexprK is not defined for σ, or

• tact is not defined for (σ, ε),

and

• consumption is observed according to (ii) or (iii), but Snd = ∅.

Examples:

•

s2

s1

s3

E[x/0]/act

E[true]/act

• s1 s2
E[expr]/x := x/0

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
rt

c
–

36/48

Example: Error Condition

SMC : s1 s2
G[x > 0]/x := y

[x > 0]/x := x − 1;n ! J

H/z := y/x

〈〈signal , env〉〉

H

〈〈signal〉〉

G, J

C

x, z : Int

y : Int 〈〈env〉〉

n

0, 1

σ:
c : C

x = 0, z = 0, y = 27

st = s2

stable = 1

ε:

H for c

• IJexprK not defined for σ, or

• tact is not defined for (σ, ε)

• consumption according to (ii) or (iii)

• Snd = ∅

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
rt

c
–

37/48

Notions of Steps: TheStep

Note: we call one evolution (σ, ε)
(cons,Snd)
−−−−−−−→

u
(σ′, ε′) a step.

Thus in our setting, a step directly corresponds to

one object (namely u) takes a single transition between regular states.

(We have to extend the concept of “single transition” for hierarchical state machines.)

That is: We’re going for an interleaving semantics without true parallelism.

Remark: With only methods (later), the notion of step is not so clear.
For example, consider

• c1 calls f() at c2, which calls g() at c1 which in turn calls h() for c2.

• Is the completion of h() a step?

• Or the completion of f()?

• Or doesn’t it play a role?

It does play a role, because constraints/invariants are typically (= by convention)
assumed to be evaluated at step boundaries, and sometimes the convention is meant
to admit (temporary) violation in between steps.

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
rt

c
–

38/48

Notions of Steps: TheRun-to-Completion Step

What is a run-to-completion step...?

• Intuition: a maximal sequence of steps, where the first step is a
dispatch step and all later steps are commence steps.

• Note: one step corresponds to one transition in the state machine.

A run-to-completion step is in general not syntacically definable — one
transition may be taken multiple times during an RTC-step.

Example:

s1 s2

E[x > 0]/

/x := x − 1

σ:
: C

x = 2

ε:

E for u

–
1
3

–
2
0
1
2
-1

2
-1

2
–

S
st

m
rt

c
–

39/48

References

–
1
3

–
2
0
1
2
-1

2
-1

2
–

m
a
in

–

47/48

References

[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling
with statecharts. IEEE Computer, 30(7):31–42.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

–
1
3

–
2
0
1
2
-1

2
-1

2
–

m
a
in

–

48/48

