Sdtware Design, Modelling andAnalysisin UML

Ledure 13: Core Sate Machines IV
20121212

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

System Configuration

Definition. Let .% = (. %y, Vo, atro, &) be a signature with signals,
P a structure of #, (Bth, ready,®, S, |[-]) an ether over 7 and Z.
Furthermore assume there is one core state machine M per class C' € €.

>m<masn=z5:.9_22.&?&o.mznmswmum.:
a dupe Vv W m. =1

of s (b shlcwaine (5.0 € 2 5 B o DCa)B
/ Y Bl T, e 4l b, 3
where » v)
o I =(%U{Suc |CEE}, G, o ST of & uadeie
Vo U {{stable : Bool. V%t
o U {(stable : | —, true,
. dopch o
O {(stc : Sater+,520) | C € €} oy i
) . (o Aost b0 a4 Hpa)
U {(paramsg : Eo1,+.0,0) | E € &}, o et o aCS i
[l 0= am(©) &2
e2] Cetl U {stable, stc’} U {params, | E € &} | C € €}, &)

. . Lo
« D=0 Sy S(Me) | C € €}, and "\..es\awmtu

- @ ()(r) 1 D(8) = 0 for each u € dom(o) and 7 € Vi, (2)

Contents & Goals

Last Lecture:
« System configuration

« Transformer

This Lecture:
» Educational Objectives: Capal s for following tasks/questions.
» What does this State Machine mean? What happens if | inject this event?
+ Can you please model the following behaviour.
» What is: Signal, Event, Ether, Transformer, Step, RTC.

« Content:
« Transformer cont'd
« Examples for transformer
* Run-to-completion Step
o Putting It All Together

28
enmen | |ogr| Ve g
ﬁ s @ Dol ht): 2
Q- (5L, 1, Suty i}, Feiofig), €m0, T04es3, #73)
o Al
D10 Spd, TCET, Gy bt skl B, ot Sy, o €, , oS o,
§ ¢ b g, shbl, sk, posvsg, o3, Entt Forialf, ie7)
D (wh] = E) i B s st T
D) = Fromn 0} —~ T
o
P
e e /
(o
lnsbwrce o F)
Sy for ®
S0;
d o e
548

System Configuration, Ether, Transformer

e
Where are we?
e fov
il Fle:=0
(sow il a5 |
« Wanted: a labelled transition relation
cons. Snd
(0,6) LoD, (o7 ')

on system configuration, labelled with the consum

(a',") being the result (or effect) of one object u, taking a transition

of state machine from the current state mach. state o(u,)(stc).
« Have: system configuration (o, &) comprising current state machine state

and stability flag for each object, and the ether.
« Plan:

(i) Introduce transformer as the semantics of action annotions.

s the effect of applying the transformer
of the taken transition.
(ii) Explain how to choose transitions depending on ¢ and when to stop taking
transitions — the run-to-completion “algorithm”
1460

6/as

Transformer

becann. of won- defesicinisin

Definition.
Let X% the set of sysfem configurations over some %, %, Eth.
et “execting' o achds
o Eh
t C 9(%) x (22 x Eth) x (2 x Eth)

We call a relation *s

AARD

a (system configuration) .s._maiﬂ_./ﬂ_s cadlguieton b,

ation of a transformer ¢ to

 In the following, we assume that each appl
i u, is associated with a set of

) ’ el ot et
abservations T S s 4
Obs (re) e Nﬁix@@x@ (& U {*,+}.2)x2(€) el

IR K rectler o Lok,
 An observation (U, te, (E,d), uds) € Obsi[u.)(o,€)

- represents the information that, as a “side effect” of u,, executing ,

g an event (1) (E.d) has been sent from . to .

& Special cases: creation/destruction
1550

Transformer: Updae

abstract syntax concrete syntax
update(expry, v, expry) o,V E ey
intuitive semantics
Update attribute v in the object denoted by cxpr, to the value
denoted by ¢

well-typedness
expry :7c and v: T € atr(
eapry, expry obey visil

eapry i T
ity and navigability

semantics
tupaate(eapr, v.capry) 2] (7.€) = {(c”, €)}
where o = afu - o (w)[v > Ieapry] (o,)] with
u = I[expry](o,), § = {this — u,}.
observables

=0

[T ——

(error) conditions

Not defined if I[ezpr,](c.) or I[eapry](c.) not defined.

1074

ln

J ?F_:,r% Wt Constda

Acky = T kel

vf wpdele (epey v, exg4,) [exgrr e, € ULy, vels
Ut sod (opu, £ 696) | et op, ctesye, €cEF
u ook (& aqv] | opec Gy, ce,vely

of deskes (og¢) | o € 0lEgf

Epy: AL aplas o ¥

Update Transformer Example

™ h% o

SMc:

% nx = x17;

Jri=a+1
B = N —
dusxm g
ol U

update(ezpry, v, exprs)

tupdate(eapry v,expry) [Ue](0,€) = (ofu = o (u)[v = Teaprs] (o,
u = Iexpr,](c, B)

.

113

Transformer: Send

Transformer: Skip

abstract syntax concrete syntax
skip ship
intuitive semantics
do nothing

well-typedness

semantics

tlu)(0,¢) = {(7€)}
observables

Obsgyspluz](o,e) =0

(error) conditions

abstract syntax concrete syntax
send(B(erpry, s et), o) oo 1 E oy -poge)

ive semantics

intui
Object u, : C sends event E to object expr 4,
signal instance, fill in its attributes, and place

well-typedness o dot sud Ay Lo

e. create a fresh
in the ether.

D1 7. C,DEC\ 8 EC &
atr(E) = {v; : 7 Ta)i expri i, 1<i<m;
all ity and igability in C'
= .
ey ecapry s [1al(0:) B (0 \b o

where o = U {u s {o; - di | 1< i <)} & = e ® (e, 0);
if waye = Ilezpr (0. B) € dom(a); d; = Ieapr,](a,) for
1<i<
u € 9(F) a fresh identity, i.e. u & dom(c),
we old gand where (o',<') = (0.¢) if uay & dom(o); = {this - u
Ao B G cervales

_tau. Obsgenaltis] = {(ttayt, (B, dy, ..., dn), wast)}
ol (error) conditions R

Iexpr](a. 8) not defined for any
eapr € {eapr gy, €xpry, ... eapry}

12/

Send Transformer Example

SMe: JointF(a+ 1)

send(B(eapr., .., eapr,), expr z.,)

Leond (BT B(cxpr o) ezpr) U] (0,€) = .

How To Choaose New | dentiti es?

» Re-use: choose any identity that is not alive now,
« Doesn't depend on history.

 May “undangle

o Fresh: choose any identity that has not been alive ever,

dom(c) and any predecessor in current run.

« Depends on history.

« Dangling references remain dangling — could mask

platform

.e. not in dom(,

13/

v

dangling references — may happen on some platforms.

e. not in

irty” effects of

164

m

Transformer: Create

()

81 g (v € 4 (e)

abstract syntax concrete syntax
create(C, expr,v) oi.ﬁ«:&m

ive semantics

inty
Create an object of class C and assign it to attribute v of the object
denoted by expression expr.
well-typedness
expr : 7p, v € atr(D), atr(C) = {(v; : 7y, expr) | 1 <i < n}

semantics
observables

(error) conditions

I[expr](o, B) not defined.

« We use an “and assign’-action for simplicity — it doesn’t add or remove (¥
expressive power, but moving creation to the expression language raises all
kinds of other problems such as order of evaluation (and thus creation)

« Also for simplicity: no parameters to construction (~ parameters of construc-
tor). Adding them is straightforward (but somewhat tedious)

Transformer: Create

QM —2" 2

aﬁsf,

abstract syntax concrete syntax
create(C, capr, v)
intuitive semantics
Create an object of class C' and assign it to attribute v of the object
denoted by expression eapr.
well-typedness
eapr 7, v € atr(D), atr(C) = {{vn s, capr) [1< i < ke
semantics
v .
Y ((0,0), (0% €) €t Al e bt o
iff 0/ = oug — o(ug)[v +— u]]U ? = {vi—di [1<i<n}},
o= € (C) fresh, :&_ mi%iq
wo = Iexpr] (o, B); & L copr? if exprd # ' and arbitrary
el e) s__mémm m = {this > u}.

observables
Obsexeatelta] = {(1, L, (+,0),u)}

ions

(error) con
I[expr] (o) not defined.

.q.mxk\&.

14/

17/

Create Transformer Example ¢

SMe:

x:hiz0

new C; s

create(C, eapr,v)

Lexoate(C,eapr) (0:6) =

3

Lot @.&.,w

Transformer: Destroy

abstract syntax
destroy(expr)

intuitive semantics

well-typedness

semantics

observables

(error) conditions

Destroy the object denoted by expression expr.

Obsaestroy (] = {(tz, L, (+,0), u)}

concrete syntax

delele expe

expr:7c, C €€

I[eapr](. B) not defined.

e o f03

1548

184

Destroy Transformer Example

SMo: delete n; . (s'')=(s"e!
destroy(ezpr) ¢
tasseop(eapr) 2] (3,) = v dotesl|
) < .
P N =4)
-t :
oty
, s
Soe
0 1948
Sequential Compaosition o Transformers
« Sequential ition ¢, o t, of transformers ¢, and t, is I
defined as

1t [wa] (o))

(t20t1)[us(0,) = ta
with observation

ObS (1,01, [Uz](0,€) = Obsy, [uz] (0,) U Obsy,[ua](t1(0,€)).

s not defined.

ed if one the two intermediate “micro steps’

« Clear: not de

XemxkT, g2 ! F

€ gure Lt (i3 (oi2))

T 22/

What to Do With the Remaining Objeds?

21212

Assume object u is destroyed. ..

« object u; may still refer to it via association r:
« allow dangling references?
= or remove ug from o (uy)(r)?

« object uy may have been the last one linking to object 1

« leave uy alone?
« or remove uy also?
» Plus: (temporal extensions of) OCL may have dangling references.

Our choice: Dangling references and no garbage collection!

This is in line with “expect the worst”, because there are target platforms which
don't provide garbage collection — and models shall (in general) be correct
without assumptions on target platform.

But: the more “dirty” effects we see in the model, the more expensive it often
is to analyse. Valid proposal for simple analysis: monotone frame semantics,

no destruction at al
208

Transformers And Denctationd Semantics

Observation: our transformers are in principle the denotational semantics
of the actions/action sequences. The trivial case, to be precise.

e G we;
Note: with the previous examples, we can capture ~ S———CD
« empty statements, skips, ,M
« assignments, Lx=0]
@) C/

+ conditionals (by normalisation and auxiliary variables), (7
o create/destroy, Lal--
but not possibly diverging loops.

Our (Simple) Approach: if the action language is, e.g. Java,
then (syntactically) forbid loops and calls of recursive functions.

Other Approach: use full blown denotational semantics.

No show-stopper, because loops in the action annotation can be converted into
transition cycles in the state machine.
2348

Transformer: Destroy

abstract syntax concrete syntax
destroy(expr)
intuitive semantics
Destroy the object denoted by expression expr.
well-typedness
erpr:7c, C €€
semantics binchine resich.

tluz)(0,e) ={(o’. e}

where 0" = ol () With u = I[erpr] (@ 3).
observables
Obsasstroyltta] = {(ttz, L, (+,0), u)}
(error) conditions
I[eapr] (o, B) not defined.

Run-to-completion Sep

21/

24738

Transition Relation, Computation

Definition. Let A be a set of actions and S a (not necessarily
finite) set of of states.

We ca
— CSxAxS

a (labelled) transition relation.

Let Sp C S be a set of

al states. A sequence

@, o, o
B ooy B,

with s; € S, a; € A is called computation of the labelled tran:
tion system (S, —, Sp) if and only if

o initiation: so € Sp

« consecution: (s;,a;, si+1) €— for i € Ny,

Note: for simplicity, we only consider infinite runs.

(i) Discarding An Event

(.9 (cons,Snd) ()

if

= an E-event (instance of signal E) is ready in for object u of a class €, i.e. if
u € dom(0) N Z(C) A3ur € Z(E) : up € ready(e,u)

o wis stable and in state machine state s, i.e. o(u)(stable) = 1 and o(u)(st) =
« but there is no corresponding transition enabled (all transitions incident with
current state of u either have other triggers or the guard is not satisfied)
Y (s, F. expr, act,s') €= (SMc) : F # EV I[expr](3) = 0
R il e i 30

and

« the system configuration doesn't change,

© the event ug is removed from the ether,

observed,

« consumption of ug

e
cons = :ﬁﬁh?ié. Snd = 0.

25/

28/

Active \s. Passve Clases/Objeds

21212

Example: Discard

SMe:

« Note: From now on, assume that all classes are active for simplicity.

We'll later briefly discuss the Rhapsody framework which proposes a way
how to integrate non-active objects.

» Note: The following RTC *“algorithm” follows [Harel and Gery, 1997] (i.e.

the one realised by the Rhapsody code generation) where the standard is
ambiguous or leaves choices.

264

(signat, env))

0.1 &,z Int
v Int (env))

i C
r=1z=0y=2 >
st=s1 ¢

stable = 1

From Core Sate Machinesto LTS

+ Ju € dom(0) N 2(C) « o(u)(stable) = 1, a(u)(st) = s,
Jup € (&) : up € ready(s, u)

o Y (s, F, eapr, act, s') €= (SMc) :
F # BV I[expr](e) =0

co'=0 ¢ =coup

« cons = {(u, (B.o(ug)))}, Snd =0

293

Definition. Let % = (%.%b, V. atro, &) be a signature with signals (all classes
active), 2y a structure of 7, and (Eth, ready, &, S, [-]) an ether over % and Zp.
Assume there is one core state machine Mc: per class C' € €.

We say, the state machines induce the following labelled transition relation on states
= (D20 () x Bth)ith actions A = (32()x(2(0) 0 Lfonse2)x7())
- Sow

+ o FE

and only
(i) an event with destination u is discarded,

(i) an event is dispatched to u, i.e. stable object processes an event, or
run-to-completion processing by u commences,

iie. object u is not stable and continues to process an event,

(iv) the environment interacts with object u,

L lemed) e e

and only if

(v) s = # and cons = 0}, or an error condition occurs during consumption of cons.

(i) Dispatch (0.9) ,aﬁw;s (o< if

« uedom(e) N Z(C) A3ur € D(E) : ur € ready(e.u)
o wis stable and in state machine state s, i.e. o(u)(stable) = 1and o(u)(st) = s,

© a transition is enabled,
3 (s, F, eapr, act,s') e— (SMc) : F = E A [erpr](5) = 1
where & = o[u.params ;, — ug).

and

o (0,2') results from applying to.: to (,<) and removing u from the ether, i.c.

(0",&") = tact (5,2 © ug), e s

o' = (0" [u.st — s, u.stable — b, u.params z — O))| 261\ (up}

where b depends:
 If u becomes stable in s', then b = 1. It does become stable if and only
ion without trigger enabled for u in (o’,&’).

there is no tran:
© Otherwise b = 0.
« Consumption of ug and the side effects of the action are observed, i

cons = {(u, (B, 0(ug)))}, Snd = Obst,, (5,2 © up).

27/

s

30748

Example: Dispatch o

0.1 &z It
v : Int (env)

stable = 1

« Ju € dom(e) N 2(C) « o(u)(stable) = 1, o(u)(st) = s,
ug € D(E) : up € ready(z,u)

o 3(s, F, eapr, act, s') €~ (SMc) :
F = E A [eapr](@) = 1

+ & = ofu.params ;- ug)

o (0",&) = taes (3,6 O up)
o o = (0" st v ', wstable v b, uparams - O0)pe ey
E,o(ug)))}, Snd = Obst,, (3, © ur)

3

o cons = {(

(iv) Environment Interaction

Assume that a set &, C & is d | as i kventsand a set
of attributes ve,, C V is designated as input attributes.

Then
() (cons,Snd) (o)
env

© an environment event E € &, is spontaneously sent to an alive object
ue Do), e ow e insthece of €
o e d 1T S, =
where uz ¢ dom(o) and atr(E) = {)
« Sending of the event is observed, i.e. cons =0, Snd = {(env, E(d))}.
or ﬂ\&!.i

© Values of input attributes change freely in alive objects, i.e.

Vo eV Vuedom(a) : o' (u)(v) # o (u)(v) = v € Vi
and no objects appear or disappear, i.e. dom(0’) = dom(a)

o =e 34758

(ii) Commence Run-to-Completion

(0,0) Leomsssnd) 1 oy
P

o there is an unstable object u of a class ¢,
u € dom() N Z(C) A o (u)(stable) = 0

o there is a transition without trigger enabled from the current state
s=o(u)(st), ie

3(s, -, eapr, act, ') €— (SMc) : I[eapr](c) = 1

and

o (¢, results from applying to.: to (,<),

(0",&) € tuclul(e,2), o' = 0" [ust — ', w.stable — b]

where b depends as before.

« Only the side effects of the action are observed,
cons = 0, Snd = Obsu,,(0,2)
32/

Example: Environment 7 "

[x>0)/z:=z—1Lin!J

SMe: —y

THjz=ylo H -

i C
r=02=0y=2

st=ss
stable = 1

e o' =0 Ufup— {vidi | 1<i<n} « u € dom(o)
o & = £ ® up where ug ¢ dom(c) o cons =0, Snd = {(env, E(d))}.
and atr(E) = {v1,...,va}.

35/

Example: Comnence

SMe: "~

st=s,

s
stable = 0 \,_w

15 5@ ?.\t

o(u)(stable) = 0 o (0",€') = tact(o, <)
o' = 0" u.st - o, u.stable s b]
« cons =0, Snd = Obs,,,(0,)

« Ju € dom(e) N Z(C
« (s, eapr, act,s') € (SM) : I[eapr]
« o(u)(stable) = 1, alu)(st) = 5.

334

(v) Error Condtions

(cons, Snd)

s

#

u

i),
o I[eapr] is not defined for o, or
© L s not defined for (,¢), te o (wd(02l=

and EE
« consumption is observed according to (ii) or (iii), but Snd = 0.

NCEPES r@&ﬂiﬂ&

Examples:

Eleapr] /e = iclﬁ

36/

{signal, env))

H

Example: Error Condition

{(signal))
G, J

SMe: "~ 0

e}
0.1 &z It
v : Int (env)

stable = 1

« Iexpr] not defined for o, or « consumption according to (ii) or (i)
* tace is not defined for (7, ¢) o Snd=0
References

Notions of Steps. The Step

. cons, Snd.
Note: we call one evolution (o,) Leona,Snd), (o’,¢’) a step.

Thus in our setting, a step directly corresponds to

one object (namely u) takes a single transition between regular states.

(We have to extend the concept of “single transition” for hierarchical state machines.)
That is: We're going for an interleaving semantics without true parallelism.

Remark: With only methods (later), the notion of step is not so clear.
For example, consider

h(Q) for ca.

o ¢ calls £() at co, which calls g() at ¢; which in turn cal

o Is the completion of h() a step?
= Or the completion of £()?

= Or doesn't it play a role?

It does play a role, because constraints/invariants are typically (= by convention)
assumed to be evaluated at step boundaries, and sometimes the convention is meant
to admit (temporary) violation in between steps.

212

37 384

References

[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling
with statecharts. IEEE Computer, 30(7):31-42.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

4758 4818

Notions of Seps. The Run-to-Completion Sep

What is a run-to-completion step...?

« Intuition: a maximal sequence of steps, where the first step is a
dispatch step and all later steps are commence steps.

« Note: one step corresponds to one transition in the state machine.

A run-to-completion step is in general not syntacically definable — one
transition may be taken multiple times during an RTC-step.

Example:
Elz >0}/

I

Jri=x—1

39/

