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Contents & Goals

Last Lecture:

• Hierarchical State Machines Syntax

• Initial and Final State

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What does this State Machine mean? What happens if I inject this event?

• Can you please model the following behaviour.

• What does this hierarchical State Machine mean? What may happen if I
inject this event?

• What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, . . .

• Content:

• Composite State Semantics

• The Rest
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Composite States
(formalisation follows [Dammet al., 2003])
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Composite States

• In a sense, composite states are about
abbreviation, structuring, and avoiding redundancy.

• Idea: in Tron, for the Player’s Statemachine,
instead of

n

•
w e

s

resigned

X/
X/

X/

X/

write

•

n

•
w e

s

resigned

X/
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Composite States

and instead of

n

fastN

•

wfW e

fE

s

fS

F/

F/

write

•

n

•
w e

s

•
slow

fast

F/F/
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Recall : Syntax

s

s1 s2 s3

s′1 s′2 s′3

translates to

({(top, st), (s, st), (s1, st)(s
′

1, st)(s2, st)(s
′

2, st)(s3, st)(s
′

3, st)}
︸ ︷︷ ︸

S,kind

,

{top 7→ {s}, s 7→ {{s1, s
′

1}, {s2, s
′

2}, {s3, s
′

3}}, s1 7→ ∅, s′1 7→ ∅, . . . }
︸ ︷︷ ︸

region

,

→, ψ, annot)
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Syntax: Fork/Join

• For brevity, we always consider transitions with (possibly) multiple
sources and targets, i.e.

ψ : (→) → (2S \ ∅) × (2S \ ∅)

• For instance,

s1

s2

s3

s4

s5

s6

tr [gd ]/act

translates to

(S, kind , region, {t1}
︸︷︷︸

→

, {t1 7→ ({s2, s3}, {s5, s6})}
︸ ︷︷ ︸

ψ

, {t1 7→ (tr , gd , act)}
︸ ︷︷ ︸

annot

)

• Naming convention: ψ(t) = (source(t), target(t)).

–
1
6

–
2
0
1
3
-0

1
-0

9
–

S
h
ie

rs
tm

–

7/44

Composite States: Blessing or Curse?

•

•

s1

s2

•

s3

s8s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/
• what may happen on E?

• what may happen on E, F?

• can E, G kill the object?

• ...
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Composite States: Blessing or Curse?

•

•

s1

s2

•

s3

s8s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/
• what may happen on E?

• what may happen on E, F?

• can E, G kill the object?

• ...

States:

• what are legal state
configurations?

• what is the type of the
implicit st attribute?

Transitions:

• what are legal
transitions?

• when is a transition
enabled?

• what effects do transi-
tions have?
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StateConfiguration

• The type of st is from now on a set of states, i.e. st : 2S

• A set S1 ⊆ S is called (legal) state configurations if and only if

• top ∈ S1, and

• for each state s ∈ S1, for each non-empty region ∅ 6= R ∈ region(s),
exactly one (non pseudo-state) child of s (from R) is in S1, i.e.

|{s0 ∈ R | kind(s0) ∈ {st, fin}} ∩ S1| = 1.

• Examples:

s

s1

s2

s3
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StateConfiguration

• The type of st is from now on a set of states, i.e. st : 2S

• A set S1 ⊆ S is called (legal) state configurations if and only if

• top ∈ S1, and

• for each state s ∈ S1, for each non-empty region ∅ 6= R ∈ region(s),
exactly one (non pseudo-state) child of s (from R) is in S1, i.e.

|{s0 ∈ R | kind(s0) ∈ {st, fin}} ∩ S1| = 1.

• Examples:

s

s1 s2 s3

s′1 s′2 s′3
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A Partial Order on States

The substate- (or child-) relation induces a partial order on states:

• top ≤ s, for all s ∈ S,

• s ≤ s′, for all s′ ∈ child(s),

• transitive, reflexive, antisymmetric,

• s′ ≤ s and s′′ ≤ s implies s′ ≤ s′′ or s′′ ≤ s′.
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A Partial Order on States

The substate- (or child-) relation induces a partial order on states:

• top ≤ s, for all s ∈ S,

• s ≤ s′, for all s′ ∈ child(s),

• transitive, reflexive, antisymmetric,

• s′ ≤ s and s′′ ≤ s implies s′ ≤ s′′ or s′′ ≤ s′.

s

s1

s2

s3

s′

s′1 s′2 s′3

s′′1 s′′2 s′′3
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Least CommonAncestor andTing

• The least common ancestor is the function lca : 2S \ {∅} → S such that

• The states in S1 are (transitive) children of lca(S1), i.e.

lca(S1) ≤ s, for alls ∈ S1 ⊆ S,

• lca(S1) is minimal, i.e. if ŝ ≤ s for all s ∈ S1, then ŝ ≤ lca(S1)

• Note: lca(S1) exists for all S1 ⊆ S (last candidate: top).

s

s1

s2

s3

s′

s′1 s′2 s′3

s′′1 s′′2 s′′3
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Least CommonAncestor andTing

• Two states s1, s2 ∈ S are called orthogonal, denoted s1 ⊥ s2, if and only if

• they are unordered, i.e. s1 6≤ s2 and s2 6≤ s1, and

• they “live” in different regions of an AND-state, i.e.

∃ s, region(s) = {S1, . . . , Sn} ∃ 1 ≤ i 6= j ≤ n : s1 ∈ child
∗(Si) ∧ s2 ∈ child

∗(Sj),

s

s1

s2

s3

s′

s′1 s′2 s′3

s′′1 s′′2 s′′3
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Least CommonAncestor andTing

• A set of states S1 ⊆ S is called consistent, denoted by ↓ S1,
if and only if for each s, s′ ∈ S1,

• s ≤ s′, or

• s′ ≤ s, or

• s ⊥ s′.

s

s1

s2

s3

s′

s′1 s′2 s′3

s′′1 s′′2 s′′3
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Legal Transitions

A hiearchical state-machine (S, kind , region,→, ψ, annot) is called well-
formed if and only if for all transitions t ∈→,

(i) source and destination are consistent, i.e. ↓ source(t) and ↓ target(t),

(ii) source (and destination) states are pairwise orthogonal, i.e.

• forall s, s′ ∈ source(t) (∈ target(t)), s ⊥ s′,

(iii) the top state is neither
source nor destination, i.e.

• top /∈ source(t) ∪ source(t).

• Recall: final states are
not sources of transitions.
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Legal Transitions

A hiearchical state-machine (S, kind , region,→, ψ, annot) is called well-
formed if and only if for all transitions t ∈→,

(i) source and destination are consistent, i.e. ↓ source(t) and ↓ target(t),

(ii) source (and destination) states are pairwise orthogonal, i.e.

• forall s, s′ ∈ source(t) (∈ target(t)), s ⊥ s′,

(iii) the top state is neither
source nor destination, i.e.

• top /∈ source(t) ∪ source(t).

• Recall: final states are
not sources of transitions.

Example:

•

•

s1

s2

•

s3

s8s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/
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TheDepth of States

• depth(top) = 0,

• depth(s′) = depth(s) + 1, for all s′ ∈ child(s)

Example:

•

•

s1

s2

•

s3

s8s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/
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Enablednessin Hierarchical State-Machines

• The scope (“set of possibly affected states”) of a transition t is the least
common region of

source(t) ∪ target(t).

• Two transitions t1, t2 are called consistent if and only if their scopes are
orthogonal (i.e. states in scopes pairwise orthogonal).

• The priority of transition t is the depth of its innermost source state, i.e.

prio(t) := max{depth(s) | s ∈ source(t)}

• A set of transitions T ⊆→ is enabled in an object u if and only if

• T is consistent,

• T is maximal wrt. priority,

• all transitions in T share the same trigger,

• all guards are satisfied by σ(u), and

• for all t ∈ T , the source states are active, i.e.

source(t) ⊆ σ(u)(st) (⊆ S).
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Transitions in Hierarchical State-Machines

• Let T be a set of transitions enabled in u.

• Then (σ, ε)
(cons,Snd)
−−−−−−−→ (σ′, ε′) if

• σ′(u)(st) consists of the target states of t,

i.e. for simple states the simple states themselves, for composite
states the initial states,

• σ′, ε′, cons , and Snd are the effect of firing each transition t ∈ T
one by one, in any order, i.e. for each t ∈ T ,

• the exit transformer of all affected states, highest depth first,
• the transformer of t,
• the entry transformer of all affected states, lowest depth first.

 adjust (2.), (3.), (5.) accordingly.
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Entry/Do/Exit Actions, Internal Transitions
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Entry/Do/Exit Actions
s1

entry/actentry
1

do/actdo
1

exit/actexit
1

E1/actE1

. . .

En/actEn

s2

entry/actentry
2

do/actdo
2

exit/actexit
2

tr [gd ]/act

• In general, with each state
s ∈ S there is associated

• an entry, a do, and an exit
action (default: skip)

• a possibly empty set of
trigger/action pairs called
internal transitions,

(default: empty). E1, . . . , En ∈ E , ‘entry’, ‘do’, ‘exit’ are reserved names!

• Recall: each action’s supposed to have a transformer. Here: tactentry
1

, tactexit
1

, . . .

• Taking the transition above then amounts to applying

tactentry
s2

◦ tact ◦ tactexit
s1

instead of only

tact

 adjust (2.), (3.) accordingly.
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Internal Transitions
s1

entry/actentry
1

do/actdo
1

exit/actexit
1

E1/actE1

. . .

En/actEn

s2

entry/actentry
2

do/actdo
2

exit/actexit
2

tr [gd ]/act

• For internal transitions, taking the one for E1, for instance, still
amounts to taking only tactE1

.

• Intuition: The state is neither left nor entered, so: no exit, no entry.

 adjust (2.) accordingly.

• Note: internal transitions also start a run-to-completion step.

• Note: the standard seems not to clarify whether internal transitions have
priority over regular transitions with the same trigger at the same state.

Some code generators assume that internal transitions have priority!
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AlternativeView: Entry/Exit/Internal asAbbreviations

s0

s1

entry/actentry
1

exit/actexit
1

E1/actE1

s2

entry/actentry
2

exit/actexit
2

tr0[gd0]/act0 tr1[gd1]/act1

tr2[gd2]/act2

• ... as abbrevation for ...

s0 s1 s2
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AlternativeView: Entry/Exit/Internal asAbbreviations

s0

s1

entry/actentry
1

exit/actexit
1

E1/actE1

s2

entry/actentry
2

exit/actexit
2

tr0[gd0]/act0 tr1[gd1]/act1

tr2[gd2]/act2

• ... as abbrevation for ...

s0 s1 s2

• That is: Entry/Internal/Exit don’t add expressive power to Core State Machines.
If internal actions should have priority, s1 can be embedded into an OR-state
(see later).

• Abbreviation may avoid confusion in context of hierarchical states (see later).
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Do Actions
s1

entry/actentry
1

do/actdo
1

exit/actexit
1

E1/actE1

. . .

En/actEn

s2

entry/actentry
2

do/actdo
2

exit/actexit
2

tr [gd ]/act

• Intuition: after entering a state, start its do-action.

• If the do-action terminates,

• then the state is considered completed,

• otherwise,

• if the state is left before termination, the do-action is stopped.

• Recall the overall UML State Machine philosophy:

“An object is either idle or doing a run-to-completion step.”

• Now, what is it exactly while the do action is executing...?
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TheConcept of History, andOther Pseudo-States
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History andDeep History: By Example

susp

•

s0

act

H H∗

•

s1 s2

s3
sb

•

s4

s5

E/

B/

C/

D/

F/

Rs/

Rd/
A/

S/

Rs/
Rd/

What happens on...

• Rs?
s0, s2

• Rd?
s0, s2

• A, B,C, S, Rs?
s0, s1, s2, s3, susp, s3

• A, B, S, Rd?
s0, s1, s2, s3, susp, s3

• A, B,C, D, E, Rs?
s0, s1, s2, s3, s4, s5, susp, s3

• A, B,C, D, Rd?
s0, s1, s2, s3, s4, s5, susp, s5
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Junction andChoice

• Junction (“static conditional branch”): •
[gd

1
]/a

ct 1

[gd
2 ]/act

2
• good: abbreviation

• unfolds to so many similar transitions with different guards,
the unfolded transitions are then checked for enabledness

• at best, start with trigger, branch into conditions, then apply actions

• Choice: (“dynamic conditional branch”)

• evil: may get stuck

• enters the transition without knowing whether there’s an enabled path

• at best, use “else” and convince yourself that it cannot get stuck

• maybe even better: avoid

Note: not so sure about naming and symbols, e.g.,
I’d guessed it was just the other way round...
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Entry andExit Point, SubmachineState, Terminate

• Hierarchical states can be “folded” for readability.
(but: this can also hinder readability.)

• Can even be taken from a different state-machine for re-use. S : s

• Entry/exit points ,

• Provide connection points for finer integration into the current level,
than just via initial state.

• Semantically a bit tricky:

• First the exit action of the exiting state,

• then the actions of the transition,

• then the entry actions of the entered state,

• then action of the transition from
the entry point to an internal state,

• and then that internal state’s entry action.

• Terminate Pseudo-State

• When a terminate pseudo-state is reached,
the object taking the transition is immediately killed.
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