Software Design, Modelling and Analysis in UML
 Lecture 16: Hierarchical State Machines II

2013-01-09
Prof. Dr. Andreas Podelski, Dr. Bernd Westphal
Albert-Ludwigs-Universität Freiburg, Germany

Contents \& Goals

Last Lecture:

- Hierarchical State Machines Syntax
- Initial and Final State

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
- What does this State Machine mean? What happens if I inject this event?
- Can you please model the following behaviour.
- What does this hierarchical State Machine mean? What may happen if I inject this event?
- What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, ...
- Content:
- Composite State Semantics
- The Rest

Composite States

(formalisation follows [Damm et al., 2003])

Composite States

- In a sense, composite states are about abbreviation, structuring, and avoiding redundancy.
- Idea: in Tron, for the Player's Statemachine, instead of

Composite States

Syntax: Fork/Join

- For brevity, we always consider transitions with (possibly) multiple sources and targets, ie. set of sure sol of motivation stater

$$
\psi:(\rightarrow) \rightarrow\left(2^{S} \backslash \emptyset\right) \times\left(2^{S} \backslash \emptyset\right)
$$

- For instance, here: annotation in between

translates to
(S, kind, region, $\underbrace{\left\{t_{1}\right\}}_{\rightarrow}, \underbrace{\left\{t_{1} \mapsto\left(\left\{s_{2}, s_{3}\right\},\left\{s_{5}, s_{6}\right\}\right)\right\}}_{\psi}, \underbrace{\left\{t_{1} \mapsto(t r, g d, \text { act })\right\}}_{\text {annot }})$
- Naming convention: $\psi(t)=(\underline{\text { source }}(t), \underline{\text { target }}(t))$.

Composite States: Blessing or Curse?

Composite States: Blessing or Curse?

State Configuration

- The type of $s t$ is from now on a set of states, ie. st : 2^{S}
- A set $S_{1} \subseteq S$ is called (legal) state configurations if and only if
- top $\in S_{1}$, and
- for each state $s \in S_{1}$, for each non-empty region $\emptyset \neq R \in \operatorname{region}(s)$, exactly one (non pseudo-state) child of s (from R) is in S_{1}, ie.

$$
\left|\left\{s_{0} \in R \mid \operatorname{kind}\left(s_{0}\right) \in\{s t, f i n\}\right\} \cap S_{1}\right|=1
$$

- Examples:

$$
S_{1}=\{s\} \quad \text { NOT } \angle E G A L \text {, fop missing }
$$

$$
S_{2}=\left\{t_{p p}, s\right\} \text { NOT } \angle E O S K \text {, missing child of } s
$$

$$
S_{3}=\left\{\text { top, } s, s_{1}, s_{3}\right\} \text { NOT } L E G A L \text {, too many dail/sure of s }
$$

$$
S_{4}=\left\{t o p, s, s_{p}\right\} \quad \angle \in O A
$$

State Configuration

- The type of $s t$ is from now on a set of states, ie. st : 2^{S}
- A set $S_{1} \subseteq S$ is called (legal) state configurations if and only if
- top $\in S_{1}$, and
- for each state $s \in S_{1}$, for each nonempty region $\emptyset \neq R \in \operatorname{region}(s)$, exactly one (non pseudo-state) child of s (from R) is in S_{1}, ie.

$$
\left|\left\{s_{0} \in R \mid \operatorname{kind}\left(s_{0}\right) \in\{s t, f i n\}\right\} \cap S_{1}\right|=1
$$

- Examples:

$S_{1}=\left\{\right.$ top, $\left.s_{7}, S_{2}^{\prime}, s_{3}\right\}$ WOT LE BAL, child of the is vising $S_{2}=\left\{\right.$ top $\left., s_{1}, s_{1}, s_{1}\right\}$ NOT $\angle E T A C$, child of s form R_{3} $s_{3}=\left\{t_{p}, s_{1} s_{1}, s_{2}, s_{3}\right\}$

A Partial Order on States

The substate- (or child-) relation induces a partial order on states:

- top $\leq s$, for all $s \in S$,
- $s \leq s^{\prime}$, for all $s^{\prime} \in \operatorname{child}(s)$,
- transitive, reflexive, antisymmetric,
- $s^{\prime} \leq s$ and $s^{\prime \prime} \leq s$ implies $s^{\prime} \leq s^{\prime \prime}$ or $s^{\prime \prime} \leq s^{\prime}$.

A Partial Order on States

The substate- (or child-) relation induces a partial order on states:

- top $\leq s$, for all $s \in S$,
- $s \leq s^{\prime}$, for all $s^{\prime} \in \operatorname{child}(s)$,
- transitive, reflexive, antisymmetric,
- $s^{\prime} \leq s$ and $s^{\prime \prime} \leq s$ implies $s^{\prime} \leq s^{\prime \prime}$ or $s^{\prime \prime} \leq s^{\prime}$.

- The least common ancestor is the function lea: $2^{S} \backslash\{\emptyset\} \rightarrow S$ such that
- The states in S_{1} are (transitive) children of lea $\left(S_{1}\right)$, ie.

$$
\operatorname{lca}\left(S_{1}\right) \leq s, \text { for all } s \in S_{1} \subseteq S
$$

- lea $\left(S_{1}\right)$ is minimal, i.e. if $\hat{s} \leq s$ for all $s \in S_{1}$, then $\hat{s} \leq l c a\left(S_{1}\right)$
- Note: lea $\left(S_{1}\right)$ exists for all $S_{1} \subseteq S$ (last candidate: top).

Least Common Ancestor and Ting

- Two states $s_{1}, s_{2} \in S$ are called orthogonal, denoted $s_{1} \perp s_{2}$, if and only if
- they are unordered, i.e. $s_{1} \not \leq s_{2}$ and $s_{2} \not \leq s_{1}$, and
- they "live" in different regions of an AND-state, ie.

Least Common Ancestor and Ting

- A set of states $S_{1} \subseteq S$ is called consistent, denoted by $\downarrow S_{1}$, if and only if for each $s, s^{\prime} \in S_{1}$,
- $s \leq s^{\prime}$, or
- $s^{\prime} \leq s$, or
- $s \perp s^{\prime}$.

Legal Transitions

A hiéarchical state-machine $(S$, kind, region, \rightarrow, ψ, annot $)$ is called wellformed if and only if for all transitions $t \in \rightarrow$,
$[$ (i) source and destination are consistent, i.e. $\downarrow \operatorname{source}(t)$ and $\downarrow \operatorname{target}(t)$,]
(ii) source (and destination) states are pairwise orthogonal, i.e.

- forall $s \neq s^{\prime} \in \operatorname{source}(t)(\in \operatorname{target}(t)), s \perp s^{\prime}$,
(iii) the top state is neither source nor destination, i.e.
- top $\notin \operatorname{source}(t) \cup \operatorname{source}(t)$.
- Recall: final states are not sources of transitions.

A hiearchical state-machine (S, kind, region, \rightarrow, ψ, annot) is called wellformed if and only if for all transitions $t \in \rightarrow$,
(i) source and destination are consistent, i.e. $\downarrow \operatorname{source}(t)$ and $\downarrow \operatorname{target}(t)$,
(ii) source (and destination) states are pairwise orthogonal, i.e.

- forall $s \neq s^{\prime} \in \operatorname{source}(t)(\in \operatorname{target}(t)), s \perp s^{\prime}$,
(iii) the top state is neither source nor destination, i.e.
- top $\notin \operatorname{source}(t) \cup \operatorname{source}(t)$.
- Recall: final states are not sources of transitions.

Example:

The Depth of States

- depth $(t o p)=0$,
- $\operatorname{depth}\left(s^{\prime}\right)=\operatorname{depth}(s)+1$, for all $s^{\prime} \in \operatorname{child}(s)$

Example:

Enabledness in Hierarchical State-Machines

- The scope ("set of possibly affected states") of a transition t is the least common region of

$$
\operatorname{source}(t) \cup \operatorname{target}(t) \text {. }
$$

- Two transitions t_{1}, t_{2} are called consistent if and only if their scopes are orthogonal (i.e. states in scopes pairwise orthogonal).
- The priority of transition t is the depth of its innermost source state, i.e.

$$
\operatorname{prio}(t):=\max \{\operatorname{depth}(s) \mid s \in \operatorname{source}(t)\}
$$

- A set of transitions $T \subseteq \longrightarrow$ is enabled in an object u if and only if
- T is consistent,
- T is maximal wrt. priority,
- all transitions in T share the same trigger,
- all guards are satisfied by $\sigma(u)$, and
- for all $t \in T$, the source states are active, i.e.

$$
\operatorname{source}(t) \subseteq \sigma(u)(s t)(\subseteq S)
$$

Transitions in Hierarchical State-Machines

- Let T be a set of transitions enabled in u.
- Then $(\sigma, \varepsilon) \xrightarrow[U]{(c o n s, S n d)}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$ if
- $\sigma^{\prime}(u)(s t)$ consists of the target states of \boldsymbol{Z},

i.e. for simple states the simple states themselves, for composite states the initial states,
- $\sigma^{\prime}, \varepsilon^{\prime}$, (cons,) and $S n d$ are the effect of firing each transition $t \in T$ one by one, in any order, i.e. for each $t \in T$,
- the exit transformer of all affected states, highest depth first,
- the transformer of t,
- the entry transformer of all affected states, lowest depth first.
\rightsquigarrow adjust (2.), (3.), (5.) accordingly.

Entry/Do/Exit Actions, Internal Transitions

Entry/Do/Exit Actions

- In general, with each state $s \in S$ there is associated
- an entry, a do, and an exit action (default: skip)
- a possibly empty set of trigger/action pairs called
 internal transitions,
(default: empty). $E_{1}, \ldots, E_{n} \in \mathscr{E}$, 'entry', 'do', 'exit' are reserved names!
- Recall: each action's supposed to have a transformer. Here: $t_{a c t_{1}^{\text {entry }}}, t_{\text {act }}$ exit,\ldots
- Taking the transition above then amounts to applying

$$
t_{\text {act }}^{\text {entry }} \text { ○ } \circ t_{a c t} \circ t_{\text {act }}^{\text {exit }}
$$

instead of only

$$
t_{a c t}
$$

\rightsquigarrow adjust (2.), (3.) accordingly.

s_{1}	$\operatorname{tr}[g d] / a c t$	
entry/act entry		s_{2}
do/ $a c t_{1}$		entry/act ${ }_{2}^{\text {entry }}$
$E_{1} / \operatorname{act}_{E_{1}}$		do/act ${ }_{2}^{\text {do }}$ exit/ $a c t_{2}^{\text {exit }}$
$E_{n} / a^{\prime \prime} t_{E_{n}}$		

- For internal transitions, taking the one for E_{1}, for instance, still amounts to taking only $t_{a c t_{E_{1}}}$.
- Intuition: The state is neither left nor entered, so: no exit, no entry.
\rightsquigarrow adjust (2.) accordingly.
- Note: internal transitions also start a run-to-completion step.
- Note: the standard seems not to clarify whether internal transitions have priority over regular transitions with the same trigger at the same state. Some code generators assume that internal transitions have priority!

Alternative View: Entry/Exit/Internal as Abbreviations

- ... as abbrevation for .

Alternative View: Entry/Exit/Internal as Abbreviations

- ... as abbrevation for ...
s_{0}
s_{1}
s_{2}
- That is: Entry/Internal/Exit don't add expressive power to Core State Machines. If internal actions should have priority, s_{1} can be embedded into an OR-state (see later).
- Abbreviation may avoid confusion in context of hierarchical states (see later).

Do Actions

- Intuition: after entering a state, start its do-action.
- If the do-action terminates,
- then the state is considered completed,
- otherwise,
- if the state is left before termination, the do-action is stopped.
- Recall the overall UML State Machine philosophy:
"An object is either idle or doing a run-to-completion step."
- Now, what is it exactly while the do action is executing...?

Junction and Choice

- Junction ("static conditional branch"):
- good: abbreviation
- unfolds to so many similar transitions with different guards, the unfolded transitions are then checked for enabledness
- at best, start with trigger, branch into conditions, then apply actions
- Choice: ("dynamic conditional branch")

- evil: may get stuck
- enters the transition without knowing whether there's an enabled path
- at best, use "else" and convince yourself that it cannot get stuck
- maybe even better: avoid

Note: not so sure about naming and symbols, e.g., l'd guessed it was just the other way round...

Entry and Exit Point, Submachine State, Terminate

- Hierarchical states can be "folded" for readability. (but: this can also hinder readability.)
- Can even be taken from a different state-machine for re-use.
- Entry/exit points
\bigcirc, \otimes
- Provide connection points for finer integration into the current level, than just via initial state.
- Semantically a bit tricky:
- First the exit action of the exiting state,
- then the actions of the transition,
- then the entry actions of the entered state,
- then action of the transition from the entry point to an internal state,
- and then that internal state's entry action.
- Terminate Pseudo-State
- When a terminate pseudo-state is reached, the object taking the transition is immediately killed.

References

References

[Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs. classical vs. rhapsody statecharts: not all models are created equal. Software and Systems Modeling, 6(4):415-435.
[Damm et al., 2003] Damm, W., Josko, B., Votintseva, A., and Pnueli, A. (2003). A formal semantics for a UML kernel language 1.2. IST/33522/WP 1.1/D1.1.2-Part1, Version 1.2.
[Fecher and Schönborn, 2007] Fecher, H. and Schönborn, J. (2007). UML 2.0 state machines: Complete formal semantics via core state machines. In Brim, L., Haverkort, B. R., Leucker, M., and van de Pol, J., editors, FMICS/PDMC, volume 4346 of LNCS, pages 244-260. Springer.
[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling with statecharts. IEEE Computer, 30(7):31-42.
[Harel and Kugler, 2004] Harel, D. and Kugler, H. (2004). The rhapsody semantics of statecharts. In Ehrig, H., Damm, W., Große-Rhode, M., Reif, W., Schnieder, E., and Westkämper, E., editors, Integration of Software Specification Techniques for Applications in Engineering, number 3147 in LNCS, pages 325-354. Springer-Verlag.
[OMG, 2007] OMG (2007). Unified modeling language: Superstructure, version 2.1.2. Technical Report formal/07-11-02.

