Software Design, Modelling and Analysis in UML Lecture 16: Hierarchical State Machines II

2013-01-09

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:

- Hierarchical State Machines Syntax
- Initial and Final State

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - What does this State Machine mean? What happens if I inject this event?
 - Can you please model the following behaviour.
 - What does this hierarchical State Machine mean? What may happen if I inject this event?
 - What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, ...

• Content:

- Composite State Semantics
- The Rest

- 16 - 2013-01-09 - main

Composite States (formalisation follows [Damm et al., 2003])

3/44

Composite States

- In a sense, composite states are about abbreviation, structuring, and avoiding redundancy.
- Idea: in Tron, for the Player's Statemachine, instead of

Syntax: Fork/Join

16 - 2013-01-09 - Shierstm -

SPECIAL • For brevity, we always consider transitions with (possibly) multiple CASE. set of hatington state set of surce sources and targets, i.e. ς $\rightarrow (2^S \setminus \emptyset) \times (2^S \setminus \emptyset)$ $\psi: (\rightarrow)$ here: anotation in between • For instance, for4 s_1 s_4 maps to s_2 s_5 tr[gd]/actt'+) ({ss, s_3 s_6 2531 Ě, translates to

$$(S, kind, region, \underbrace{\{t_1\}}_{\rightarrow}, \underbrace{\{t_1 \mapsto (\{s_2, s_3\}, \{s_5, s_6\})\}}_{\psi}, \underbrace{\{t_1 \mapsto (tr, gd, act)\}}_{annot})$$

• Naming convention: $\psi(t) = (\underline{source}(t), \underline{target}(t)).$

7	۰.		
1	1	4	4
	7		

Composite States: Blessing or Curse?

$$t = \{s_0, s_1, s_2\}$$

$$t = \{s_0, s_1, s_2, \dots, s_0\}$$

$$t = \{s_0, s_2\}$$

State Configuration

- The type of st is from now on a set of states, i.e. $st: 2^S$
- A set S₁ ⊆ S is called (legal) state configurations if and only if
 top ∈ S₁, and
 - for each state $s \in S_1$, for each non-empty region $\emptyset \neq R \in region(s)$, exactly one (non pseudo-state) child of s (from R) is in S_1 , i.e.

 $|\{s_0 \in R \mid kind(s_0) \in \{st, fin\}\} \cap S_1| = 1.$

• Examples:

16 - 2013-01-09 - Shierstm -

 $S_{\gamma} = \{s\}$ NOT LEGAL, top missing $S_{7} = \{top, s\}$ NOT LEGAL, missing child of s $S_{3} = \{top, s, s_{1}, s_{3}\}$ NOT LEGAL, too many childre of s $S_{4} = \{top, s, s_{3}\}$ LEBAL

9/44

State Configuration

- The type of st is from now on a set of states, i.e. $st: 2^S$
- A set S₁ ⊆ S is called (legal) state configurations if and only if
 top ∈ S₁, and
 - for each state $s \in S_1$, for each non-empty region $\emptyset \neq R \in region(s)$, exactly one (non pseudo-state) child of s (from R) is in S_1 , i.e.

$$|\{s_0 \in R \mid kind(s_0) \in \{st, fin\}\} \cap S_1| = 1.$$

• Examples:

	 s			
s_1	 s_2		k [s ₃]	}
$\fbox{s'_1}$	$\fbox{s_2'}$	Í	$\boxed{s_3'}$	

 $S_1 = \{ top, s_1, s_2', s_3 \}$ NOT LEGAL, child of top is 445, ring $S_2 = \{ top, s, s_1, s_2 \}$ NOT LEGAL, child of s from R3 $S_3 = \{ top, s_1, s_2, s_3 \}$ The substate- (or child-) relation induces a partial order on states:

- $top \leq s$, for all $s \in S$,
- $s \leq s'$, for all $s' \in child(s)$,
- transitive, reflexive, antisymmetric,
- $s' \leq s$ and $s'' \leq s$ implies $s' \leq s''$ or $s'' \leq s'$.

<u>د'</u> د"	<u>د ب</u>	"ג גע	5' /1
11 11	11	s'	s"
	5	^!	^'

16 - 2013-01-09 - Shierstm -

10/44

A Partial Order on States

The substate- (or child-) relation induces a partial order on states:

- $top \leq s$, for all $s \in S$,
- $s \leq s'$, for all $s' \in child(s)$,
- transitive, reflexive, antisymmetric,
- $s' \leq s$ and $s'' \leq s$ implies $s' \leq s''$ or $s'' \leq s'$.

- 16 - 2013-01-09 - Shierstm -

induced name , classet , nearer , induces to concern parent

- The least common ancestor is the function $lca: 2^S \setminus \{\emptyset\} \to S$ such that
 - The states in S_1 are (transitive) children of $lca(S_1)$, i.e.

$$lca(S_1) \leq s$$
, for all $s \in S_1 \subseteq S_2$

- $lca(S_1)$ is minimal, i.e. if $\hat{s} \leq s$ for all $s \in S_1$, then $\hat{s} \leq lca(S_1)$
- Note: $lca(S_1)$ exists for all $S_1 \subseteq S$ (last candidate: *top*).

11/44

Least Common Ancestor and Ting

- Two states $s_1, s_2 \in S$ are called **orthogonal**, denoted $s_1 \perp s_2$, if and only if
 - they are unordered, i.e. $s_1 \not\leq s_2$ and $s_2 \not\leq s_1$, and
 - they "live" in different regions of an AND-state, i.e.

transitive clasure of child

 $\exists s, region(s) = \{S_1, \dots, S_n\} \exists 1 \le i \ne j \le n : s_1 \in child^*(S_i) \land s_2 \in child^*(S_j),$

Least Common Ancestor and Ting

- A set of states $S_1 \subseteq S$ is called **consistent**, denoted by $\downarrow S_1$, if and only if for each $s, s' \in S_1$, $s \leq s'$, or iff S_1 is makimal consistent

 - $s' \leq s$, or
 - $s \perp s'$.

 s_3''

 s_1''

16 - 2013-01-09 - Shierstm

13/44

Legal Transitions

- A hierarchical state-machine $(S, kind, region, \rightarrow, \psi, annot)$ is called well**formed** if and only if for all transitions $t \in \rightarrow$,
- $\Im[(i)]$ source and destination are consistent, i.e. \downarrow source(t) and \downarrow target(t),
 - (ii) source (and destination) states are pairwise orthogonal, i.e.
 - forall $s \neq s' \in source(t)$ ($\in target(t)$), $s \perp s'$,
 - (iii) the top state is neither source nor destination, i.e.
 - $top \notin source(t) \cup source(t)$.
 - Recall: final states are not sources of transitions.

- 16 - 2013-01-09 - Shierstm

Legal Transitions

A hiearchical state-machine $(S, kind, region, \rightarrow, \psi, annot)$ is called well-formed if and only if for all transitions $t \in \rightarrow$,

- (i) source and destination are consistent, i.e. \downarrow source(t) and \downarrow target(t),
- (ii) source (and destination) states are pairwise orthogonal, i.e.
 forall sts' ∈ source(t) (∈ target(t)), s ⊥ s',
- (iii) the top state is neither source nor destination, i.e.
 - $top \notin source(t) \cup source(t)$.
 - Recall: final states are not sources of transitions.

16 - 2013-01-09 - Shierstm -

The Depth of States

- depth(top) = 0,
- depth(s') = depth(s) + 1, for all $s' \in child(s)$

• The scope ("set of possibly affected states") of a transition t is the least common region of

 $source(t) \cup target(t).$

- Two transitions t_1, t_2 are called **consistent** if and only if their scopes are orthogonal (i.e. states in scopes pairwise orthogonal).
- The priority of transition t is the depth of its innermost source state, i.e.

 $prio(t) := \max\{depth(s) \mid s \in source(t)\}$

- A set of transitions $T \subseteq \rightarrow$ is **enabled** in an object u if and only if
 - T is consistent,

2013-01-09 - Shierstm

- T is maximal wrt. priority,
- all transitions in T share the same trigger,
- all guards are satisfied by $\sigma(u)$, and
- for all $t \in T$, the source states are active, i.e.

$$source(t) \subseteq \sigma(u)(st) \ (\subseteq S)$$

16/44

Transitions in Hierarchical State-Machines

- Let T be a set of transitions enabled in u.
- Then $(\sigma, \varepsilon) \xrightarrow{(cons,Snd)} (\sigma', \varepsilon')$ if
 - $\sigma'(u)(st)$ consists of the target states of T,

i.e. for simple states the simple states themselves, for composite states the initial states,

- σ' , ε' , (cons), and Snd are the effect of firing each transition $t \in T$ one by one, in any order, i.e. for each $t \in T$,
 - the exit transformer of all affected states, highest depth first,
 - the transformer of t,
 - the entry transformer of all affected states, lowest depth first.
- \rightsquigarrow adjust (2.), (3.), (5.) accordingly.

18/44

Entry/Do/Exit Actions

- In general, with each state $s \in S$ there is associated
 - an entry, a do, and an exit action (default: skip)
 - a possibly empty set of trigger/action pairs called internal transitions,

- (default: empty). $E_1, \ldots, E_n \in \mathscr{E}$, 'entry', 'do', 'exit' are reserved names!
- Recall: each action's supposed to have a transformer. Here: $t_{act_1^{\textit{entry}}},\,t_{act_1^{\textit{exit}}},\,\ldots$
- Taking the transition above then amounts to applying

$$t_{act_{s_2}^{entry}} \circ t_{act} \circ t_{act_{s_1}^{exit}}$$

instead of only

- 16 - 2013-01-09 - Sentryexit -

 t_{act}

 \rightsquigarrow adjust (2.), (3.) accordingly.

Internal Transitions

- For internal transitions, taking the one for E_1 , for instance, still amounts to taking only $t_{act_{E_1}}$.
- Intuition: The state is neither left nor entered, so: no exit, no entry.
 - \rightsquigarrow adjust (2.) accordingly.
- Note: internal transitions also start a run-to-completion step.
- Note: the standard seems not to clarify whether internal transitions have **priority** over regular transitions with the same trigger at the same state.

Some code generators assume that internal transitions have priority!

20/44

Alternative View: Entry/Exit/Internal as Abbreviations

- 16 - 2013-01-09 - Sentryexit -

Alternative View: Entry/Exit/Internal as Abbreviations

Do Actions

- Intuition: after entering a state, start its do-action.
- If the do-action terminates,
 - then the state is considered completed,
- otherwise,
 - if the state is left before termination, the do-action is stopped.
- Recall the overall UML State Machine philosophy:

"An object is either idle or doing a run-to-completion step."

• Now, what is it exactly while the do action is executing...?

23/44

History and Deep History: By Example

What happens on...

- R_s? So, S2
- R_d ? s_0,s_2
- A, B, C, S, R_s? s₀, s₁, s₂, s₃, susp. s₃
- A, B, S, R_d? so, s1, s2, s3, susp, s
- A, B, C, D, E, R_s?
- A, B, C, D, R_d?

Junction and Choice

- Junction ("static conditional branch"):
 - good: abbreviation
 - [gdz]/act • unfolds to so many similar transitions with different guards, the unfolded transitions are then checked for enabledness
 - at best, start with trigger, branch into conditions, then apply actions
- Choice: ("dynamic conditional branch")

ladıl actı

- evil: may get stuck
- enters the transition without knowing whether there's an enabled path
- at best, use "else" and convince yourself that it cannot get stuck
- maybe even better: avoid

Note: not so sure about naming and symbols, e.g., I'd guessed it was just the other way round...

25/44

Entry and Exit Point, Submachine State, Terminate

- Hierarchical states can be "folded" for readability. (but: this can also hinder readability.)
- Can even be taken from a different state-machine for re-use.

• Entry/exit points

- Provide connection points for finer integration into the current level, than just via initial state.
- Semantically a bit tricky:
 - First the exit action of the exiting state,
 - then the actions of the transition,
 - then the entry actions of the entered state,
 - then action of the transition from the entry point to an internal state,
 - and then that internal state's entry action.

• Terminate Pseudo-State

• When a terminate pseudo-state is reached, the object taking the transition is immediately killed. \bigcirc $^{\prime}$

S:s

Х

2013-01-09 - Shist

26/44

References

43/44

References

- [Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs. classical vs. rhapsody statecharts: not all models are created equal. *Software and Systems Modeling*, 6(4):415–435.
- [Damm et al., 2003] Damm, W., Josko, B., Votintseva, A., and Pnueli, A. (2003). A formal semantics for a UML kernel language 1.2. IST/33522/WP 1.1/D1.1.2-Part1, Version 1.2.
- [Fecher and Schönborn, 2007] Fecher, H. and Schönborn, J. (2007). UML 2.0 state machines: Complete formal semantics via core state machines. In Brim, L., Haverkort, B. R., Leucker, M., and van de Pol, J., editors, *FMICS/PDMC*, volume 4346 of *LNCS*, pages 244–260. Springer.
- [Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling with statecharts. *IEEE Computer*, 30(7):31–42.
- [Harel and Kugler, 2004] Harel, D. and Kugler, H. (2004). The rhapsody semantics of statecharts. In Ehrig, H., Damm, W., Große-Rhode, M., Reif, W., Schnieder, E., and Westkämper, E., editors, *Integration of Software Specification Techniques for Applications in Engineering*, number 3147 in LNCS, pages 325–354. Springer-Verlag.
- [OMG, 2007] OMG (2007). Unified modeling language: Superstructure, version 2.1.2. Technical Report formal/07-11-02.

44/44