Software Design, Modelling and Analysis in UML

Lecture 18: Live Sequence Charts II

2013-01-22

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents \& Goals

Last Lecture:

- LSC concrete syntax.
- LSC intuitive semantics.

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
- What does this LSC mean?
- Are this UML model's state machines consistent with the interactions?
- Please provide a UML model which is consistent with this LSC.
- What is: activation, hot/cold condition, pre-chart, etc.?
- Content:
- Symbolic Büchi Automata (TBA) and its (accepted) language.
- Words of a model.
- LSC abstract syntax.
- LSC formal semantics.

Excursus: Symbolic Büchi Automata (over Signature)

Definition. A Symbolic Büchi Automaton (TBA) is a tuple

$$
\mathcal{B}=\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{i n i}, \rightarrow, Q_{F}\right)
$$

where

- X is a set of logical variables,
- $\operatorname{Expr}_{\mathcal{B}}(X)$ is a set of Boolean expressions over X,
- Q is a finite set of states,
- $q_{\text {in }} \in Q$ is the initial state,
- $\rightarrow \subseteq Q \times \operatorname{Expr}_{\mathcal{B}}(X) \times Q$ is the transition relation. Transitions $\left(q, \psi, q^{\prime}\right)$ from q to q^{\prime} are labelled with an expression $\psi \in \operatorname{Expr}_{\mathcal{B}}(X)$.
- $Q_{F} \subseteq Q$ is the set of fair (or accepting) states.

$$
\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{i n i}, \rightarrow, Q_{F}\right),\left(q, \psi, q^{\prime}\right) \in \rightarrow
$$

$$
Q=\left\{q_{1}, q_{2}, \ldots, q_{7}\right\}
$$

$$
q_{m i}=q_{1}
$$

$$
Q_{\bar{F}}=\{q z\}
$$

$$
x=\{x, y\}
$$

$$
\left|f\left(z_{2}, z_{2}\right)\right| \text { expel } \mid
$$

$$
\rightarrow=\left\{\left(q_{2}, 7 b(x, y), \varepsilon_{2}\right), \ldots\right\}
$$

$$
241 \psi_{1} \wedge \psi_{2}, z_{1}, 2, \in X
$$

Word

Definition. Let X be a set of logical variables and let $\operatorname{Expr}_{\mathcal{B}}(X)$ be a set of Boolean expressions over X.

A set $(\Sigma, \cdot \models . \cdot)$ is called an alphabet for $\operatorname{Expr}_{\mathcal{B}}(X)$ if and only if

- for each $\sigma \in \Sigma$,
- for each expression expr $\in \operatorname{Expr}_{\mathcal{B}}$, and
- for each valuation $\beta: X \rightarrow \mathscr{D}(X)$ of logical variables to domain $\mathscr{D}(X)$,
either $\sigma \models_{\beta}$ expr or $\sigma \not \models_{\beta}$ expr.
An infinite sequence

$$
w=\left(\sigma_{i}\right)_{i \in \mathbb{N}_{0}} \in \Sigma^{\omega}
$$

$\operatorname{over}(\Sigma, \cdot \models . \cdot)$ is called word for $\operatorname{Expr}_{\mathcal{B}}(X)$.

Word Example

Run of TBA over Word

Definition. Let $\mathcal{B}=\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)$ be a TBA and
a word for $\operatorname{Expr}_{\mathcal{B}}(X)$.

An infinite sequence

$$
\varrho=q_{0}^{\stackrel{\text { ® }}{\circ}}, q_{1}, q_{2}, \ldots \in Q^{\omega}
$$

is called run of \mathcal{B} over w under valuation $\beta: X \rightarrow \mathscr{D}(X)$ if and only if

- $q_{0}=q_{i n i}$,
- for each $i \in \mathbb{N}_{0}$ there is a transition $\left(q_{i}, \psi_{i}, q_{i+1}\right) \in \rightarrow$ of \mathcal{B} such that $\sigma_{i} \models_{\beta} \psi_{i}$.

see Slide $5 a$

The Language of a TBA

Definition.

We say \mathcal{B} accepts word w (under β) if and only if \mathcal{B} has a run

$$
\varrho=\left(q_{i}\right)_{i \in \mathbb{N}_{0}}
$$

over w such that fair (or accepting) states are visited infinitely often by ϱ, i.e., such that

$$
\forall i \in \mathbb{N}_{0} \exists j>i: q_{j} \in Q_{F}
$$

We call the set $\mathcal{L}_{\beta}(\mathcal{B}) \subseteq \Sigma^{\omega}$ of words for $\operatorname{Expr}_{\mathcal{B}}(X)$ that are accepted by \mathcal{B} the language of \mathcal{B}.

Course Map

Back to Main Track: Language of a Model

Definition. Let $\mathscr{S}=(\mathscr{T}, \mathscr{C}, V, a t r, \mathscr{E})$ be a signature and \mathscr{D} a structure of \mathscr{S}. A word over \mathscr{S} and \mathscr{D} is an infinite sequence

$$
\begin{aligned}
& \left(\sigma_{i}, \text { cons }_{i}, \text { Snd }_{i}\right)_{i \in \mathbb{N}_{0}} \\
& \in(\Sigma_{\mathscr{S}}^{\mathscr{S}} \times \underbrace{2^{\mathscr{D}(\mathscr{C}) \times \operatorname{Evs}(\mathscr{E}, \mathscr{D}) \times \mathscr{D}(\mathscr{C})} \times 2^{\mathscr{D}(\mathscr{C}) \times \operatorname{Evs}(\mathscr{E}, \mathscr{D}) \times \mathscr{D}(\mathscr{C})}}_{\sim})^{\omega^{\boldsymbol{C}}} .
\end{aligned}
$$

The Language of a Model

Recall: A UML model $\mathcal{M}=(\mathscr{C} \mathscr{D}, \mathscr{S} \mathscr{M}, \mathscr{O} \mathscr{D})$ and a structure \mathscr{D} denotes a set $\llbracket \mathcal{M} \rrbracket$ of (initial and consecutive) computations of the form

$$
\left(\sigma_{0}, \varepsilon_{0}\right) \xrightarrow{a_{0}}\left(\sigma_{1}, \varepsilon_{1}\right) \xrightarrow{a_{1}}\left(\sigma_{2}, \varepsilon_{2}\right) \xrightarrow{a_{2}} \ldots \text { where }
$$

For the connectiondiden models and interactions, we disregard the configuration of the ether and who made the step, and define as follows:

Definition. Let $\mathcal{M}=(\mathscr{C} \mathscr{D}, \mathscr{S} \mathscr{M}, \mathscr{O} \mathscr{D})$ be a UML model and \mathscr{D} a structure. Then
is the language of \mathcal{M}.

Example: The Language of a Model

$$
\begin{aligned}
\mathcal{L}(\mathcal{M}):= & \left\{\left(\sigma_{i}, \text { cons }_{i}, \text { Snd }_{i}\right)_{i \in \mathbb{N}_{0}} \in\left(\Sigma_{\mathscr{S}}^{\mathscr{S}} \times \tilde{A}\right)^{\omega} \mid\right. \\
& \left.\exists\left(\varepsilon_{i}, u_{i}\right)_{i \in \mathbb{N}_{0}}:\left(\sigma_{0}, \varepsilon_{0}\right) \xrightarrow[u_{0}]{\left(\text { cons }_{0}, S n d_{0}\right)}\left(\sigma_{1}, \varepsilon_{1}\right) \cdots \in \llbracket \mathcal{M} \rrbracket\right\}
\end{aligned}
$$

$$
C \underbrace{S M_{L}}_{\text {S }}
$$

$$
\begin{aligned}
& \mathcal{L}(\mathcal{M}):=\{(\underbrace{\sigma_{i}} \underbrace{\text { cons }_{i}}, \underbrace{\left.S n d_{i}\right)_{i \in \mathbb{N}_{0}} \in\left(\Sigma^{\mathscr{D}} \times \tilde{A}\right)^{\omega} \mid} \\
& \left.\exists\left(\varepsilon_{i}, u_{i}\right)_{i \in \mathbb{N}_{0}}:\left(\sigma_{0}, \underline{\varepsilon_{0}}\right) \xrightarrow[\underline{u_{0}}]{\left(\text { cons }_{0}, \text { end }_{0}\right)}\left(\sigma_{1}, \underline{\varepsilon_{1}}\right) \cdots \in \llbracket \mathcal{M} \rrbracket\right\}
\end{aligned}
$$

- Let $\mathscr{S}=(\mathscr{T}, \mathscr{C}, V, a t r, \mathscr{E})$ be a signature and X a set of logical variables,
- The signal and attribute expressions $\operatorname{Expr}_{\mathscr{S}}(\mathscr{E}, X)$ are defined by the grammar:

$$
\psi::=\text { true }|\operatorname{expr}| E_{x, y}^{!}\left|E_{x, y}^{\mathbf{2}}\right| \neg \psi \mid \psi_{1} \vee \psi_{2}
$$

where expr : Sol $\in \operatorname{Expr}_{\mathscr{S}}, E \in \mathscr{E}, x, y \in X$.

Satisfaction of Signal and Attribute Expressions

- Let $(\sigma$, cons, $S n d) \in \Sigma_{\mathscr{S}}^{\mathscr{D}} \times \tilde{A}$ be a triple consisting of system state, consume set, and send set.
- Let $\beta: X \rightarrow \underbrace{\mathscr{D}(\mathscr{C})}$ be a valuation of the logical variables.

Then
\widetilde{Q} object identies

- $(\sigma$, cons, Std $) \models_{\beta}$ true
- $(\sigma$, cons, Sid $) \models_{\beta} \neg \psi$ if and only if not $(\sigma$, cons, Snd $) \models_{\beta} \psi$
- $(\sigma$, cons, Snd $) \models_{\beta} \psi_{1} \vee \psi_{2}$ if and only if

$$
(\sigma, \text { cons, Sid }) \models_{\beta} \psi_{1} \text { or }(\sigma, \text { cons, Snd }) \models_{\beta} \psi_{2}
$$

- $(\sigma$, cons, Sn $) \models_{\beta}$ exp if and only if $I \llbracket$ exp $\rrbracket(\sigma, \beta)=1$. for simplicity,
- $(\sigma$, cons, Sid $) \models_{\beta} E_{x, y}^{!}$if and only if $\exists \vec{d} \bullet(\beta(x),(E, \vec{d}), \beta(y)) \in$ Sud pond
- $(\sigma$, cons, Snd $) \models_{\beta} E_{x, y}^{?}$ if and only if $\exists \vec{d} \bullet(\beta(x),(E, \vec{d}), \beta(y)) \in$ cons

Satisfaction of Signal and Attribute Expressions

- Let $(\sigma$, cons,$S n d) \in \Sigma_{\mathscr{S}}^{\mathscr{D}} \times \tilde{A}$ be a triple consisting of system state, consume set, and send set.
- Let $\beta: X \rightarrow \mathscr{D}(\mathscr{C})$ be a valuation of the logical variables.

Then

- $(\sigma$, cons,$S n d) \models_{\beta}$ true
- $(\sigma$, cons, Snd $) \models_{\beta} \neg \psi$ if and only if not (σ, cons, Snd) $\models_{\beta} \psi$

- $(\sigma$, cons, Snd $) \models_{\beta} \psi_{1} \vee \psi_{2}$ if and only if

$$
(\sigma, \text { cons }, \text { Snd }) \models_{\beta} \psi_{1} \text { or }(\sigma, \text { cons, Snd }) \models_{\beta} \psi_{2}
$$

- $(\sigma$, cons,$S n d) \models_{\beta} \operatorname{expr}$ if and only if $I \llbracket \operatorname{expr} \rrbracket(\sigma, \beta)=1$
- $(\sigma$, cons, Snd $) \models_{\beta} E_{x, y}^{!}$if and only if $\exists \vec{d} \bullet(\beta(x),(E, \vec{d}), \beta(y)) \in S n d$
- $(\sigma$, cons, Snd $) \models_{\beta} E_{\dot{x}, y}^{?}$ if and only if $\exists \vec{d} \bullet(\beta(x),(E, \vec{d}), \beta(y)) \in$ cons

Observation: semantics of models keeps track of sender and receiver at sending and consumption time. We disregard the event identity.
Alternative: keep track of event identities.

TBA over Signature

Definition. A TBA

$$
\mathcal{B}=(\underbrace{\operatorname{Expr}} r_{\mathcal{B}}(X), X, Q, q_{\text {ini }}, \rightarrow, Q_{F})
$$

where $\operatorname{Expr}_{\mathcal{B}}(X)$ is the set of signal and attribute expressions $\operatorname{Expr}_{\mathscr{S}}(\mathscr{E}, X)$ over signature \mathscr{S} is called TBA over \mathscr{S}.

- Any word over \mathscr{S} and \mathscr{D} is then a word for \mathcal{B}.
(By the satisfaction relation defined on the previous slide; $\mathscr{D}(X)=\mathscr{D}(\mathscr{C})$.)
- Thus a TBA over \mathscr{S} accepts words of models with signature \mathscr{S}.
(By the previous definition of TBA.)

Course Map

Live Sequence Charts Abstract Syntax

Example

LSC Body: Abstract Syntax Let $\Theta=\{$ hot, cold $\}$. An LSC body is a tuple | $1-1$ |
| :---: |
| $v=0$ |

$(I,(\mathscr{L}, \preceq), \sim, \mathscr{S}, M s g$, Cond, Loclnv $)$

LSC Body: Abstract Syntax

Let $\Theta=\{$ hot, cold $\}$. An LSC body is a tuple $\begin{gathered}1-0 \\ v=0\end{gathered}$

$$
(I,(\mathscr{L}, \preceq), \sim, \mathscr{S}, \text { Msg, Cond, Loclnv })
$$

- I is a finite set of instance lines,
- (\mathscr{L}, \preceq) is a finite, non-empty,
 partially ordered set of locations; each $l \in \mathscr{L}$ is associated with a temperature $\theta(l) \in \Theta$ and an instance line $i_{l} \in I$,

LSC Body: Abstract Syntax

Let $\Theta=\{$ hot, cold $\}$. An LSC body is a tuple

$$
(I,(\mathscr{L}, \preceq), \sim, \mathscr{S}, \text { Msg, Cond, Loclnv })
$$

- I is a finite set of instance lines,
- (\mathscr{L}, \preceq) is a finite, non-empty,
 partially ordered set of locations each $l \in \mathscr{L}$ is associated with a temperature $\theta(l) \in \Theta$ and an instance line $i_{l} \in I$,
- $\sim \subseteq \mathscr{L} \times \mathscr{L}$ is an equivalence relation on locations, the simultaneity relation,

LSC Body: Abstract Syntax

Let $\Theta=\{$ hot, cold $\}$. An LSC body is a tuple $\begin{gathered} \\ v=0\end{gathered}$

$$
(I,(\mathscr{L}, \preceq), \sim, \mathscr{S}, \text { Msg, Cond, Loclnv })
$$

- I is a finite set of instance lines,
- (\mathscr{L}, \preceq) is a finite, non-empty,
 partially ordered set of locations; each $l \in \mathscr{L}$ is associated with a temperature $\theta(l) \in \Theta$ and an instance line $i_{l} \in I$,
- $\sim \subseteq \mathscr{L} \times \mathscr{L}$ is an equivalence relation on locations, the simultaneity relation,
- $\mathscr{S}=(\mathscr{T}, \mathscr{C}, V, a t r, \mathscr{E})$ is a signature,

LSC Body: Abstract Syntax

Let $\Theta=\{$ hot, cold $\}$. An LSC body is a tuple $\begin{gathered}x=0 \\ v=1\end{gathered}$

$$
(I,(\mathscr{L}, \preceq), \sim, \mathscr{S}, \mathrm{Msg}, \text { Cond, Loclnv })
$$

- I is a finite set of instance lines,
- (\mathscr{L}, \preceq) is a finite, non-empty,
 partially ordered set of locations; each $l \in \mathscr{L}$ is associated with a temperature $\theta(l) \in \Theta$ and an instance line $i_{l} \in I$,
- $\sim \subseteq \mathscr{L} \times \mathscr{L}$ is an equivalence relation on locations, the simultaneity relation,
- $\mathscr{S}=(\mathscr{T}, \mathscr{C}, V, a t r, \mathscr{E})$ is a signature,
- Msg $\subseteq \mathscr{L} \times \mathscr{E} \times \mathscr{L}$ is a set of asynchronous messages with $\left(l, b, l^{\prime}\right) \in$ Msg only if $l \preceq l^{\prime}$, Not: instantaneous messages could be linked to method/operation calls.

LSC Body: Abstract Syntax

Let $\Theta=\{$ hot, cold $\}$. An LSC body is a tuple $\begin{gathered} \\ v=0\end{gathered}$

$$
(I,(\mathscr{L}, \preceq), \sim, \mathscr{S}, \text { Msg, Cond, Loclnv })
$$

- I is a finite set of instance lines
- (\mathscr{L}, \preceq) is a finite, non-empty,
 partially ordered set of locations; each $l \in \mathscr{L}$ is associated with a temperature $\theta(l) \in \Theta$ and an instance line $i_{l} \in I$,
- $\sim \subseteq \mathscr{L} \times \mathscr{L}$ is an equivalence relation on locations, the simultaneity relation,
- $\mathscr{S}=(\mathscr{T}, \mathscr{C}, V$, atr, $\mathscr{E})$ is a signature,
- Msg $\subseteq \mathscr{L} \times \mathscr{E} \times \mathscr{L}$ is a set of asynchronous messages with $\left(l, b, l^{\prime}\right) \in$ Msg only if $l \preceq l^{\prime}$, Not: instantaneous messages could be linked to method/operation calls.
- Cond $\subseteq\left(2^{\mathscr{L}} \backslash \emptyset\right) \times \operatorname{Expr}_{\mathscr{S}} \times \Theta$ is a set of conditions where $E x p r_{\mathscr{S}}$ are OCL expressions over $W=I \cup\{$ self $\}$ with $(L, \operatorname{expr}, \theta) \in$ Cond only if $l \sim l^{\prime}$ for all $l, l^{\prime} \in L$,

LSC Body: Abstract Syntax

Let $\Theta=\{$ hot, cold $\}$. An LSC body is a tuple

$$
(I,(\mathscr{L}, \preceq), \sim, \mathscr{S}, \text { Msg, Cond, Loclnv })
$$

- I is a finite set of instance lines,

- (\mathscr{L}, \preceq) is a finite, non-empty, partially ordered set of locations each $l \in \mathscr{L}$ is associated with a temperature $\theta(l) \in \Theta$ and an instance line $i_{l} \in I$,
- $\sim \subseteq \mathscr{L} \times \mathscr{L}$ is an equivalence relation on locations, the simultaneity relation,
- $\mathscr{S}=(\mathscr{T}, \mathscr{C}, V, a t r, \mathscr{E})$ is a signature,
- $\mathrm{Msg} \subseteq \mathscr{L} \times \mathscr{E} \times \mathscr{L}$ is a set of asynchronous messages with $\left(l, b, l^{\prime}\right) \in \mathrm{Msg}$ only if $l \preceq l^{\prime}$,
Not: instantaneous messages could be linked to method/operation calls.
- Cond $\subseteq\left(2^{\mathscr{L}} \backslash \emptyset\right) \times \operatorname{Expr}_{\mathscr{S}} \times \Theta$ is a set of conditions where $E x p r_{\mathscr{S}}$ are OCL expressions over $W=I \cup\{$ self $\}$ with $(L, \operatorname{expr}, \theta) \in$ Cond only if $l \sim l^{\prime}$ for all $l, l^{\prime} \in L$,
- Loclnv $\subseteq \mathscr{L} \times\{0, \bullet\} \times$ Expr $_{\mathscr{S}} \times \Theta \times \mathscr{L} \times\{0, \bullet\}$ is a set of local invariants,

Well-Formedness

Bondedness/no floating conditions: (could be relaxed a little if we wanted to)

- For each location $l \in \mathscr{L}$, if l is the location of
- a condition, i.e.

$$
\exists(L, \operatorname{expr}, \theta) \in \text { Cond }: l \in L, \text { or }
$$

- a local invariant, i.e.

$$
\exists\left(l_{1}, i_{1}, \text { expr }, \theta, l_{2}, i_{2}\right) \in \text { Loclnv }: l \in\left\{l_{1}, l_{2}\right\} \text {, or }
$$

then there is a location l^{\prime} equivalent to l, i.e. $l \sim l^{\prime}$, which is the location of

- an instance head, i.e. l^{\prime} is minimal wrt. \preceq, or
- a message, i.e.

$$
\exists\left(l_{1}, b, l_{2}\right) \in \operatorname{Msg}: l \in\left\{l_{1}, l_{2}\right\} .
$$

Note: if messages in a chart are cyclic, then there doesn't exist a partial order (so such charts don't even have an abstract syntax).

Course Map

Live Sequence Charts Semantics

Plan:

- Given an LSC L with body

$$
(I,(\mathscr{L}, \preceq), \sim, \mathscr{S}, \mathrm{Msg}, \text { Cond, Loclnv }),
$$

- construct a TBA \mathcal{B}_{L}, and
- define $\mathcal{L}(L)$ in terms of $\mathcal{L}\left(\mathcal{B}_{L}\right)$, in particular taking activation condition and activation mode into account.
- Then $\mathcal{M} \models L$ (universal) if and only if $\mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(L)$.

Recall: Intuitive Semantics

(i) Strictly After:

(ii) Simultaneously: (simultaneous region)

(iii) Explicitly Unordered: (co-region)

Examples: Semantics?

Definition.

Let $(I,(\mathscr{L}, \preceq), \sim, \mathscr{S}, \mathrm{Msg}$, Cond, Loclnv) be an LSC body.
A non-empty set $\emptyset \neq C \subseteq \mathscr{L}$ is called a cut of the LSC body iff

- it is downward closed, i.e.

$$
\forall l, l^{\prime}: l^{\prime} \in C \wedge l \preceq l^{\prime} \Longrightarrow l \in C,
$$

- it is closed under simultaneity, i.e.

$$
\forall l, l^{\prime}: l^{\prime} \in C \wedge l \sim l^{\prime} \Longrightarrow l \in C, \text { and }
$$

- it comprises at least one location per instance line, i.e.

$$
\forall i \in I \exists l \in C: i_{l}=i .
$$

Formal LSC Semantics: It's in the Cuts!

Definition.

Let $(I,(\mathscr{L}, \preceq), \sim, \mathscr{S}, \mathrm{Msg}$, Cond, Loclnv) be an LSC body.
A non-empty set $\emptyset \neq C \subseteq \mathscr{L}$ is called a cut of the LSC body iff

- it is downward closed, i.e.

$$
\forall l, l^{\prime}: l^{\prime} \in C \wedge l \preceq l^{\prime} \Longrightarrow l \in C \text {, }
$$

- it is closed under simultaneity, i.e.

$$
\forall l, l^{\prime}: l^{\prime} \in C \wedge l \sim l^{\prime} \Longrightarrow l \in C, \text { and }
$$

- it comprises at least one location per instance line, i.e.

$$
\forall i \in I \exists l \in C: i_{l}=i
$$

A cut C is called hot, denoted by $\theta(C)=$ hot, if and only if at least one of its maximal elements is hot, i.e. if

$$
\exists l \in C: \theta(l)=\operatorname{hot} \wedge \nexists l^{\prime} \in C: l \prec l^{\prime}
$$

Otherwise, C is called cold, denoted by $\theta(C)=$ cold.

```
(i) non-empty set }\emptyset\not=C\subseteq\mathscr{L}\mathrm{ ,
(ii) downward closed, i.e.
    \foralll,\mp@subsup{l}{}{\prime}:\mp@subsup{l}{}{\prime}\inC\wedgel\preceq\mp@subsup{l}{}{\prime}\Longrightarrowl\inC
(iii) closed under simultaneity, i.e.
    \foralll,\mp@subsup{l}{}{\prime}:\mp@subsup{l}{}{\prime}\inC\wedgel~\mp@subsup{l}{}{\prime}\Longrightarrowl\inC
(iv) at least one location per instance line, i.e.
        \foralli\inI\existsl\inC:i}\mp@subsup{i}{l}{}=i
    - C0}=
    - C}={\mp@subsup{l}{1,0}{},\mp@subsup{l}{2,0}{},\mp@subsup{l}{3,0}{}
    - C}\mp@subsup{C}{2}{}={\mp@subsup{l}{1,1}{},\mp@subsup{l}{2,1}{},\mp@subsup{l}{3,0}{}
    - C}\mp@subsup{C}{3}{}={\mp@subsup{l}{1,0}{},\mp@subsup{l}{1,1}{}
    - C}\mp@subsup{C}{4}{}={\mp@subsup{l}{1,0}{},\mp@subsup{l}{1,1}{,},\mp@subsup{l}{2,0}{},\mp@subsup{l}{3,0}{}
    - C}\mp@subsup{C}{5}{}={\mp@subsup{l}{1,0}{},\mp@subsup{l}{1,1}{},\mp@subsup{l}{2,0}{},\mp@subsup{l}{2,1}{},\mp@subsup{l}{3,0}{}
    - C}\mp@subsup{C}{6}{}=\mathscr{L}\{\mp@subsup{l}{1,3}{},\mp@subsup{l}{2,3}{}
    - }\mp@subsup{C}{7}{}=\mathscr{L
```


A Successor Relation on Cuts

The partial order of (\mathscr{L}, \preceq) and the simultaneity relation " \sim " induce a direct successor relation on cuts of \mathscr{L} as follows:

Definition. Let $C, C^{\prime} \subseteq \mathscr{L}$ bet cuts of an LSC body with locations (\mathscr{L}, \preceq) and messages Msg.
C^{\prime} is called direct successor of C via fired-set F, denoted by $C \rightsquigarrow_{F} C^{\prime}$, if and only if

- $F \neq \emptyset$,
- $C^{\prime} \backslash C=F$,
- for each message reception in F, the corresponding sending is already in C,

$$
\forall\left(l, E, l^{\prime}\right) \in \operatorname{Msg}: l^{\prime} \in F \Longrightarrow l \in C, \text { and }
$$

- locations in F, that lie on the same instance line, are pairwise unordered, i.e.

$$
\forall l, l^{\prime} \in F: l \neq l^{\prime} \wedge i_{l}=i_{l^{\prime}} \Longrightarrow l \npreceq l^{\prime} \wedge l^{\prime} \npreceq l
$$

$$
\begin{aligned}
& C \rightsquigarrow_{F} C^{\prime} \text { if and only if } \\
& \bullet F \neq \emptyset, \\
& \quad-C^{\prime} \backslash C=F, \\
& \text { - } \forall\left(l, E, l^{\prime}\right) \in \mathrm{Msg}: l^{\prime} \in F \Longrightarrow l \in C \text {, and } \\
& \quad-\forall l, l^{\prime} \in F: l \neq l^{\prime} \wedge i_{l}=i_{l^{\prime}} \Longrightarrow l \npreceq l^{\prime} \wedge l^{\prime} \npreceq l
\end{aligned}
$$

- Note: F is closed under simultaneity.
- Note: locations in F are direct \preceq-successors of locations in C, i.e.

$$
\forall l^{\prime} \in F \exists l \in C: l \prec l^{\prime} \wedge \nexists l^{\prime \prime} \in C: l^{\prime} \prec l^{\prime \prime} \prec l
$$

Successor Cut Examples

(i) $F \neq \emptyset, \quad$ (ii) $C^{\prime} \backslash C=F$,
(iii) $\forall\left(l, E, l^{\prime}\right) \in \mathrm{Msg}: l^{\prime} \in F \Longrightarrow l \in C$, and
(iv) $\forall l, l^{\prime} \in F: l \neq l^{\prime} \wedge i_{l}=i_{l^{\prime}} \Longrightarrow l \npreceq l^{\prime} \wedge l^{\prime} \npreceq l$

- Let $w=\left(\sigma_{0}\right.$, cons $\left._{0}, S n d_{0}\right),\left(\sigma_{1}\right.$, cons $\left._{1}, S n d_{1}\right),\left(\sigma_{2}\right.$, cons $\left._{2}, S n d_{2}\right), \ldots$ be a word of a UML model and β a valuation of $I \cup\{$ self $\}$.
- Intuitively (and for now disregarding cold conditions),
an LSC body $(I,(\mathscr{L}, \preceq), \sim, \mathscr{S}$, Msg, Cond, Loclnv)
is supposed to accept w if and only if there exists a sequence

$$
C_{0} \rightsquigarrow_{F_{1}} C_{1} \rightsquigarrow_{F_{2}} C_{2} \cdots \rightsquigarrow_{F_{n}} C_{n}
$$

and indices $0=i_{0}<i_{1}<\cdots<i_{n}$ such that for all $0 \leq j<n$,

- for all $i_{j} \leq k<i_{j+1},\left(\sigma_{k}\right.$, cons $\left._{k}, \operatorname{Snd}_{k}\right), \beta$ satisfies the hold condition of C_{j},
- $\left(\sigma_{i_{j}}\right.$, cons $\left._{i_{j}}, \operatorname{Snd}_{i_{j}}\right), \beta$
satisfies the transition condition of F_{j},
- C_{n} is cold,
- for all $i_{n}<k,\left(\sigma_{k}\right.$, cons $\left._{i_{j}}, \operatorname{Snd}_{i_{j}}\right), \beta$ satisfies the hold condition of C_{n}.

Language of LSC Body

The language of the body

$$
(I,(\mathscr{L}, \preceq), \sim, \mathscr{S}, \mathrm{Msg}, \text { Cond, Loclnv })
$$

of LSC L is the language of the TBA

$$
\mathcal{B}_{L}=\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{i n i}, \rightarrow, Q_{F}\right)
$$

with

- $\operatorname{Expr}_{\mathcal{B}}(X)=\operatorname{Expr}_{\mathscr{S}}(\mathscr{S}, X)$
- Q is the set of cuts of $(\mathscr{L}, \preceq), q_{\text {ini }}$ is the instance heads cut,
- $F=\{C \in Q \mid \theta(C)=$ cold $\}$ is the set of cold cuts of (\mathscr{L}, \preceq),
- \rightarrow as defined in the following, consisting of
- loops (q, ψ, q),
- progress transitions $\left(q, \psi, q^{\prime}\right)$ corresponding to $q \rightsquigarrow_{F} q^{\prime}$, and
- legal exits (q, ψ, \mathscr{L}).
$\mathcal{B}_{L}=\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)$ with
- $\operatorname{Expr}_{\mathcal{B}}(X)=\operatorname{Expr}_{\mathscr{S}}(\mathscr{S}, X)$
- Q is the set of cuts of $(\mathscr{L}, \preceq), q_{i n i}$ is the instance heads cut,
- $F=\{C \in Q \mid \theta(C)=$ cold $\}$ is the set of cold cuts,
- \rightarrow consists of
- loops (q, ψ, q),
- progress transitions $\left(q, \psi, q^{\prime}\right)$ corresponding to $q \rightsquigarrow_{F} q^{\prime}$, and
- legal exits (q, ψ, \mathscr{L}).

Step I: Only Messages

- Message-expressions of a location:

$$
\begin{gathered}
\mathscr{E}(l):=\left\{E_{i_{l}, i_{l^{\prime}}}^{!} \mid\left(l, E, l^{\prime}\right) \in \operatorname{Msg}\right\} \cup\left\{E_{i_{l^{\prime}}, i_{l}}^{?} \mid\left(l^{\prime}, E, l\right) \in \mathrm{Msg}\right\}, \\
\mathscr{E}\left(\left\{l_{1}, \ldots, l_{n}\right\}\right):=\mathscr{E}\left(l_{1}\right) \cup \cdots \cup \mathscr{E}\left(l_{n}\right) \\
\bigvee \emptyset:=\text { true } \bigvee\left\{E_{1}^{!}!{ }_{i_{11}, i_{12}}, \ldots F_{k} ?_{i_{k 1}, i_{k 2}}, \ldots\right\}:=\bigvee_{1 \leq j<k} E_{j_{i_{j 1}, i_{j 2}}}^{!} \vee \bigvee_{k \leq j} F_{j}^{?} ?
\end{gathered}
$$

- How long may we legally stay at a cut q ?

- How long may we legally stay at a cut q ?
- Intuition: those $\left(\sigma_{i}\right.$, cons $\left._{i}, S n d_{i}\right)$ are allowed to fire the self-loop (q, ψ, q) where
- cons $_{i} \cup$ Snd $_{i}$ comprises only irrelevant messages:
- weak mode: no message from a direct successor cut is in,
- strict mode:
 no message occurring in the LSC is in,

And nothing else.

- How long may we legally stay at a cut q ?
- Intuition: those $\left(\sigma_{i}\right.$, cons $\left._{i}, S n d_{i}\right)$ are allowed to fire the self-loop (q, ψ, q) where
- cons $_{i} \cup S n d_{i}$ comprises only irrelevant messages:
- weak mode: no message from a direct successor cut is in,
- strict mode:
 no message occurring in the LSC is in,

And nothing else.

- Formally: Let $F:=F_{1} \cup \cdots \cup F_{n}$ be the union of the firedsets of q.
- $\psi:=\underbrace{\neg(\bigvee \mathscr{E}(F))}_{=\text {true if } F=\emptyset}$
- When do we move from q to q^{\prime} ?

Progress

- When do we move from q to q^{\prime} ?
- Intuition: those $\left(\sigma_{i}, \operatorname{cons}_{i}, S n d_{i}\right)$ fire the progress transition $\left(q, \psi, q^{\prime}\right)$ for which there exists a firedset F such that $q \rightsquigarrow_{F} q^{\prime}$ and
- cons $_{i} \cup S n d_{i}$ comprises exactly the messages that distinguish F from other firedsets of q (weak mode), and in addition no message occurring in the LSC is in cons $_{i} \cup S n d_{i}$ (strict mode),
- When do we move from q to q^{\prime} ?
- Intuition: those $\left(\sigma_{i}, \operatorname{cons}_{i}, S n d_{i}\right)$ fire the progress transition $\left(q, \psi, q^{\prime}\right)$ for which there exists a firedset F such that $q \rightsquigarrow_{F} q^{\prime}$ and
- cons $_{i} \cup S n d_{i}$ comprises exactly the messages that distinguish F from other firedsets of q (weak mode), and in addition no message occurring in the LSC is in cons $_{i} \cup S n d_{i}$ (strict mode),
- Formally: Let F, F_{1}, \ldots, F_{n} be the firedsets of q and let $q \rightsquigarrow_{F} q^{\prime}$ (unique).
- $\psi:=\bigwedge \mathscr{E}(F) \wedge \neg\left(\bigvee\left(\mathscr{E}\left(F_{1}\right) \cup \cdots \cup \mathscr{E}\left(F_{n}\right)\right) \backslash \mathscr{E}(F)\right)$
- Constraints relevant at cut q :

$$
\begin{gathered}
\psi_{\theta}(q)=\left\{\psi\left|\exists l \in q, l^{\prime} \notin q\right|\left(l, \psi, \theta, l^{\prime}\right) \in \operatorname{Loclnv} \vee\left(l^{\prime}, \psi, \theta, l\right) \in \operatorname{Loclnv}\right\}, \\
\psi(q)=\psi_{\text {hot }}(q) \cup \psi_{\text {cold }}(q) \\
\bigwedge \emptyset:=\text { false; } \bigwedge\left\{\psi_{1}, \ldots, \psi_{n}\right\}:=\bigwedge_{1 \leq i \leq n} \psi_{i}
\end{gathered}
$$

Loops with Conditions

- How long may we legally stay at a cut q ?
- Intuition: those $\left(\sigma_{i}\right.$, cons $\left._{i}, S n d_{i}\right)$ are allowed to fire the self-loop (q, ψ, q) where
- cons $_{i} \cup S n d_{i}$ comprises only irrelevant messages:
- weak mode: no message from a direct successor cut is in,
- strict mode:
 no message occurring in the LSC is in,

And nothing else.

- Formally: Let $F:=F_{1} \cup \cdots \cup F_{n}$ be the union of the firedsets of q.
- $\psi:=\underbrace{\neg(\bigvee \mathscr{E}(F))}_{=\text {true if } F=\emptyset}$

Loops with Conditions

- How long may we legally stay at a cut q ?
- Intuition: those $\left(\sigma_{i}\right.$, cons $\left._{i}, S n d_{i}\right)$ are allowed to fire the self-loop (q, ψ, q) where
- cons $_{i} \cup$ Snd $_{i}$ comprises only irrelevant messages:
- weak mode: no message from a direct successor cut is in,
- strict mode:

no message occurring in the LSC is in,
- σ_{i} satisfies the local invariants active at q

And nothing else.

- Formally: Let $F:=F_{1} \cup \cdots \cup F_{n}$ be the union of the firedsets of q.
- $\psi:=\underbrace{\neg(\bigvee \mathscr{E}(F))}_{=\text {true if } F=\emptyset}$

Loops with Conditions

- How long may we legally stay at a cut q ?
- Intuition: those $\left(\sigma_{i}\right.$, cons $\left._{i}, S n d_{i}\right)$ are allowed to fire the self-loop (q, ψ, q) where
- cons $_{i} \cup S n d_{i}$ comprises only irrelevant messages:
- weak mode: no message from a direct successor cut is in,
- strict mode:

no message occurring in the LSC is in,
- σ_{i} satisfies the local invariants active at q

And nothing else.

- Formally: Let $F:=F_{1} \cup \cdots \cup F_{n}$ be the union of the firedsets of q.
- $\psi:=\underbrace{\neg(\bigvee \mathscr{E}(F))}_{=\text {true if } F=\emptyset} \wedge \wedge \psi(q)$.

Even More Helper Functions

- Constraints relevant when moving from q to cut q^{\prime} :

$$
\begin{aligned}
& \psi_{\theta}\left(q, q^{\prime}\right)=\left\{\psi|\exists L \subseteq \mathscr{L}|(L, \psi, \theta) \in \operatorname{Cond} \wedge L \cap\left(q^{\prime} \backslash q\right) \neq \emptyset\right\} \\
& \cup \psi_{\theta}\left(q^{\prime}\right) \\
& \backslash\left\{\psi\left|\exists l \in q^{\prime} \backslash q, l^{\prime} \in \mathscr{L}\right|\left(l, \circ, \operatorname{expr}, \theta, l^{\prime}\right) \in \operatorname{Loclnv} \vee\left(l^{\prime}, \operatorname{expr}, \theta, \circ, l\right) \in \text { Loclnv }\right\} \\
& \cup\left\{\psi\left|\exists l \in q^{\prime} \backslash q, l^{\prime} \in \mathscr{L}\right|\left(l, \bullet, \operatorname{expr}, \theta, l^{\prime}\right) \in \operatorname{Loclnv} \vee\left(l^{\prime}, \operatorname{expr}, \theta, \bullet, l\right) \in \operatorname{Loclnv}\right\} \\
& \psi\left(q, q^{\prime}\right)=\psi_{\text {hot }}\left(q, q^{\prime}\right) \cup \psi_{\text {cold }}\left(q, q^{\prime}\right)
\end{aligned}
$$

Progress with Conditions

- When do we move from q to q^{\prime} ?
- Intuition: those (σ_{i}, cons $_{i}, S n d_{i}$) fire the progress transition $\left(q, \psi, q^{\prime}\right)$ for which there exists a firedset F such that $q \rightsquigarrow_{F} q^{\prime}$ and
- cons $_{i} \cup S n d_{i}$ comprises exactly the messages that distinguish F from other firedsets of q (weak mode), and in addition no message occurring in the LSC is in cons $_{i} \cup S n d_{i}$ (strict mode),
- Formally: Let F, F_{1}, \ldots, F_{n} be the firedsets of q and let $q \rightsquigarrow_{F} q^{\prime}$ (unique).
- $\psi:=\wedge \mathscr{E}(F) \wedge \neg\left(\bigvee\left(\mathscr{E}\left(F_{1}\right) \cup \cdots \cup \mathscr{E}\left(F_{n}\right)\right) \backslash \mathscr{E}(F)\right)$

Progress with Conditions

- When do we move from q to q^{\prime} ?
- Intuition: those $\left(\sigma_{i}, \operatorname{cons}_{i}, S n d_{i}\right)$ fire the progress transition $\left(q, \psi, q^{\prime}\right)$ for which there exists a firedset F such that $q \rightsquigarrow_{F} q^{\prime}$ and
- cons $_{i} \cup S n d_{i}$ comprises exactly the messages that distinguish F from other firedsets of q (weak mode), and in addition no message occurring in the LSC is in cons $_{i} \cup S n d_{i}$ (strict mode),
- σ_{i} satisfies the local invariants and conditions relevant at q^{\prime}.
- Formally: Let F, F_{1}, \ldots, F_{n}
be the firedsets of q and let $q \rightsquigarrow_{F} q^{\prime}$ (unique).
- $\psi:=\wedge \mathscr{E}(F) \wedge \neg\left(\bigvee\left(\mathscr{E}\left(F_{1}\right) \cup \cdots \cup \mathscr{E}\left(F_{n}\right)\right) \backslash \mathscr{E}(F)\right)$

Progress with Conditions

- When do we move from q to q^{\prime} ?
- Intuition: those $\left(\sigma_{i}, \operatorname{cons}_{i}, S n d_{i}\right)$ fire the progress transition $\left(q, \psi, q^{\prime}\right)$ for which there exists a firedset F such that $q \rightsquigarrow_{F} q^{\prime}$ and
- cons $_{i} \cup S n d_{i}$ comprises exactly the messages that distinguish F from other firedsets of q (weak mode), and in addition no message occurring in the LSC is in cons $_{i} \cup S n d_{i}$ (strict mode),
- σ_{i} satisfies the local invariants and conditions relevant at q^{\prime}.
- Formally: Let F, F_{1}, \ldots, F_{n} be the firedsets of q and let $q \rightsquigarrow_{F} q^{\prime}$ (unique).
- $\psi:=\wedge \mathscr{E}(F) \wedge \neg\left(\bigvee\left(\mathscr{E}\left(F_{1}\right) \cup \cdots \cup \mathscr{E}\left(F_{n}\right)\right) \backslash \mathscr{E}(F)\right) \wedge \wedge \psi\left(q, q^{\prime}\right)$.

Step III: Cold Conditions and Cold Local Invariants

- When do we take a legal exit from q ?

- When do we take a legal exit from q ?
- Intuition: those $\left(\sigma_{i}, \operatorname{cons}_{i}, S n d_{i}\right)$ fire the legal exit transition (q, ψ, \mathscr{L})
- for which there exists a firedset F and some q^{\prime} such that $q \rightsquigarrow_{F} q^{\prime}$ and
- cons $_{i} \cup S n d_{i}$ comprises exactly the messages that distinguish F from other firedsets of q (weak mode), and in addition no message occurring in the LSC is in cons $_{i} \cup S n d_{i}$ (strict mode) and
- at least one cold condition or local invariant relevant when moving to q^{\prime} is violated, or
- for which there is no matching firedset and at least one cold local invariant relevant at q is violated.

Legal Exits

- When do we take a legal exit from q ?
- Intuition: those $\left(\sigma_{i}\right.$, cons $\left._{i}, S n d_{i}\right)$ fire the legal exit transition (q, ψ, \mathscr{L})
- for which there exists a firedset F and some q^{\prime} such that $q \rightsquigarrow_{F} q^{\prime}$ and
- cons $_{i} \cup S n d_{i}$ comprises exactly the messages that distinguish F from other firedsets of q (weak mode), and in addition no message occurring in the LSC is in cons $_{i} \cup S n d_{i}$ (strict mode) and
- at least one cold condition or local invariant relevant when moving to q^{\prime} is violated, or
- for which there is no matching firedset and at least one cold local invariant relevant at q is violated.
- Formally: Let F_{1}, \ldots, F_{n} be the firedsets of q with $q \rightsquigarrow_{F_{i}} q_{i}^{\prime}$.
- $\psi:=\bigvee_{i=1}^{n} \wedge \mathscr{E}\left(F_{i}\right) \wedge \neg\left(\bigvee\left(\mathscr{E}\left(F_{1}\right) \cup \cdots \cup \mathscr{E}\left(F_{n}\right)\right) \backslash \mathscr{E}\left(F_{i}\right)\right) \wedge \bigvee \psi_{\text {cold }}\left(q, q_{i}^{\prime}\right)$ $\vee \neg\left(\bigvee \mathscr{E}\left(F_{i}\right)\right) \wedge \bigvee \psi_{\text {cold }}(q)$

Finally: The LSC Semantics

A full LSC L consist of

- a body $(I,(\mathscr{L}, \preceq), \sim, \mathscr{S}, \mathrm{Msg}$, Cond, Loclnv),
- an activation condition (here: event) $a c=E_{i_{1}, i_{2}}^{?}, E \in \mathscr{E}, i_{1}, i_{2} \in I$,
- an activation mode, either initial or invariant,
- a chart mode, either existential (cold) or universal (hot).

Finally: The LSC Semantics

A full LSC L consist of

- a body $(I,(\mathscr{L}, \preceq), \sim, \mathscr{S}, \mathrm{Msg}$, Cond, Loclnv),
- an activation condition (here: event) $a c=E_{i_{1}, i_{2}}^{?}, E \in \mathscr{E}, i_{1}, i_{2} \in I$,
- an activation mode, either initial or invariant,
- a chart mode, either existential (cold) or universal (hot).

A set W of words over \mathscr{S} and \mathscr{D} satisfies L, denoted $W \models L$, iff L

- universal ($=$ hot), initial, and
$\forall w \in W \forall \beta: I \rightarrow \operatorname{dom}\left(\sigma\left(w^{0}\right)\right) \bullet w$ activates $L \Longrightarrow w \in \mathcal{L}_{\beta}\left(\mathcal{B}_{L}\right)$.
- existential ($=$ cold), initial, and
$\exists w \in W \exists \beta: I \rightarrow \operatorname{dom}\left(\sigma\left(w^{0}\right)\right) \bullet w$ activates $L \wedge w \in \mathcal{L}_{\beta}\left(\mathcal{B}_{L}\right)$.
- universal (=hot), invariant, and $\forall w \in W \forall k \in \mathbb{N}_{0} \forall \beta: I \rightarrow \operatorname{dom}\left(\sigma\left(w^{k}\right)\right) \bullet w / k$ activates $L \Longrightarrow w / k \in \mathcal{L}_{\beta}\left(\mathcal{B}_{L}\right)$.
- existential (= cold), invariant, and
$\exists w \in W \exists k \in \mathbb{N}_{0} \exists \beta: I \rightarrow \operatorname{dom}\left(\sigma\left(w^{k}\right)\right) \bullet w / k$ activates $L \wedge w / k \in \mathcal{L}_{\beta}\left(\mathcal{B}_{L}\right)$.

References

References

[Damm and Harel, 2001] Damm, W. and Harel, D. (2001). LSCs: Breathing life into Message Sequence Charts. Formal Methods in System Design, 19(1):45-80.
[Fecher and Schönborn, 2007] Fecher, H. and Schönborn, J. (2007). UML 2.0 state machines: Complete formal semantics via core state machines. In Brim, L., Haverkort, B. R., Leucker, M., and van de Pol, J., editors, FMICS/PDMC, volume 4346 of LNCS, pages 244-260. Springer.
[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling with statecharts. IEEE Computer, 30(7):31-42.
[Harel and Maoz, 2007] Harel, D. and Maoz, S. (2007). Assert and negate revisited: Modal semantics for UML sequence diagrams. Software and System Modeling (SoSyM). To appear. (Early version in SCESM'06, 2006, pp. 13-20).
[Harel and Marelly, 2003] Harel, D. and Marelly, R. (2003). Come, Let's Play: Scenario-Based Programming Using LSCs and the Play-Engine. Springer-Verlag.
[Klose, 2003] Klose, J. (2003). LSCs: A Graphical Formalism for the Specification of Communication Behavior. PhD thesis, Carl von Ossietzky Universität Oldenburg.
[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2. Technical Report formal/07-11-04.
[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2. Technical Report formal/07-11-02.
[Störrle, 2003] Störrle, H. (2003). Assert, negate and refinement in UML-2 interactions. In Jürjens, J., Rumpe, B., France, R., and Fernandez, E. B., editors, CSDUML 2003, number TUM-I0323. Technische Universität München.

