Software Design, Modelling and Analysis in UML

Lecture 18: Live Sequence Charts II

2013-01-22

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

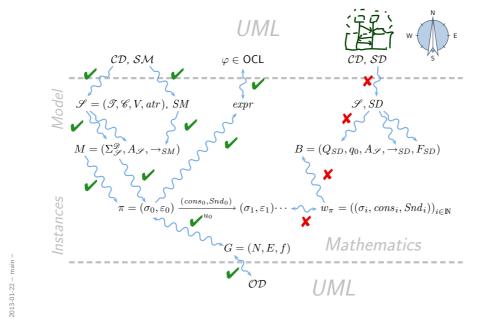
Contents & Goals

Last Lecture:

- LSC concrete syntax.
- LSC intuitive semantics.

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - What does this LSC mean?
 - Are this UML model's state machines consistent with the interactions?
 - Please provide a UML model which is consistent with this LSC.
 - What is: activation, hot/cold condition, pre-chart, etc.?
- Content:
 - Symbolic Büchi Automata (TBA) and its (accepted) language.
 - Words of a model.
 - LSC abstract syntax.
 - LSC formal semantics.



3/77

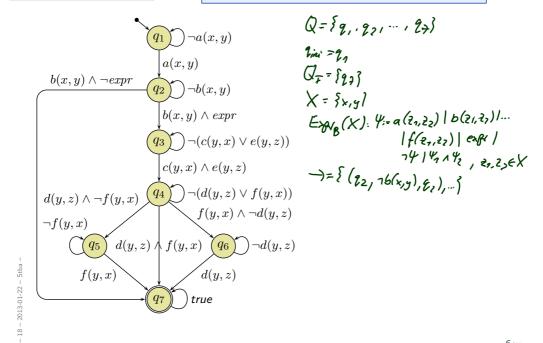
Excursus: Symbolic Büchi Automata (over Signature)

- 18 - 2013-01-22 - main -

where

- X is a set of logical variables,
- $Expr_{\mathcal{B}}(X)$ is a set of Boolean expressions over X,
- Q is a finite set of states,
- $q_{ini} \in Q$ is the initial state,
- $\rightarrow \subseteq Q \times Expr_{\mathcal{B}}(X) \times Q$ is the transition relation. Transitions (q, ψ, q') from q to q' are labelled with an expression $\psi \in Expr_{\mathcal{B}}(X)$.
- $Q_F \subseteq Q$ is the set of **fair** (or accepting) states.

5/77



6/77

Word

Definition. Let X be a set of logical variables and let $Expr_{\mathcal{B}}(X)$ be a set of Boolean expressions over X.

A set $(\Sigma,\cdot\models.\cdot)$ is called an **alphabet** for $Expr_{\mathcal{B}}(X)$ if and only if

- for each $\sigma \in \Sigma$,
- for each expression $expr \in Expr_{\mathcal{B}}$, and
- for each valuation $\beta: X \to \mathscr{D}(X)$ of logical variables to domain $\mathscr{D}(X)$,

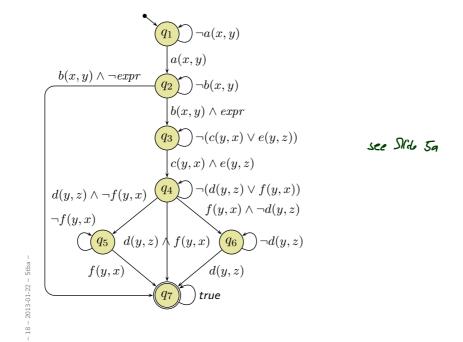
either $\sigma \models_{\beta} expr$ or $\sigma \not\models_{\beta} expr$.

An infinite sequence

$$w = (\sigma_i)_{i \in \mathbb{N}_0} \in \Sigma^{\omega}$$

over $(\Sigma, \cdot \models \cdot)$ is called **word** for $Expr_{\mathcal{B}}(X)$.

Word Example



8/77

Run of TBA over Word

Definition. Let $\mathcal{B}=(Expr_{\mathcal{B}}(X),X,Q,q_{ini},\rightarrow,Q_F)$ be a TBA and

 $w=\sigma_1,\sigma_2,\sigma_3,\dots$ $\in \Sigma^{\omega}$ a word for $Expr_{\mathcal{B}}(X)$.

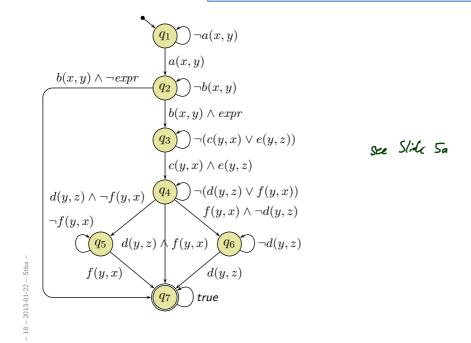
An infinite sequence

$$=q_0,q_1,q_2,\ldots\in Q^{\omega}$$

is called ${\bf run}$ of ${\cal B}$ over w under valuation $\beta:X\to {\mathscr D}(X)$ if and only if

- $q_0 = q_{ini}$,
- for each $i \in \mathbb{N}_0$ there is a transition $(q_i, \psi_i, q_{i+1}) \in \rightarrow$ of \mathcal{B} such that $\sigma_i \models_{\beta} \psi_i$.

- 18 - 2013-01-22 - Stba -



10/77

The Language of a TBA

Definition.

We say ${\mathcal B}$ accepts word w (under β) if and only if ${\mathcal B}$ has a run

$$\varrho = (q_i)_{i \in \mathbb{N}_0}$$

over w such that fair (or accepting) states are visited infinitely often by ϱ , i.e., such that

$$\forall i \in \mathbb{N}_0 \ \exists j > i : q_j \in Q_F.$$

We call the set $\mathcal{L}_{\beta}(\mathcal{B}) \subseteq \Sigma^{\omega}$ of words for $Expr_{\mathcal{B}}(X)$ that are accepted by \mathcal{B} the **language of** \mathcal{B} .

Language of the Example TBA

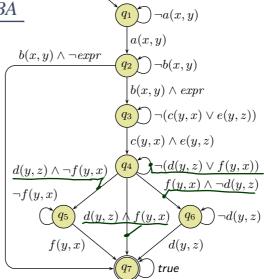
 $\mathcal{L}_{eta}(\mathcal{B})$ consists of the words

$$w = (\sigma_i)_{i \in \mathbb{N}_0}$$

where for $0 \le n < m < k < \ell$ we have

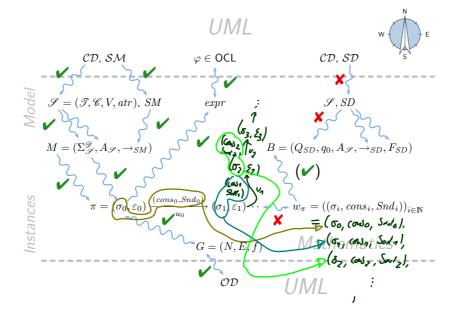
- for $0 \le i < n$, $\sigma_i \not\models_{\beta} a(x,y)$
- $\sigma_n \models_{\mathcal{B}} a(xy)$
- for n < i < m, $\sigma_i \not\models_{\mathbf{g}} b(\mathbf{x}, \mathbf{y})$
- · om FB b(xiy) nexes

- for m < i < k, $\sigma_i \not\models_{\beta} ((x_i y) \lor e(y_i 2))$ $\sigma_k \models_{\beta} c(y_i x) \land e(y_i 2)$ for $k < i < \ell$, $\sigma_i \not\models_{\beta} d(y_i 2) \lor f(y_i x)$



12/77

Course Map



14/77

Words over Signature

Definition. Let $\mathscr{S}=(\mathscr{T},\mathscr{C},V,atr,\mathscr{E})$ be a signature and \mathscr{D} a structure of $\mathscr{S}.$ A **word** over \mathscr{S} and \mathscr{D} is an infinite sequence

$$(\sigma_i, cons_i, Snd_i)_{i \in \mathbb{N}_0} \in \left(\Sigma_{\mathscr{S}}^{\mathscr{D}} \times 2^{\mathscr{D}(\mathscr{C}) \times Evs(\mathscr{E}, \mathscr{D}) \times \mathscr{D}(\mathscr{C})} \times 2^{\mathscr{D}(\mathscr{C}) \times Evs(\mathscr{E}, \mathscr{D}) \times \mathscr{D}(\mathscr{C})}\right)^{\omega}.$$

- 18 - 2013-01-22 - Smodellang -

The Language of a Model

Recall: A UML model $\mathcal{M} = (\mathscr{CD}, \mathscr{SM}, \mathscr{OD})$ and a structure \mathscr{D} denotes a set $\llbracket \mathcal{M} \rrbracket$ of (initial and consecutive) **computations** of the form

$$(\sigma_0,\varepsilon_0) \xrightarrow{a_0} (\sigma_1,\varepsilon_1) \xrightarrow{a_1} (\sigma_2,\varepsilon_2) \xrightarrow{a_2} \dots \text{ where}$$

$$a_i = (cons_i, Snd_i, \mu_i) \in \underbrace{2^{\mathscr{D}(\mathscr{C}) \times Evs(\mathscr{E},\mathscr{D}) \times \mathscr{D}(\mathscr{C})} \times 2^{\mathscr{D}(\mathscr{C}) \times Evs(\mathscr{E},\mathscr{D}) \times \mathscr{D}(\mathscr{C})}}_{=:\tilde{A}} \times \mathscr{D}(\mathscr{C}).$$

For the connection between models and interactions, we disregard the configuration of the ether and who made the step, and define as follows:

Definition. Let $\mathcal{M}=(\mathscr{CD},\mathscr{SM},\mathscr{OD})$ be a UML model and \mathscr{D} a structure. Then

$$\mathcal{L}(\mathcal{M}) := \{ (\underbrace{\sigma_i, cons_i, Snd_i}_{i \in \mathbb{N}_0}) \in (\Sigma_{\mathscr{S}}^{\mathscr{D}} \times \tilde{A})^{\omega} \mid \exists (\varepsilon_i, u_i)_{i \in \mathbb{N}_0} : (\sigma_0, \underline{\varepsilon_0}) \xrightarrow{(cons_0, Snd_0)} (\sigma_1, \underline{\varepsilon_1}) \cdots \in \llbracket \mathcal{M} \rrbracket \}$$

is the **language** of \mathcal{M} .

16/77

Example: The Language of a Model

$$\mathcal{L}(\mathcal{M}) := \{ (\sigma_{i}, cons_{i}, Snd_{i})_{i \in \mathbb{N}_{0}} \in (\Sigma_{\mathscr{S}}^{\mathscr{D}} \times \tilde{A})^{\omega} \mid \\ \exists (\varepsilon_{i}, u_{i})_{i \in \mathbb{N}_{0}} : (\sigma_{0}, \varepsilon_{0}) \xrightarrow{(cons_{0}, Snd_{0})} (\sigma_{1}, \varepsilon_{1}) \cdots \in [\![\mathcal{M}]\!] \}$$

$$\mathcal{L}(\mathcal{M}) := \{ (\sigma_{0}, u_{i})_{i \in \mathbb{N}_{0}} : (\sigma_{0}, \varepsilon_{0}) \xrightarrow{(cons_{0}, Snd_{0})} (\sigma_{1}, \varepsilon_{1}) \cdots \in [\![\mathcal{M}]\!] \}$$

$$\mathcal{L}(\mathcal{M}) := \{ (\sigma_{0}, u_{i})_{i \in \mathbb{N}_{0}} : (\sigma_{0}, \varepsilon_{0}) \xrightarrow{(cons_{0}, Snd_{0})} (\sigma_{1}, \varepsilon_{1}) \cdots \in [\![\mathcal{M}]\!] \}$$

$$\mathcal{L}(\mathcal{M}) := \{ (\sigma_{0}, u_{i})_{i \in \mathbb{N}_{0}} : (\sigma_{0}, \varepsilon_{0}) \xrightarrow{(cons_{0}, Snd_{0})} (\sigma_{1}, \varepsilon_{1}) \cdots \in [\![\mathcal{M}]\!] \}$$

$$\mathcal{L}(\mathcal{M}) := \{ (\sigma_{0}, u_{i})_{i \in \mathbb{N}_{0}} : (\sigma_{0}, \varepsilon_{0}) \xrightarrow{(cons_{0}, Snd_{0})} (\sigma_{1}, \varepsilon_{1}) \cdots \in [\![\mathcal{M}]\!] \}$$

$$\mathcal{L}(\mathcal{M}) := \{ (\sigma_{0}, u_{i})_{i \in \mathbb{N}_{0}} : (\sigma_{0}, \varepsilon_{0}) \xrightarrow{(cons_{0}, Snd_{0})} (\sigma_{1}, \varepsilon_{1}) \cdots \in [\![\mathcal{M}]\!] \}$$

$$\mathcal{L}(\mathcal{M}) := \{ (\sigma_{0}, u_{i})_{i \in \mathbb{N}_{0}} : (\sigma_{0}, \varepsilon_{0}) \xrightarrow{(cons_{0}, Snd_{0})} (\sigma_{1}, \varepsilon_{1}) \cdots \in [\![\mathcal{M}]\!] \}$$

$$\mathcal{L}(\mathcal{M}) := \{ (\sigma_{0}, u_{i})_{i \in \mathbb{N}_{0}} : (\sigma_{0}, \varepsilon_{0}) \xrightarrow{(cons_{0}, Snd_{0})} (\sigma_{1}, \varepsilon_{1}) \cdots \in [\![\mathcal{M}]\!] \}$$

$$\mathcal{L}(\mathcal{M}) := \{ (\sigma_{0}, u_{i})_{i \in \mathbb{N}_{0}} : (\sigma_{0}, u_{i})_{i \in \mathbb{N}_{0}} : (\sigma_{0}, \varepsilon_{0}) \xrightarrow{(cons_{0}, Snd_{0})} (\sigma_{1}, \varepsilon_{1}) \cdots \in [\![\mathcal{M}]\!] \}$$

$$\mathcal{L}(\mathcal{M}) := \{ (\sigma_{0}, u_{i})_{i \in \mathbb{N}_{0}} : (\sigma_{0$$

17/77

- Let $\mathscr{S} = (\mathscr{T}, \mathscr{C}, V, atr, \mathscr{E})$ be a signature and X a set of logical variables,
- The signal and attribute expressions $Expr_{\mathscr{S}}(\mathscr{E},X)$ are defined by the grammar:

$$\psi ::= \operatorname{true} | \operatorname{expr} | E_{x,y}^{\dagger} | E_{x,y}^{?} | \neg \psi | \psi_1 \vee \psi_2,$$

where $expr: Bool \in Expr_{\mathscr{S}}$, $E \in \mathscr{E}$, $x, y \in X$.

18/77

Satisfaction of Signal and Attribute Expressions

- Let $(\sigma, cons, Snd) \in \Sigma_{\mathscr{S}}^{\mathscr{D}} \times \tilde{A}$ be a triple consisting of system state, consume set, and send set.
- Let $\beta: X \to \mathcal{D}(\mathscr{C})$ be a valuation of the logical variables. Then

Then

- $(\sigma, cons, Snd) \models_{\beta} true$
- $(\sigma, cons, Snd) \models_{\beta} \neg \psi$ if and only if not $(\sigma, cons, Snd) \models_{\beta} \psi$
- $(\sigma, cons, Snd) \models_{\beta} \psi_1 \lor \psi_2$ if and only if $(\sigma, cons, Snd) \models_{\beta} \psi_1 \text{ or } (\sigma, cons, Snd) \models_{\beta} \psi_2$
- $(\sigma, cons, Snd) \models_{\beta} expr$ if and only if $I[[expr]](\sigma, \beta) = 1$
- $(\sigma, cons, Snd) \models_{\beta} E_{x,y}^!$ if and only if $\exists \vec{d} \bullet (\beta(x), (E, \vec{d}), \beta(y)) \in Snd$
- $(\sigma, cons, Snd) \models_{\beta} E_{x,y}^{?}$ if and only if $\exists \vec{d} \bullet (\beta(x), (E, \vec{d}), \beta(y)) \in cons$

Satisfaction of Signal and Attribute Expressions

- Let $(\sigma, cons, Snd) \in \Sigma_{\mathscr{S}}^{\mathscr{D}} \times \tilde{A}$ be a triple consisting of system state, consume set, and send set.
- Let $\beta: X \to \mathscr{D}(\mathscr{C})$ be a valuation of the logical variables.

Then

- $(\sigma, cons, Snd) \models_{\beta} true$
- $(\sigma, cons, Snd) \models_{\beta} \neg \psi$ if and only if not $(\sigma, cons, Snd) \models_{\beta} \psi$
- $(\sigma, cons, Snd) \models_{\beta} \psi_1 \lor \psi_2$ if and only if $(\sigma, cons, Snd) \models_{\beta} \psi_1$ or $(\sigma, cons, Snd) \models_{\beta} \psi_2$
- $(\sigma, cons, Snd) \models_{\beta} expr$ if and only if $I[[expr]](\sigma, \beta) = 1$
- $(\sigma, cons, Snd) \models_{\beta} E_{x,y}^!$ if and only if $\exists \vec{d} \bullet (\beta(x), (E, \vec{d}), \beta(y)) \in Snd$
- $\bullet \ (\sigma, cons, Snd) \models_{\beta} E_{x,y}^? \text{ if and only if } \exists \, \vec{d} \bullet (\beta(x), (E, \vec{d}), \beta(y)) \in cons$

Observation: semantics of models **keeps track** of sender and receiver at sending and consumption time. We disregard the event identity.

Alternative: keep track of event identities.

19/77

TBA over Signature

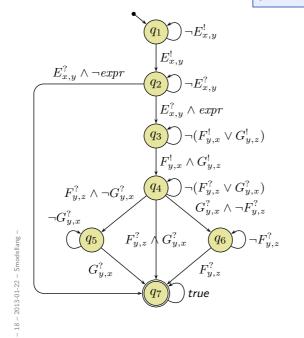
Definition. A TBA

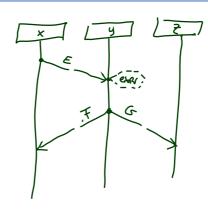
$$\mathcal{B} = (\underline{Expr_{\mathcal{B}}(X)}, X, Q, q_{ini}, \rightarrow, Q_F)$$

where $Expr_{\mathcal{B}}(X)$ is the set of signal and attribute expressions $Expr_{\mathscr{S}}(\mathscr{E},X)$ over signature \mathscr{S} is called **TBA over** \mathscr{S} .

- Any word over $\mathscr S$ and $\mathscr D$ is then a word for $\mathcal B$. (By the satisfaction relation defined on the previous slide; $\mathscr D(X)=\mathscr D(\mathscr C)$.)
- Thus a TBA over $\mathscr S$ accepts words of models with signature $\mathscr S$. (By the previous definition of TBA.)

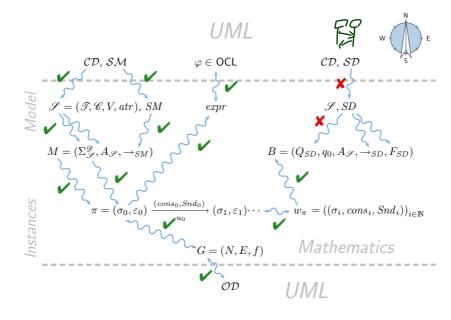
 $\overline{\textit{TBA over Signature Examp}} \underbrace{ (\sigma, cons, Snd) \models_{\beta} \textit{expr iff } I \llbracket \textit{expr} \rrbracket (\sigma, \beta) = 1;}_{(\sigma, \textit{cons}, Snd) \models_{\beta} E^!_{x,y} \textit{ iff } (\beta(x), (E, \vec{d}), \beta(y)) \in \textit{Snd} }$





21/77

Course Map

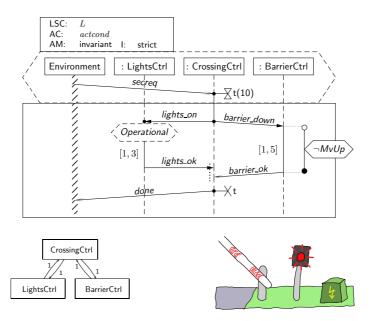


Live Sequence Charts Abstract Syntax

18 - 2013-01-22 - main -

24/77

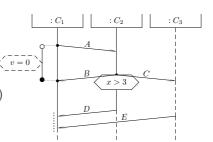
Example



- 18 - 2013-01-22 - Slscasyn -

Let $\Theta = \{\text{hot}, \text{cold}\}$. An **LSC body** is a tuple v = 0

 $(I,(\mathscr{L},\preceq),\sim,\mathscr{S},\mathsf{Msg},\mathsf{Cond},\mathsf{LocInv})$



18 - 2013-01-22 - Slscasyn -

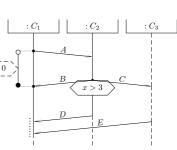
26/77

LSC Body: Abstract Syntax

Let $\Theta = \{\text{hot}, \text{cold}\}$. An **LSC body** is a tuple $\sqrt[v=0]$

 $(I,(\mathscr{L},\preceq),\sim,\mathscr{S},\mathsf{Msg},\mathsf{Cond},\mathsf{LocInv})$

• I is a finite set of instance lines,

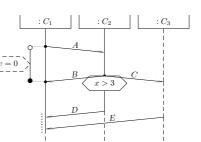


18 - 2013-01-22 - Slscasyn -

Let $\Theta = \{\text{hot}, \text{cold}\}$. An **LSC body** is a tuple $\sqrt[n]{v=0}$

$$(I, (\mathcal{L}, \preceq), \sim, \mathcal{S}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv})$$

- I is a finite set of instance lines,
- (\mathcal{L}, \preceq) is a finite, non-empty, partially ordered set of locations; each $l \in \mathcal{L}$ is associated with a temperature $\theta(l) \in \Theta$ and an instance line $i_l \in I$,



- 18 - 2013-01-22 - Slscasyn -

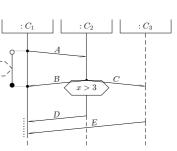
26/77

LSC Body: Abstract Syntax

Let $\Theta = \{ hot, cold \}$. An **LSC body** is a tuple $^{<}$

$$(I,(\mathscr{L},\preceq),\sim,\mathscr{S},\mathsf{Msg},\mathsf{Cond},\mathsf{LocInv})$$

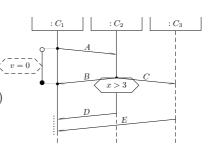
- I is a finite set of instance lines,
- (\mathcal{L}, \preceq) is a finite, non-empty, partially ordered set of locations; each $l \in \mathcal{L}$ is associated with a temperature $\theta(l) \in \Theta$ and an instance line $i_l \in I$,
- $\sim \subseteq \mathcal{L} \times \mathcal{L}$ is an equivalence relation on locations, the simultaneity relation,



Let $\Theta = \{\text{hot}, \text{cold}\}$. An **LSC body** is a tuple $\sqrt[n]{v=0}$

$$(I,(\mathscr{L},\preceq),\sim,\mathscr{S},\mathsf{Msg},\mathsf{Cond},\mathsf{LocInv})$$

- I is a finite set of instance lines,
- (\mathcal{L}, \preceq) is a finite, non-empty, partially ordered set of locations; each $l \in \mathcal{L}$ is associated with a temperature $\theta(l) \in \Theta$ and an instance line $i_l \in I$,
- $\sim \subseteq \mathcal{L} \times \mathcal{L}$ is an equivalence relation on locations, the simultaneity relation,
- $\mathscr{S} = (\mathscr{T}, \mathscr{C}, V, atr, \mathscr{E})$ is a signature,



10 - 2013 Ot 22 - SIzzzan -

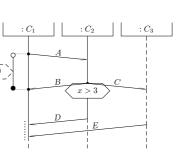
26/77

LSC Body: Abstract Syntax

Let $\Theta = \{ hot, cold \}$. An **LSC body** is a tuple

$$(I, (\mathcal{L}, \preceq), \sim, \mathcal{S}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv})$$

- I is a finite set of instance lines,
- (\mathcal{L}, \preceq) is a finite, non-empty, partially ordered set of locations; each $l \in \mathcal{L}$ is associated with a temperature $\theta(l) \in \Theta$ and an instance line $i_l \in I$,
- $\sim \subseteq \mathcal{L} \times \mathcal{L}$ is an equivalence relation on locations, the simultaneity relation,
- $\mathscr{S} = (\mathscr{T}, \mathscr{C}, V, atr, \mathscr{E})$ is a signature,
- Msg $\subseteq \mathscr{L} \times \mathscr{E} \times \mathscr{L}$ is a set of asynchronous messages with $(l,b,l') \in \mathsf{Msg}$ only if $l \preceq l'$, Not: instantaneous messages could be linked to method/operation calls.



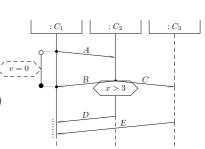
Let $\Theta = \{\text{hot}, \text{cold}\}$. An **LSC body** is a tuple \langle

 $(I, (\mathcal{L}, \preceq), \sim, \mathcal{S}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv})$

- I is a finite set of instance lines,
- (\mathcal{L}, \preceq) is a finite, non-empty, partially ordered set of locations; each $l \in \mathcal{L}$ is associated with a temperature $\theta(l) \in \Theta$ and an instance line $i_l \in I$,
- $\sim \subseteq \mathcal{L} \times \mathcal{L}$ is an equivalence relation on locations, the simultaneity relation,
- $\mathscr{S} = (\mathscr{T}, \mathscr{C}, V, atr, \mathscr{E})$ is a signature,
- Msg $\subseteq \mathscr{L} \times \mathscr{E} \times \mathscr{L}$ is a set of asynchronous messages with $(l,b,l') \in \mathsf{Msg}$ only if $l \preceq l'$, Not: instantaneous messages —

could be linked to method/operation calls.

• Cond $\subseteq (2^{\mathscr{L}} \setminus \emptyset) \times Expr_{\mathscr{S}} \times \Theta$ is a set of conditions where $Expr_{\mathscr{S}}$ are OCL expressions over $W = I \cup \{self\}$ with $(L, expr, \theta) \in \text{Cond only if } l \sim l' \text{ for all } l, l' \in L$,



26/77

LSC Body: Abstract Syntax

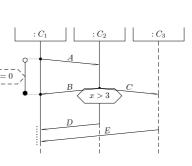
Let $\Theta = \{ hot, cold \}$. An **LSC body** is a tuple

$$(I,(\mathscr{L},\preceq),\sim,\mathscr{S},\mathsf{Msg},\mathsf{Cond},\mathsf{LocInv})$$

- I is a finite set of instance lines,
- (\mathcal{L}, \preceq) is a finite, non-empty, partially ordered set of locations; each $l \in \mathcal{L}$ is associated with a temperature $\theta(l) \in \Theta$ and an instance line $i_l \in I$,
- $\sim \subseteq \mathcal{L} \times \mathcal{L}$ is an equivalence relation on locations, the simultaneity relation,
- $\mathscr{S} = (\mathscr{T}, \mathscr{C}, V, atr, \mathscr{E})$ is a signature,
- Msg $\subseteq \mathscr{L} \times \mathscr{E} \times \mathscr{L}$ is a set of asynchronous messages with $(l,b,l') \in \mathsf{Msg}$ only if $l \preceq l'$, Not: instantaneous messages —

could be linked to method/operation calls.

- Cond $\subseteq (2^{\mathscr{L}} \setminus \emptyset) \times Expr_{\mathscr{S}} \times \Theta$ is a set of **conditions** where $Expr_{\mathscr{S}}$ are OCL expressions over $W = I \cup \{self\}$ with $(L, expr, \theta) \in \text{Cond only if } l \sim l' \text{ for all } l, l' \in L$,
- LocInv $\subseteq \mathscr{L} \times \{\circ, \bullet\} \times Expr_{\mathscr{L}} \times \Theta \times \mathscr{L} \times \{\circ, \bullet\}$ is a set of local invariants.



Well-Formedness

Bondedness/no floating conditions: (could be relaxed a little if we wanted to)

- For each location $l \in \mathcal{L}$, if l is the location of
 - a condition, i.e.

$$\exists (L, expr, \theta) \in \mathsf{Cond} : l \in L, \mathsf{or}$$

• a local invariant, i.e.

$$\exists (l_1, i_1, expr, \theta, l_2, i_2) \in \mathsf{LocInv} : l \in \{l_1, l_2\}, \text{ or } l \in \{l_1, l_2\}, l_1 \in \{l_1, l_2\}, l_2 \in \{l_1, l_2\}, l_2 \in \{l_1, l_2\}, l_2 \in \{l_1, l_2\}, l_3 \in \{l_1, l_2\}, l_4 \in \{l_1, l_$$

then there is a location l' equivalent to l, i.e. $l \sim l'$, which is the location of

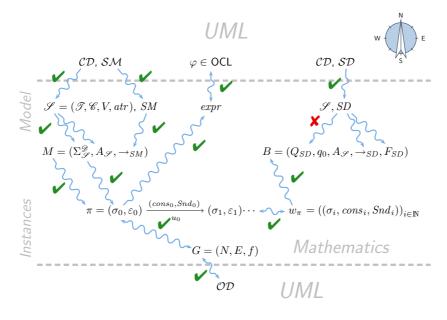
- an **instance head**, i.e. l' is minimal wrt. \preceq , or
- a message, i.e.

$$\exists (l_1, b, l_2) \in \mathsf{Msg} : l \in \{l_1, l_2\}.$$

Note: if messages in a chart are **cyclic**, then there doesn't exist a partial order (so such charts **don't even have** an abstract syntax).

27/77

Course Map



- 2012 Of 20 - 6

TBA-based Semantics of LSCs

Plan:

ullet Given an LSC L with body

$$(I, (\mathcal{L}, \preceq), \sim, \mathcal{S}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv}),$$

- ullet construct a TBA \mathcal{B}_L , and
- define $\mathcal{L}(L)$ in terms of $\mathcal{L}(\mathcal{B}_L)$, in particular taking activation condition and activation mode into account.
- Then $\mathcal{M} \models L$ (universal) if and only if $\mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(L)$.

18 - 2013-01-22 - Slscsem -

Recall: Intuitive Semantics

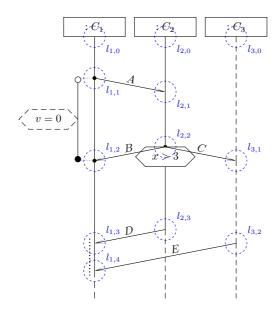
(i) Strictly After:

(ii) Simultaneously: (simultaneous region)

(iii) Explicitly Unordered: (co-region)

Intuition: A computation path **violates** an LSC if the occurrence of some events doesn't adhere to the partial order obtained as the **transitive closure** of (i) to (iii).

Examples: Semantics?



- 18 - 2013-01-22 - Slscsem -

- 18 - 2013-01-22 - Slscsem -

Definition.

Let $(I, (\mathcal{L}, \preceq), \sim, \mathcal{S}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv})$ be an LSC body.

A non-empty set $\emptyset \neq C \subseteq \mathscr{L}$ is called a cut of the LSC body iff

• it is downward closed, i.e.

$$\forall l, l' : l' \in C \land l \prec l' \implies l \in C$$
,

• it is closed under simultaneity, i.e.

$$\forall l, l' : l' \in C \land l \sim l' \implies l \in C$$
, and

• it comprises at least one location per instance line, i.e.

$$\forall i \in I \ \exists l \in C : i_l = i.$$

33/77

Formal LSC Semantics: It's in the Cuts!

Definition.

Let $(I,(\mathscr{L},\preceq),\sim,\mathscr{S},\mathsf{Msg},\mathsf{Cond},\mathsf{LocInv})$ be an LSC body.

A non-empty set $\emptyset \neq C \subseteq \mathscr{L}$ is called a **cut** of the LSC body iff

• it is downward closed, i.e.

$$\forall l, l' : l' \in C \land l \leq l' \implies l \in C,$$

• it is closed under simultaneity, i.e.

$$\forall l, l' : l' \in C \land l \sim l' \implies l \in C$$
, and

• it comprises at least one location per instance line, i.e.

$$\forall i \in I \ \exists l \in C : i_l = i.$$

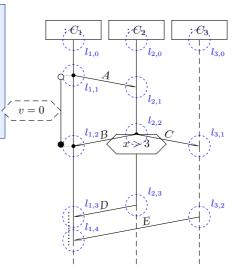
A cut C is called **hot**, denoted by $\theta(C) = \text{hot}$, if and only if at least one of its maximal elements is hot, i.e. if

$$\exists l \in C : \theta(l) = \mathsf{hot} \land \nexists l' \in C : l \prec l'$$

Otherwise, C is called **cold**, denoted by $\theta(C) = \text{cold}$.

Examples: Cut or Not Cut? Hot/Cold?

- (i) non-empty set $\emptyset \neq C \subseteq \mathcal{L}$,
- (ii) downward closed, i.e. $\forall l, l': l' \in C \land l \preceq l' \implies l \in C$
- (iii) closed under simultaneity, i.e. $\forall \, l, l': l' \in C \land l \sim l' \implies l \in C$
- (iv) at least one location per instance line, i.e. $\forall i \in I \exists l \in C : i_l = i,$
 - $C_0 = \emptyset$
 - $C_1 = \{l_{1,0}, l_{2,0}, l_{3,0}\}$
 - $C_2 = \{l_{1,1}, l_{2,1}, l_{3,0}\}$
 - $C_3 = \{l_{1,0}, l_{1,1}\}$
 - $C_4 = \{l_{1,0}, l_{1,1}, l_{2,0}, l_{3,0}\}$
 - $C_5 = \{l_{1,0}, l_{1,1}, l_{2,0}, l_{2,1}, l_{3,0}\}$
 - $C_6 = \mathcal{L} \setminus \{l_{1,3}, l_{2,3}\}$
 - $C_7 = \mathcal{L}$



34/77

A Successor Relation on Cuts

The partial order of (\mathcal{L}, \preceq) and the simultaneity relation " \sim " induce a **direct successor relation** on cuts of \mathcal{L} as follows:

Definition. Let $C,C'\subseteq \mathscr{L}$ bet cuts of an LSC body with locations (\mathscr{L},\preceq) and messages Msg.

C' is called direct successor of C via fired-set F, denoted by $C \leadsto_F C',$ if and only if

- $F \neq \emptyset$,
- $C' \setminus C = F$,
- for each message reception in F, the corresponding sending is already in C,

$$\forall (l, E, l') \in \mathsf{Msg} : l' \in F \implies l \in C$$
, and

• locations in F, that lie on the same instance line, are pairwise unordered, i.e.

$$\forall l, l' \in F : l \neq l' \land i_l = i_{l'} \implies l \not\preceq l' \land l' \not\preceq l$$

Properties of the Fired-set

 $C \leadsto_F C'$ if and only if

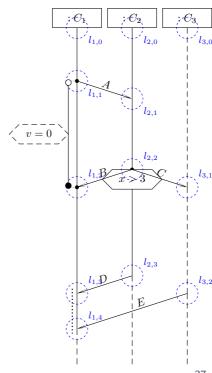
- $F \neq \emptyset$,
- $C' \setminus C = F$,
- $\bullet \ \forall \, (l,E,l') \in \mathsf{Msg} : l' \in F \implies l \in C \text{, and}$
- $\forall l, l' \in F : l \neq l' \land i_l = i_{l'} \implies l \not\preceq l' \land l' \not\preceq l$
- Note: F is closed under simultaneity.
- Note: locations in F are direct \leq -successors of locations in C, i.e.

$$\forall \, l' \in F \,\, \exists \, l \in C : l \prec l' \wedge \nexists \, l'' \in C : l' \prec l'' \prec l$$

36/77

Successor Cut Examples

- (i) $F \neq \emptyset$, (ii) $C' \setminus C = F$,
- (iii) $\forall (l, E, l') \in \mathsf{Msg} : l' \in F \implies l \in C$, and
- (iv) $\forall l, l' \in F : l \neq l' \land i_l = i_{l'} \implies l \not\preceq l' \land l' \not\preceq l$



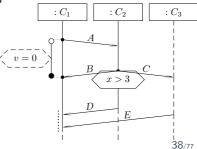
18 – 2013-01-22 – Slscsem –

- Let $w = (\sigma_0, cons_0, Snd_0), (\sigma_1, cons_1, Snd_1), (\sigma_2, cons_2, Snd_2), \dots$ be a word of a UML model and β a valuation of $I \cup \{self\}$.
- Intuitively (and for now disregarding cold conditions), an LSC body $(I, (\mathcal{L}, \preceq), \sim, \mathcal{S}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv})$ is supposed to accept w if and only if there exists a sequence

$$C_0 \leadsto_{F_1} C_1 \leadsto_{F_2} C_2 \cdots \leadsto_{F_n} C_n$$

and indices $0 = i_0 < i_1 < \cdots < i_n$ such that for all $0 \le j < n$,

- for all $i_j \leq k < i_{j+1}$, $(\sigma_k, cons_k, Snd_k)$, β satisfies the **hold condition** of C_j ,
- $(\sigma_{i_j}, cons_{i_j}, Snd_{i_j})$, β satisfies the transition condition of F_j , v=0
- C_n is cold,
- for all $i_n < k$, $(\sigma_k, cons_{i_j}, Snd_{i_j})$, β satisfies the **hold condition** of C_n .



Language of LSC Body

The language of the body

$$(I, (\mathcal{L}, \preceq), \sim, \mathcal{S}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv})$$

of LSC L is the language of the TBA

$$\mathcal{B}_L = (Expr_{\mathcal{B}}(X), X, Q, q_{ini}, \rightarrow, Q_F)$$

with

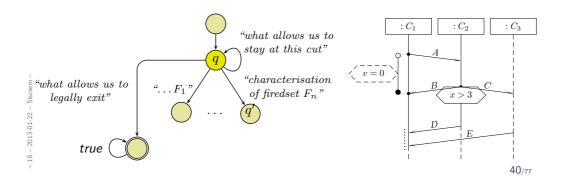
- $Expr_{\mathcal{B}}(X) = Expr_{\mathscr{S}}(\mathscr{S}, X)$
- Q is the set of cuts of (\mathcal{L}, \preceq) , q_{ini} is the instance heads cut,
- $F = \{C \in Q \mid \theta(C) = \operatorname{cold}\}$ is the set of cold cuts of (\mathscr{L}, \preceq) ,
- ullet ightarrow as defined in the following, consisting of
 - loops (q, ψ, q) ,
 - progress transitions (q, ψ, q') corresponding to $q \leadsto_F q'$, and
 - legal exits (q, ψ, \mathcal{L}) .

- 18 - 2013-01-22 - SIscs

Language of LSC Body: Intuition

$$\mathcal{B}_L = (\mathit{Expr}_{\mathcal{B}}(X), X, Q, q_{ini}, \rightarrow, Q_F)$$
 with

- $Expr_{\mathcal{B}}(X) = Expr_{\mathscr{S}}(\mathscr{S}, X)$
- Q is the set of cuts of (\mathscr{L}, \preceq) , q_{ini} is the instance heads cut,
- $F = \{C \in Q \mid \theta(C) = \operatorname{cold}\}$ is the set of cold cuts,
- $\bullet \ \to \mbox{consists of}$
 - loops (q, ψ, q) ,
 - progress transitions (q, ψ, q') corresponding to $q \leadsto_F q'$, and
 - legal exits (q, ψ, \mathcal{L}) .

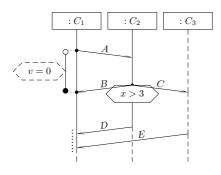


Step I: Only Messages

Some Helper Functions

• Message-expressions of a location:

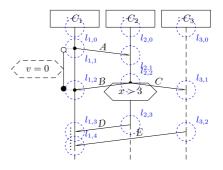
$$\begin{split} \mathscr{E}(l) := \{E_{i_{l},i_{l'}}^{!} \mid (l,E,l') \in \mathsf{Msg}\} \cup \{E_{i_{l'},i_{l}}^{?} \mid (l',E,l) \in \mathsf{Msg}\}, \\ \mathscr{E}(\{l_{1},\ldots,l_{n}\}) := \mathscr{E}(l_{1}) \cup \cdots \cup \mathscr{E}(l_{n}). \\ \bigvee \emptyset := \mathit{true}; \bigvee \{E_{1}_{i_{11},i_{12}}^{!}, \ldots F_{k}_{i_{k1},i_{k2}}^{?}, \ldots\} := \bigvee_{1 \leq j < k} E_{j}_{i_{j1},i_{j2}}^{!} \vee \bigvee_{k \leq j} F_{j}_{i_{j1},i_{j2}}^{?}. \end{split}$$



42/77

Loops

• How long may we **legally** stay at a cut q?

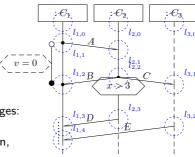


- 18 - 2013-01-22 - Slscsem -

Loops

- How long may we **legally** stay at a cut q?
- Intuition: those $(\sigma_i, cons_i, Snd_i)$ are allowed to fire the self-loop (q, ψ, q) where
 - $cons_i \cup Snd_i$ comprises only irrelevant messages:
 - weak mode:
 - no message from a direct successor cut is in,
 - strict mode: no message occurring in the LSC is in,
 - σ_i satisfies the local invariants active at q

And nothing else.



43/77

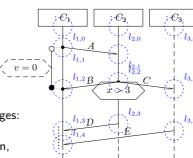
Loops

- How long may we **legally** stay at a cut q?
- **Intuition**: those $(\sigma_i, cons_i, Snd_i)$ are allowed to fire the self-loop (q, ψ, q) where
 - $cons_i \cup Snd_i$ comprises only irrelevant messages:
 - weak mode:
 - no message from a direct successor cut is in,
 - strict mode:
 - no message occurring in the LSC is in,
 - σ_i satisfies the local invariants active at σ_i

And nothing else.

• Formally: Let $F := F_1 \cup \cdots \cup F_n$ be the union of the firedsets of q.

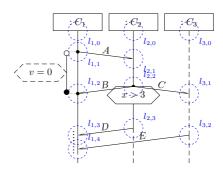
•
$$\psi := \underbrace{\neg(\bigvee \mathscr{E}(F))}_{\text{-true if } F = \emptyset} \land \bigwedge \psi(q)$$



- 18 - 2013-01-22 - Slscsem -

Progress

• When do we move from q to q'?

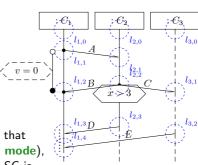


18 - 2013-01-22 - Slscsem -

44/77

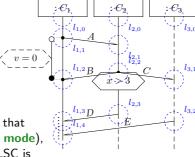
Progress

- When do we move from q to q'?
- Intuition: those $(\sigma_i, cons_i, Snd_i)$ fire the progress transition (q, ψ, q') for which there exists a firedset F such that $q \leadsto_F q'$ and
 - $cons_i \cup Snd_i$ comprises exactly the messages that distinguish F from other firedsets of q (weak mode), and in addition no message occurring in the LSC is in $cons_i \cup Snd_i$ (strict mode),
 - \bullet σ satisfies the local invariants and conditions relevant at σ'



Progress

- When do we move from q to q'?
- Intuition: those $(\sigma_i, cons_i, Snd_i)$ fire the progress transition (q, ψ, q') for which there exists a firedset F such that $q \leadsto_F q'$ and
 - $cons_i \cup Snd_i$ comprises exactly the messages that distinguish F from other firedsets of q (weak mode), and in addition no message occurring in the LSC is in $cons_i \cup Snd_i$ (strict mode),



- σ_i satisfies the local invariants and conditions relevant at a'.
- Formally: Let F, F_1, \ldots, F_n be the firedsets of q and let $q \leadsto_F q'$ (unique).
 - $\psi := \bigwedge \mathscr{E}(F) \land \neg (\bigvee (\mathscr{E}(F_1) \cup \cdots \cup \mathscr{E}(F_n)) \setminus \mathscr{E}(F)) \land \bigwedge \psi(g, g')$

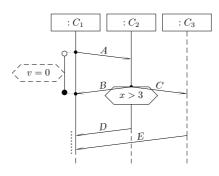
44/77

Step II: Conditions and Local Invariants

8 - 2013-01-22 - Sleceom -

Some More Helper Functions

• Constraints relevant at cut q:



46/77

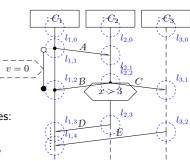
Loops with Conditions

- How long may we **legally** stay at a cut q?
- **Intuition**: those $(\sigma_i, cons_i, Snd_i)$ are allowed to fire the self-loop (q, ψ, q) where
 - $cons_i \cup Snd_i$ comprises only irrelevant messages:
 - weak mode:
 - no message from a direct successor cut is in,
 - strict mode:
 no message occurring in the LSC is in,
 - σ_i satisfies the local invariants active at σ_i

And nothing else.

• Formally: Let $F := F_1 \cup \cdots \cup F_n$ be the union of the firedsets of q.

•
$$\psi := \underbrace{\neg(\bigvee \mathscr{E}(F))} \land \bigwedge \psi(q)$$



- 18 - 2013-01-22 - Slscsem -

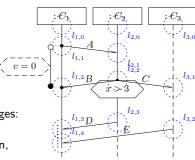
Loops with Conditions

- How long may we legally stay at a cut q?
- Intuition: those $(\sigma_i, cons_i, Snd_i)$ are allowed to fire the self-loop (q, ψ, q) where
 - $cons_i \cup Snd_i$ comprises only irrelevant messages:
 - weak mode:
 - no message from a direct successor cut is in,
 - strict mode: no message occurring in the LSC is in,
 - ullet σ_i satisfies the local invariants active at q

And nothing else.

• Formally: Let $F := F_1 \cup \cdots \cup F_n$ be the union of the firedsets of q.

•
$$\psi := \neg(\bigvee \mathscr{E}(F)) \land \land \psi(g)$$



47/77

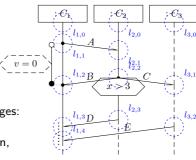
Loops with Conditions

- How long may we **legally** stay at a cut q?
- **Intuition**: those $(\sigma_i, cons_i, Snd_i)$ are allowed to fire the self-loop (q, ψ, q) where
 - $cons_i \cup Snd_i$ comprises only irrelevant messages:
 - weak mode:
 - no message from a direct successor cut is in,
 - strict mode:
 - no message occurring in the LSC is in,
 - σ_i satisfies the local invariants active at q

And nothing else.

• Formally: Let $F := F_1 \cup \cdots \cup F_n$ be the union of the firedsets of q.

•
$$\psi := \underbrace{\neg(\bigvee \mathscr{E}(F))} \land \bigwedge \psi(q)$$



- 18 - 2013-01-22 - Slscsem -

Even More Helper Functions

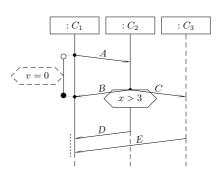
• Constraints relevant when moving from q to cut q':

$$\psi_{\theta}(q, q') = \{ \psi \mid \exists L \subseteq \mathscr{L} \mid (L, \psi, \theta) \in \mathsf{Cond} \land L \cap (q' \setminus q) \neq \emptyset \}$$

$$\cup \psi_{\theta}(q')$$

 $\setminus \{\psi \mid \exists \, l \in q' \setminus q, l' \in \mathcal{L} \mid (l, \circ, expr, \theta, l') \in \mathsf{LocInv} \lor (l', expr, \theta, \circ, l) \in \mathsf{LocInv} \}$ $\cup \{\psi \mid \exists \, l \in q' \setminus q, l' \in \mathcal{L} \mid (l, \bullet, expr, \theta, l') \in \mathsf{LocInv} \lor (l', expr, \theta, \bullet, l) \in \mathsf{LocInv} \}$

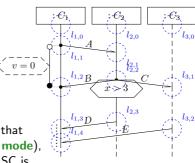
$$\psi(q,q') = \psi_{\mathsf{hot}}(q,q') \cup \psi_{\mathsf{cold}}(q,q')$$



48/77

Progress with Conditions

- When do we move from q to q'?
- Intuition: those $(\sigma_i, cons_i, Snd_i)$ fire the progress transition (q, ψ, q') for which there exists a firedset F such that $q \leadsto_F q'$ and
 - $cons_i \cup Snd_i$ comprises exactly the messages that distinguish F from other firedsets of q (weak mode), and in addition no message occurring in the LSC is in $cons_i \cup Snd_i$ (strict mode),

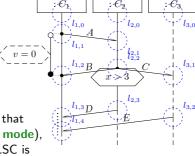


- ullet σ_i satisfies the local invariants and conditions relevant at q'.
- Formally: Let F, F_1, \ldots, F_n be the firedsets of q and let $q \leadsto_F q'$ (unique).
 - $\psi := \bigwedge \mathscr{E}(F) \land \neg (\bigvee (\mathscr{E}(F_1) \cup \cdots \cup \mathscr{E}(F_n)) \setminus \mathscr{E}(F)) \land \bigwedge (g, g')$

- 2013-01-22 - Slscsem -

Progress with Conditions

- When do we move from q to q'?
- Intuition: those $(\sigma_i, cons_i, Snd_i)$ fire the progress transition (q, ψ, q') for which there exists a firedset F such that $q \leadsto_F q'$ and
 - exists a firedset F such that $q \leadsto_F q'$ and $cons_i \cup Snd_i$ comprises exactly the messages that distinguish F from other firedsets of q (weak mode), and in addition no message occurring in the LSC is in $cons_i \cup Snd_i$ (strict mode),

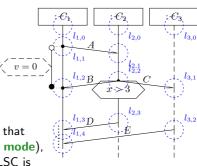


- σ_i satisfies the local invariants and conditions relevant at q'.
- Formally: Let F, F_1, \dots, F_n be the firedsets of q and let $q \leadsto_F q'$ (unique).
 - $\psi := \bigwedge \mathscr{E}(F) \land \neg (\bigvee (\mathscr{E}(F_1) \cup \cdots \cup \mathscr{E}(F_n)) \setminus \mathscr{E}(F)) \land \bigwedge \psi(q, q')$

49/77

Progress with Conditions

- When do we move from q to q'?
- Intuition: those $(\sigma_i, cons_i, Snd_i)$ fire the progress transition (q, ψ, q') for which there exists a firedset F such that $q \leadsto_F q'$ and
 - $cons_i \cup Snd_i$ comprises exactly the messages that distinguish F from other firedsets of q (weak mode), and in addition no message occurring in the LSC is in $cons_i \cup Snd_i$ (strict mode),



- σ_i satisfies the local invariants and conditions relevant at q'.
- Formally: Let F, F_1, \ldots, F_n be the firedsets of q and let $q \leadsto_F q'$ (unique).
 - $\psi := \bigwedge \mathscr{E}(F) \land \neg (\bigvee (\mathscr{E}(F_1) \cup \cdots \cup \mathscr{E}(F_n)) \setminus \mathscr{E}(F)) \land \bigwedge \psi(q, q').$

18 – 2013-01-22 – Slscsem –

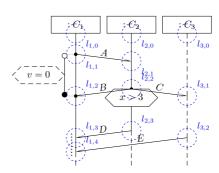
Step III: Cold Conditions and Cold Local Invariants

18 - 2013-01-22 - Slscsem -

50/77

Legal Exits

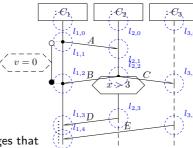
• When do we take a legal exit from q?



18 - 2013-01-22 - Slscsem -

Legal Exits

- When do we take a legal exit from q?
- Intuition: those $(\sigma_i, cons_i, Snd_i)$ fire the legal exit transition (q, ψ, \mathcal{L})
 - for which there exists a firedset F and some q' such that $q \leadsto_F q'$ and
 - $cons_i \cup Snd_i$ comprises exactly the messages that distinguish F from other firedsets of q (weak mode), and in addition no message occurring in the LSC is in $cons_i \cup Snd_i$ (strict mode) and
 - \bullet at least one cold condition or local invariant relevant when moving to q' is violated, or
 - for which there is no matching firedset and at least one cold local invariant relevant at q is violated.



51/77

 $: C_2$

 $l_{2,0}$

 $\langle l_{1,0}$

 $^{^{\prime}}l_{1,1}$

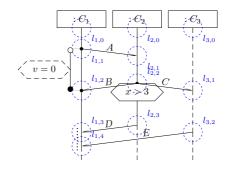
 $l_{1,2}E$

v = 0

Legal Exits

- When do we take a legal exit from q?
- Intuition: those $(\sigma_i, cons_i, Snd_i)$ fire the legal exit transition (q, ψ, \mathcal{L})
 - for which there exists a firedset F and some q' such that $q \leadsto_F q'$ and
 - $cons_i \cup Snd_i$ comprises exactly the messages that distinguish F from other firedsets of q (weak mode), and in addition no message occurring in the LSC is in $cons_i \cup Snd_i$ (strict mode) and
 - at least one cold condition or local invariant relevant when moving to q^\prime is violated, or
 - for which there is no matching firedset and at least one cold local invariant relevant at q is violated.
- Formally: Let F_1, \ldots, F_n be the firedsets of q with $q \leadsto_{F_i} q'_i$.
 - $\psi := \bigvee_{i=1}^{n} \bigwedge \mathscr{E}(F_i) \land \neg (\bigvee (\mathscr{E}(F_1) \cup \dots \cup \mathscr{E}(F_n)) \setminus \mathscr{E}(F_i)) \land \bigvee \psi_{\mathsf{cold}}(q, q_i')$ $\lor \neg (\bigvee \mathscr{E}(F_i)) \land \bigvee \psi_{\mathsf{cold}}(q)$

Example



- 18 - 2013-01-22 - Slscsem -

52/77

Finally: The LSC Semantics

A full LSC L consist of

- a body $(I,(\mathscr{L},\preceq),\sim,\mathscr{S},\mathsf{Msg},\mathsf{Cond},\mathsf{LocInv})$,
- \bullet an activation condition (here: event) $\mathit{ac} = E_{i_1,i_2}^?$, $E \in \mathscr{E}$, $i_1,i_2 \in I$,
- an activation mode, either initial or invariant,
- a chart mode, either existential (cold) or universal (hot).

18 - 2013-01-22 - Slscsem -

```
A full LSC L consist of

• a body (I, (\mathscr{L}, \preceq), \sim, \mathscr{S}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv}),
• an activation condition (here: event) ac = E_{i_1, i_2}^?, E \in \mathscr{E}, i_1, i_2 \in I,
• an activation mode, either initial or invariant,
• a chart mode, either existential (cold) or universal (hot).

A set W of words over \mathscr{S} and \mathscr{D} satisfies L, denoted W \models L, iff L
• universal (= hot), initial, and
\forall w \in W \ \forall \beta : I \to \mathrm{dom}(\sigma(w^0)) \bullet w \ \text{activates } L \implies w \in \mathcal{L}_\beta(\mathcal{B}_L).
• existential (= cold), initial, and
\exists w \in W \ \exists \beta : I \to \mathrm{dom}(\sigma(w^0)) \bullet w \ \text{activates } L \land w \in \mathcal{L}_\beta(\mathcal{B}_L).
• universal (= hot), invariant, and
\forall w \in W \ \forall k \in \mathbb{N}_0 \ \forall \beta : I \to \mathrm{dom}(\sigma(w^k)) \bullet w/k \ \text{activates } L \implies w/k \in \mathcal{L}_\beta(\mathcal{B}_L).
• existential (= cold), invariant, and
\exists w \in W \ \exists k \in \mathbb{N}_0 \ \exists \beta : I \to \mathrm{dom}(\sigma(w^k)) \bullet w/k \ \text{activates } L \land w/k \in \mathcal{L}_\beta(\mathcal{B}_L).
```

References

- 18 - 2013-01-22 - main -

References

- [Damm and Harel, 2001] Damm, W. and Harel, D. (2001). LSCs: Breathing life into Message Sequence Charts. Formal Methods in System Design, 19(1):45–80.
- [Fecher and Schönborn, 2007] Fecher, H. and Schönborn, J. (2007). UML 2.0 state machines: Complete formal semantics via core state machines. In Brim, L., Haverkort, B. R., Leucker, M., and van de Pol, J., editors, *FMICS/PDMC*, volume 4346 of *LNCS*, pages 244–260. Springer.
- [Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling with statecharts. $IEEE\ Computer,\ 30(7):31-42.$
- [Harel and Maoz, 2007] Harel, D. and Maoz, S. (2007). Assert and negate revisited: Modal semantics for UML sequence diagrams. *Software and System Modeling (SoSyM)*. To appear. (Early version in SCESM'06, 2006, pp. 13-20).
- [Harel and Marelly, 2003] Harel, D. and Marelly, R. (2003). Come, Let's Play: Scenario-Based Programming Using LSCs and the Play-Engine. Springer-Verlag.
- [Klose, 2003] Klose, J. (2003). LSCs: A Graphical Formalism for the Specification of Communication Behavior. PhD thesis, Carl von Ossietzky Universität Oldenburg.
- [OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2. Technical Report formal/07-11-04.
- [OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2. Technical Report formal/07-11-02.
- [Störrle, 2003] Störrle, H. (2003). Assert, negate and refinement in UML-2 interactions. In Jürjens, J., Rumpe, B., France, R., and Fernandez, E. B., editors, *CSDUML 2003*, number TUM-I0323. Technische Universität München.

18 - 2013-01-22 -