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Contents & Goals

Last Lecture:

• Symbolic Büchi Automata (TBA) and its (accepted) language.

• Words of a model.

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What does this LSC mean?

• Are this UML model’s state machines consistent with the interactions?

• Please provide a UML model which is consistent with this LSC.

• What is: activation, hot/cold condition, pre-chart, etc.?

• Content:

• LSC abstract syntax.

• LSC formal semantics.
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Course Map

UML
M

o
d
e
l

In
s
t
a
n
c
e
s

N

S

W E

CD, SM

S = (T,C, V, atr ), SM

M = (ΣDS , AS ,→SM )

ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, consi, Snd i))i∈N

G = (N,E, f) Mathematics

OD UML

✔ ✔

✔ ✔

✔

✔

✘

✘

✔✔

✔

✔

✔

✔
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LiveSequenceCharts Abstract Syntax

–
1
9

–
2
0
1
3
-0

1
-2

3
–

m
a
in

–

4/57



Example

LSC: L
AC: actcond

AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl
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LSC Body: Abstract Syntax
: C1 : C2

x > 3

: C3

A

B C

D
E

v = 0Let Θ = {hot, cold}. An LSC body is a tuple

(I, (L ,�),∼,S ,Msg,Cond, LocInv)

• I is a finite set of instance lines,

L LL LS T C EL E L
L SSL S L
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LSC Body: Abstract Syntax
: C1 : C2

x > 3

: C3

A

B C

D
E

v = 0Let Θ = {hot, cold}. An LSC body is a tuple

(I, (L ,�),∼,S ,Msg,Cond, LocInv)

• I is a finite set of instance lines,

• (L ,�) is a finite, non-empty,
partially ordered set of locations;
each l ∈ L is associated with a temperature
θ(l) ∈ Θ and an instance line il ∈ I,

L LS T C EL E L
L SSL S L
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Recall : IntuitiveSemantics

(i) Strictly After:

a

b
a

(ii) Simultaneously: (simultaneous region)

a

expr1

b c

(iii) Explicitly Unordered: (co-region)

a

b

Intuition: A computation path violates an LSC if the occurrence of some events
doesn’t adhere to the partial order obtained as the transitive closure of (i) to (iii).–
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LSC Body: Abstract Syntax
: C1 : C2

x > 3

: C3

A

B C

D
E

v = 0Let Θ = {hot, cold}. An LSC body is a tuple

(I, (L ,�),∼,S ,Msg,Cond, LocInv)

• I is a finite set of instance lines,

• (L ,�) is a finite, non-empty,
partially ordered set of locations;
each l ∈ L is associated with a temperature
θ(l) ∈ Θ and an instance line il ∈ I,

• ∼⊆ L ×L is an equivalence relation
on locations, the simultaneity relation,

S T C EL E L
L SSL S L
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LSC Body: Abstract Syntax
: C1 : C2

x > 3

: C3

A

B C

D
E

v = 0Let Θ = {hot, cold}. An LSC body is a tuple

(I, (L ,�),∼,S ,Msg,Cond, LocInv)

• I is a finite set of instance lines,

• (L ,�) is a finite, non-empty,
partially ordered set of locations;
each l ∈ L is associated with a temperature
θ(l) ∈ Θ and an instance line il ∈ I,

• ∼⊆ L ×L is an equivalence relation
on locations, the simultaneity relation,

• S = (T,C, V, atr , E ) is a signature,

• Msg ⊆ L × E ×L is a set of asynchronous
messages with (l, b, l′) ∈ Msg only if l � l′,
Not: instantaneous messages —
could be linked to method/operation calls.
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LSC Body: Abstract Syntax
: C1 : C2

x > 3

: C3

A

B C

D
E

v = 0Let Θ = {hot, cold}. An LSC body is a tuple

(I, (L ,�),∼,S ,Msg,Cond, LocInv)

• I is a finite set of instance lines,

• (L ,�) is a finite, non-empty,
partially ordered set of locations;
each l ∈ L is associated with a temperature
θ(l) ∈ Θ and an instance line il ∈ I,

• ∼⊆ L ×L is an equivalence relation
on locations, the simultaneity relation,

• S = (T,C, V, atr , E ) is a signature,

• Msg ⊆ L × E ×L is a set of asynchronous
messages with (l, b, l′) ∈ Msg only if l � l′,
Not: instantaneous messages —
could be linked to method/operation calls.

• Cond ⊆ (2L \ ∅)× ExprS ×Θ is a set of conditions
where ExprS are OCL expressions over W = I ∪ {self }
with (L, expr , θ) ∈ Cond only if l ∼ l′ for all l, l′ ∈ L,

L S L
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LSC Body: Abstract Syntax
: C1 : C2

x > 3

: C3

A

B C

D
E

v = 0Let Θ = {hot, cold}. An LSC body is a tuple

(I, (L ,�),∼,S ,Msg,Cond, LocInv)

• I is a finite set of instance lines,

• (L ,�) is a finite, non-empty,
partially ordered set of locations;
each l ∈ L is associated with a temperature
θ(l) ∈ Θ and an instance line il ∈ I,

• ∼⊆ L ×L is an equivalence relation
on locations, the simultaneity relation,

• S = (T,C, V, atr , E ) is a signature,

• Msg ⊆ L × E ×L is a set of asynchronous
messages with (l, b, l′) ∈ Msg only if l � l′,
Not: instantaneous messages —
could be linked to method/operation calls.

• Cond ⊆ (2L \ ∅)× ExprS ×Θ is a set of conditions
where ExprS are OCL expressions over W = I ∪ {self }
with (L, expr , θ) ∈ Cond only if l ∼ l′ for all l, l′ ∈ L,

• LocInv ⊆ L × {◦, •} × ExprS ×Θ×L × {◦, •}
is a set of local invariants,
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Well -Formedness

Bondedness/no floating conditions: (could be relaxed a little if we wanted to)

• For each location l ∈ L , if l is the location of

• a condition, i.e.

∃ (L, expr , θ) ∈ Cond : l ∈ L, or

• a local invariant, i.e.

∃ (l1, i1, expr , θ, l2, i2) ∈ LocInv : l ∈ {l1, l2}, or

then there is a location l′ equivalent to l, i.e. l ∼ l′, which is the location of

• an instance head, i.e. l′ is minimal wrt. �, or

• a message, i.e.

∃ (l1, b, l2) ∈ Msg : l ∈ {l1, l2}.

Note: if messages in a chart are cyclic, then there doesn’t exist a partial order
(so such charts don’t even have an abstract syntax).
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Course Map

UML
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e
l

In
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N

S

W E

CD, SM

S = (T,C, V, atr ), SM

M = (ΣDS , AS ,→SM )

ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, consi, Snd i))i∈N

G = (N,E, f) Mathematics

OD UML

✔ ✔

✔ ✔

✔

✔

✔

✘

✔✔

✔

✔

✔

✔
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LiveSequenceCharts Semantics
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TBA-based Semanticsof LSCs

Plan:

• Given an LSC L with body

(I, (L ,�),∼,S ,Msg,Cond, LocInv),

• construct a TBA BL, and

• define L(L) in terms of L(BL),
in particular taking activation condition and activation mode into
account.

• Then M |= L (universal) if and only if L(M) ⊆ L(L).
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Examples: Semantics?

: C1 : C2

x > 3

: C3

A

B C

D

E

v = 0

l1,0

l1,1

l1,2

l1,3

l1,4

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

l3,2
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Formal LSC Semantics: I t’s in theCuts!

Definition.
Let (I, (L ,�),∼,S ,Msg,Cond, LocInv) be an LSC body.

A non-empty set ∅ 6= C ⊆ L is called a cut of the LSC body iff

• it is downward closed, i.e.

∀ l, l′ : l′ ∈ C ∧ l � l′ =⇒ l ∈ C,

• it is closed under simultaneity, i.e.

∀ l, l′ : l′ ∈ C ∧ l ∼ l′ =⇒ l ∈ C, and

• it comprises at least one location per instance line, i.e.

∀ i ∈ I ∃ l ∈ C : il = i.

A cut C is called hot, denoted by θ(C) = hot, if and only if at
least one of its maximal elements is hot, i.e. if

∃ l ∈ C : θ(l) = hot ∧ ∄ l′ ∈ C : l ≺ l′

Otherwise, C is called cold, denoted by θ(C) = cold.
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Examples: Cut or Not Cut? Hot/Cold?

(i) non-empty set ∅ 6= C ⊆ L ,

(ii) downward closed, i.e.
∀ l, l′ : l′ ∈ C ∧ l � l′ =⇒ l ∈ C

(iii) closed under simultaneity, i.e.
∀ l, l′ : l′ ∈ C ∧ l ∼ l′ =⇒ l ∈ C

(iv) at least one location per instance line, i.e.
∀ i ∈ I ∃ l ∈ C : il = i,

: C1 : C2

x > 3

: C3

A

B C

D

E

v = 0

l1,0

l1,1

l1,2

l1,3

l1,4

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

l3,2

• C0 = ∅

• C1 = {l1,0, l2,0, l3,0}

• C2 = {l1,1, l2,1, l3,0}

• C3 = {l1,0, l1,1}

• C4 = {l1,0, l1,1, l2,0, l3,0}

• C5 = {l1,0, l1,1, l2,0, l2,1, l3,0}

• C6 = L \ {l1,3, l2,3}

• C7 = L

–
1
9

–
2
0
1
3
-0

1
-2

3
–

S
ls
cs

em
–

14/57

A Successor Relation onCuts

The partial order of (L ,�) and the simultaneity relation “∼” induce a direct
successor relation on cuts of L as follows:

Definition. Let C,C′ ⊆ L bet cuts of an LSC body with locations
(L ,�) and messages Msg.
C′ is called direct successor of C via fired-set F , denoted by
C  F C′, if and only if

• F 6= ∅,

• C′ \ C = F ,

• for each message reception in F , the corresponding sending is
already in C,

∀ (l, E, l′) ∈ Msg : l′ ∈ F =⇒ l ∈ C, and

• locations in F , that lie on the same instance line, are pairwise
unordered, i.e.

∀ l, l′ ∈ F : l 6= l′ ∧ il = il′ =⇒ l 6� l′ ∧ l′ 6� l

–
1
9

–
2
0
1
3
-0

1
-2

3
–

S
ls
cs

em
–

15/57



Properties of theFired-set

C  F C′ if and only if
• F 6= ∅,

• C′ \ C = F ,

• ∀ (l, E, l′) ∈ Msg : l′ ∈ F =⇒ l ∈ C, and

• ∀ l, l′ ∈ F : l 6= l′ ∧ il = il′ =⇒ l 6� l′ ∧ l′ 6� l

• Note: F is closed under simultaneity.

• Note: locations in F are direct �-successors of locations in C, i.e.

∀ l′ ∈ F ∃ l ∈ C : l ≺ l′ ∧ ∄ l′′ ∈ C : l′ ≺ l′′ ≺ l

–
1
9

–
2
0
1
3
-0

1
-2

3
–

S
ls
cs

em
–

16/57

Successor Cut Examples

(i) F 6= ∅, (ii) C′ \ C = F ,

(iii) ∀ (l, E, l′) ∈ Msg : l′ ∈ F =⇒ l ∈ C, and

(iv) ∀ l, l′ ∈ F : l 6= l′ ∧ il = il′ =⇒ l 6� l′ ∧ l′ 6� l

: C1 : C2

x > 3

: C3

A

B C

D

E

v = 0

l1,0

l1,1

l1,2

l1,3

l1,4

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

l3,2
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see Slide 12



Idea: Accept Timed Words by Advancing theCut

• Let w = (σ0, cons0, Snd0), (σ1, cons1, Snd1), (σ2, cons2, Snd2), . . .
be a word of a UML model and β a valuation of I ∪ {self }.

• Intuitively (and for now disregarding cold conditions),

an LSC body (I, (L ,�),∼,S ,Msg,Cond, LocInv)
is supposed to accept w if and only if there exists a sequence

C0  F1
C1  F2

C2 · · · Fn
Cn

and indices 0 = i0 < i1 < · · · < in such that for all 0 ≤ j < n,

• for all ij ≤ k < ij+1, (σk, consk, Sndk), β
satisfies the hold condition of Cj ,

• (σij
, cons ij

, Snd ij
), β

satisfies the transition condition of Fj ,

• Cn is cold,

• for all in < k, (σk, consij
, Snd ij

), β
satisfies the hold condition of Cn.

: C1 : C2

x > 3

: C3

A

B C

D
E

v = 0
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Examples: Semantics?

: C1 : C2

x > 3

: C3

A

B C

D

E

v = 0

l1,0

l1,1

l1,2

l1,3

l1,4

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

l3,2
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Languageof LSC Body

The language of the body

(I, (L ,�),∼,S ,Msg,Cond, LocInv)

of LSC L is the language of the TBA

BL = (ExprB(X), X,Q, qini ,→, QF )

with

• ExprB(X) = ExprS (S , X)

• Q is the set of cuts of (L ,�), qini is the instance heads cut,

• F = {C ∈ Q | θ(C) = cold} is the set of cold cuts of (L ,�),

• → as defined in the following, consisting of

• loops (q, ψ, q),

• progress transitions (q, ψ, q′) corresponding to q  F q′, and

• legal exits (q, ψ,L ).
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Languageof LSC Body: Intuition

BL = (ExprB(X), X,Q, qini ,→, QF ) with

• ExprB(X) = ExprS (S , X)

• Q is the set of cuts of (L ,�), qini is the instance heads cut,

• F = {C ∈ Q | θ(C) = cold} is the set of cold cuts,

• → consists of

• loops (q, ψ, q),

• progress transitions (q, ψ, q′) corresponding to q F q′, and

• legal exits (q, ψ,L ).

q

. . . q′

“what allows us to

stay at this cut”

“. . .F1”
“characterisation

of firedset Fn”
“what allows us to

legally exit”

true

: C1 : C2

x > 3

: C3

A

B C

D
E

v = 0
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Step I: Only Messages
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SomeHelper Functions

• Message-expressions of a location:E (l) := {E!
il,il′

| (l, E, l′) ∈ Msg} ∪ {E?
il′ ,il

| (l′, E, l) ∈ Msg},E ({l1, . . . , ln}) := E (l1) ∪ · · · ∪ E (ln).
∨

∅ := true;
∨

{E1
!
i11,i12 , . . . Fk

?
ik1,ik2

, . . . } :=
∨

1≤j<k

Ej
!
ij1,ij2

∨
∨

k≤j

Fj
?
ij1,ij2

: C1 : C2

x > 3

: C3

A

B C

D
E

v = 0
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Loops : C1 : C2

x > 3

: C3

A

B C

D
E

v = 0

l1,0

l1,1

l1,2

l1,3

l1,4

l2,0

l2,1l2,2

l2,3

l3,0

l3,1

l3,2

• How long may we legally stay at a cut q?

• Intuition: those (σi, consi, Snd i) are
allowed to fire the self-loop (q, ψ, q) where

• consi ∪ Snd i comprises only irrelevant messages:
• weak mode:

no message from a direct successor cut is in,
• strict mode:

no message occurring in the LSC is in,

• σi satisfies the local invariants active at q

And nothing else.

• Formally: Let F := F1 ∪ · · · ∪ Fn

be the union of the firedsets of q.

• ψ := ¬(
∨ E (F ))

︸ ︷︷ ︸

=true if F=∅

∧
∧
ψ(q).
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Progress : C1 : C2

x > 3

: C3

A

B C

D
E

v = 0

l1,0

l1,1

l1,2

l1,3

l1,4

l2,0

l2,1l2,2

l2,3

l3,0

l3,1

l3,2

• When do we move from q to q′?

• Intuition: those (σi, consi, Snd i) fire the
progress transition (q, ψ, q′) for which there
exists a firedset F such that q  F q′ and

• consi ∪ Snd i comprises exactly the messages that
distinguish F from other firedsets of q (weak mode),
and in addition no message occurring in the LSC is
in cons i ∪ Snd i (strict mode),

• σi satisfies the local invariants and conditions relevant at q′.

E E E E
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Progress : C1 : C2

x > 3

: C3

A

B C

D
E

v = 0

l1,0

l1,1

l1,2

l1,3

l1,4

l2,0

l2,1l2,2

l2,3

l3,0

l3,1

l3,2

• When do we move from q to q′?

• Intuition: those (σi, consi, Snd i) fire the
progress transition (q, ψ, q′) for which there
exists a firedset F such that q  F q′ and

• consi ∪ Snd i comprises exactly the messages that
distinguish F from other firedsets of q (weak mode),
and in addition no message occurring in the LSC is
in cons i ∪ Snd i (strict mode),

• σi satisfies the local invariants and conditions relevant at q′.

• Formally: Let F, F1, . . . , Fn

be the firedsets of q and let q F q′ (unique).

• ψ :=
∧ E (F ) ∧ ¬

(∨(E (F1) ∪ · · · ∪ E (Fn)
)
\ E (F )

)
∧

∧
ψ(q, q′).
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Step II: ConditionsandLocal Invariants
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SomeMoreHelper Functions

• Constraints relevant at cut q:

ψθ(q) = {ψ | ∃ l ∈ q, l′ /∈ q | (l, ψ, θ, l′) ∈ LocInv ∨ (l′, ψ, θ, l) ∈ LocInv},

ψ(q) = ψhot(q) ∪ ψcold(q)
∧

∅ := false;
∧

{ψ1, . . . , ψn} :=
∧

1≤i≤n

ψi

: C1 : C2

x > 3

: C3

A

B C

D
E

v = 0
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Loops with Conditions : C1 : C2

x > 3

: C3

A

B C

D
E

v = 0

l1,0

l1,1

l1,2

l1,3

l1,4

l2,0

l2,1l2,2

l2,3

l3,0

l3,1

l3,2

• How long may we legally stay at a cut q?

• Intuition: those (σi, consi, Snd i) are
allowed to fire the self-loop (q, ψ, q) where

• consi ∪ Snd i comprises only irrelevant messages:
• weak mode:

no message from a direct successor cut is in,
• strict mode:

no message occurring in the LSC is in,

• σi satisfies the local invariants active at q

And nothing else.

• Formally: Let F := F1 ∪ · · · ∪ Fn

be the union of the firedsets of q.

• ψ := ¬(
∨ E (F ))

︸ ︷︷ ︸

=true if F=∅

∧
∧
ψ(q).
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Even MoreHelper Functions

• Constraints relevant when moving from q to cut q′:

ψθ(q, q
′) = {ψ | ∃L ⊆ L | (L,ψ, θ) ∈ Cond ∧ L ∩ (q′ \ q) 6= ∅}

∪ ψθ(q
′)

\ {ψ | ∃ l ∈ q′ \ q, l′ ∈ L | (l, ◦, expr , θ, l′) ∈ LocInv ∨ (l′, expr , θ, ◦, l) ∈ LocInv}

∪ {ψ | ∃ l ∈ q′ \ q, l′ ∈ L | (l, •, expr , θ, l′) ∈ LocInv ∨ (l′, expr , θ, •, l) ∈ LocInv}

ψ(q, q′) = ψhot(q, q
′) ∪ ψcold(q, q

′)

: C1 : C2

x > 3

: C3

A

B C

D
E

v = 0
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Progresswith Conditions : C1 : C2

x > 3

: C3

A

B C

D
E

v = 0

l1,0

l1,1

l1,2

l1,3

l1,4

l2,0

l2,1l2,2

l2,3

l3,0

l3,1

l3,2

• When do we move from q to q′?

• Intuition: those (σi, consi, Snd i) fire the
progress transition (q, ψ, q′) for which there
exists a firedset F such that q  F q′ and

• consi ∪ Snd i comprises exactly the messages that
distinguish F from other firedsets of q (weak mode),
and in addition no message occurring in the LSC is
in cons i ∪ Snd i (strict mode),

• σi satisfies the local invariants and conditions relevant at q′.

• Formally: Let F, F1, . . . , Fn

be the firedsets of q and let q F q′ (unique).

• ψ :=
∧ E (F ) ∧ ¬

(∨(E (F1) ∪ · · · ∪ E (Fn)
)
\ E (F )

)
∧

∧
ψ(q, q′).
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Step III: Cold Conditions andCold Local Invariants
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Legal Exits : C1 : C2

x > 3

: C3

A

B C

D
E

v = 0

l1,0

l1,1

l1,2

l1,3

l1,4

l2,0

l2,1l2,2

l2,3

l3,0

l3,1

l3,2

• When do we take a legal exit from q?

• Intuition: those (σi, consi, Snd i) fire the
legal exit transition (q, ψ,L )

• for which there exists a firedset F and
some q′ such that q F q′ and

• cons i ∪ Snd i comprises exactly the messages that
distinguish F from other firedsets of q (weak mode),
and in addition no message occurring in the LSC is
in consi ∪ Snd i (strict mode) and

• at least one cold condition or local invariant relevant when moving to q′

is violated, or

• for which there is no matching firedset and

at least one cold local invariant relevant at q is violated.

• Formally: Let F1, . . . , Fn be the firedsets of q with q Fi
q′i.

• ψ :=
∨n

i=1

∧ E (Fi) ∧ ¬
(∨

(E (F1) ∪ · · · ∪ E (Fn)) \ E (Fi)
)
∧

∨
ψcold(q, q

′
i)

∨ ¬(
∨ E (Fi)) ∧

∨
ψcold(q)
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Finally: TheLSC Semantics

A full LSC L consist of

• a body (I, (L ,�),∼,S ,Msg,Cond, LocInv),

• an activation condition (here: event) ac = E?
i1,i2

, E ∈ E , i1, i2 ∈ I,

• an activation mode, either initial or invariant,

• a chart mode, either existential (cold) or universal (hot).

A set W of words over S and D satisfies L, denoted W |= L, iff L

• universal (= hot), initial, and

∀w ∈W ∀β : I → dom(σ(w0)) • w activates L =⇒ w ∈ Lβ(BL).

• existential (= cold), initial, and

∃w ∈W ∃β : I → dom(σ(w0)) • w activates L ∧ w ∈ Lβ(BL).

• universal (= hot), invariant, and

∀w ∈W ∀ k ∈ N0 ∀β : I → dom(σ(wk))•w/k activates L =⇒ w/k ∈ Lβ(BL).

• existential (= cold), invariant, and

∃w ∈W ∃ k ∈ N0 ∃β : I → dom(σ(wk)) • w/k activates L ∧ w/k ∈ Lβ(BL).

–
1
9

–
2
0
1
3
-0

1
-2

3
–

S
ls
cs

em
–

33/57

Back to UML: Interactions

–
1
9

–
2
0
1
3
-0

1
-2

3
–

m
a
in

–

34/57



Model Consistency wrt. Interaction

• We assume that the set of interactions I is partitioned into two
(possibly empty) sets of universal and existential interactions, i.e.I = I∀ ∪̇ I∃.

Definition. A model

M = (CD ,SM ,OD ,I )

is called consistent (more precise: the constructive description of
behaviour is consistent with the reflective one) if and only if

∀ I ∈ I∀ : L(M) ⊆ L(I)

and

∀ I ∈ I∃ : L(M) ∩ L(I) 6= ∅.
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Interactions asReflectiveDescription

• In UML, reflective (temporal) descriptions are subsumed by interactions.

• A UML model M = (CD ,SM ,OD ,I ) has a set of interactions I .

• An interaction I ∈ I can be (OMG claim: equivalently) diagrammed as

• sequence diagram, timing diagram, or

• communication diagram (formerly known as collaboration diagram).

Figure 14.26 - Sequence Diagram with time and timing concepts

sd UserAccepted

:User :ACSystem

Code d=duration

CardOut {0..13}

OK
Unlock

{d..3*d}

t=now

{t..t+3}

DurationConstraint

TimeObservation

TimeConstraint

DurationObservation

[OMG, 2007b, 513] Figure 14.27 - Communication diagram 

sd M

:r s[k]:B

s[u]:B

1a:m1

2:m21b:m3

1b.1:m3 1b.1.1:m3,
1b.1.1.1:m2

Lifeline

Message
with
Sequence
number

Messages

[OMG, 2007b, 515]

Figure 14.30 - Compact Lifeline with States

sd UserAcc_User

Idle WaitCard WaitAccess Idle

{d..3*d}

:User

State or conditionLifeline DurationConstraint

[OMG, 2007b, 522]

Figure 14.31 - Timing Diagram with more than one Lifeline and with Messages

sd UserAccepted

Idle

WaitCard

WaitAccess

{t..t+3}

{d..3*d}

:U
se

r

0 1 2 t

HasCard

NoCard

:A
C

S
ys

te
m

Code

CardOut
{0..13}

OK

Unlock

d
t=now

State or conditionLifelines

Duration Observation

Duration Constraints

Time Observation

Time Constraint

Message

[OMG, 2007b, 522]
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Interactions asReflectiveDescription

• In UML, reflective (temporal) descriptions are subsumed by interactions.

• A UML model M = (CD ,SM ,OD ,I ) has a set of interactions I .

• An interaction I ∈ I can be (OMG claim: equivalently) diagrammed as

• sequence diagram, timing diagram, or

• communication diagram (formerly known as collaboration diagram).

Figure 14.26 - Sequence Diagram with time and timing concepts

sd UserAccepted

:User :ACSystem

Code d=duration

CardOut {0..13}

OK
Unlock

{d..3*d}

t=now

{t..t+3}

DurationConstraint

TimeObservation

TimeConstraint

DurationObservation

[OMG, 2007b, 513] Figure 14.27 - Communication diagram 

sd M

:r s[k]:B

s[u]:B

1a:m1

2:m21b:m3

1b.1:m3 1b.1.1:m3,
1b.1.1.1:m2

Lifeline

Message
with
Sequence
number

Messages

[OMG, 2007b, 515]

Figure 14.30 - Compact Lifeline with States

sd UserAcc_User

Idle WaitCard WaitAccess Idle

{d..3*d}

:User

State or conditionLifeline DurationConstraint

[OMG, 2007b, 522]

Figure 14.31 - Timing Diagram with more than one Lifeline and with Messages

sd UserAccepted

Idle

WaitCard

WaitAccess

{t..t+3}

{d..3*d}

:U
se

r

0 1 2 t

HasCard

NoCard

:A
C

S
ys

te
m

Code

CardOut
{0..13}

OK

Unlock

d
t=now

State or conditionLifelines

Duration Observation

Duration Constraints

Time Observation

Time Constraint

Message

[OMG, 2007b, 522]
Figure 14.28 - Interaction Overview Diagram representing a High Level Interaction diagram

sd OverviewDiagram lifelines :User, :ACSystem

ref
EstablishAccess("Illegal PIN")

sd

:User :ACSystem

CardOut

sd

:User :ACSystem

Msg("Please Enter")

ref
OpenDoor

[pin ok]

{0..25}

{1..14}

InteractionUse

(inline) Interaction

decision

interaction constraint

Duration Constraint

[OMG, 2007b, 518]

Figure 9.11 - The internal structure of the Observer collaboration shown inside the collaboration icon (a connection is 
shown between the Subject and the Observer role).

Observer

Observer : SlidingBarIconSubject : CallQueue

[OMG, 2007b, 170]

Figure 9.12 - In the Observer collaboration two roles, a Subject and an Observer, collaborate to produce the desired 
behavior. Any instance playing the Subject role must possess the properties specified by CallQueue, and similarly for 
the Observer role.

Observer

SlidingBarIcon
Observer

CallQueue Subject

queue: List of Call
source: Object
waitAlarm: Alarm

reading: Real
color: Color
range: Interval

Observer.reading = length (Subject.queue)

capacity: Integer

Observer.range = (0 .. Subject.capacity)

[OMG, 2007b, 170]
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Why SequenceDiagrams?

Most Prominent: Sequence Diagrams — with long history:

• Message Sequence Charts, standardized by the ITU in different
versions, often accused to lack a formal semantics.

• Sequence Diagrams of UML 1.x

Most severe drawbacks of these formalisms:

• unclear interpretation:
example scenario or invariant?

• unclear activation:
what triggers the requirement?

• unclear progress requirement:
must all messages be observed?

• conditions merely comments

• no means to express

forbidden scenarios

LSC: L
AC: actcond
AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done
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Thus: LiveSequenceCharts

• SDs of UML 2.x address some issues, yet the standard exhibits
unclarities and even contradictions [Harel and Maoz, 2007, Störrle, 2003]

• For the lecture, we consider Live Sequence Charts (LSCs)
[Damm and Harel, 2001, Klose, 2003, Harel and Marelly, 2003], who
have a common fragment with UML 2.x SDs [Harel and Maoz, 2007]

• Modelling guideline: stick to that fragment.
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SideNote: Protocol Statemachines

Same direction: call orders on operations

• “for each C instance, method f() shall only be called after g() but before h()”

Can be formalised with protocol state machines.
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TheConcept of History, andOther Pseudo-States
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History andDeep History: By Example

susp

•

s0

act

H H∗

•

s1 s2

s3
sb

•

s4

s5

E/

B/

C/

D/

F/

Rs/

Rd/
A/

S/

Rs/
Rd/

What happens on...

• Rs?
s0, s2

• Rd?
s0, s2

• A,B,C, S,Rs?
s0, s1, s2, s3, susp, s3

• A,B, S,Rd?
s0, s1, s2, s3, susp, s3

• A,B,C,D,E,Rs?
s0, s1, s2, s3, s4, s5, susp, s3

• A,B,C,D,Rd?
s0, s1, s2, s3, s4, s5, susp, s5
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Junction andChoice

• Junction (“static conditional branch”): •
[gd

1
]/a

ct 1

[gd
2 ]/act

2

• Choice: (“dynamic conditional branch”)

Note: not so sure about naming and symbols, e.g.,
I’d guessed it was just the other way round...
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Junction andChoice

• Junction (“static conditional branch”): •
[gd

1
]/a

ct 1

[gd
2 ]/act

2
• good: abbreviation

• unfolds to so many similar transitions with different guards,
the unfolded transitions are then checked for enabledness

• at best, start with trigger, branch into conditions, then apply actions

• Choice: (“dynamic conditional branch”)

Note: not so sure about naming and symbols, e.g.,
I’d guessed it was just the other way round...
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Junction andChoice

• Junction (“static conditional branch”): •
[gd

1
]/a

ct 1

[gd
2 ]/act

2
• good: abbreviation

• unfolds to so many similar transitions with different guards,
the unfolded transitions are then checked for enabledness

• at best, start with trigger, branch into conditions, then apply actions

• Choice: (“dynamic conditional branch”)

• evil: may get stuck

• enters the transition without knowing whether there’s an enabled path

• at best, use “else” and convince yourself that it cannot get stuck

• maybe even better: avoid

Note: not so sure about naming and symbols, e.g.,
I’d guessed it was just the other way round...
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Entry andExit Point, SubmachineState, Terminate

• Hierarchical states can be “folded” for readability.
(but: this can also hinder readability.)

• Can even be taken from a different state-machine for re-use. S : s
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Entry andExit Point, SubmachineState, Terminate

• Hierarchical states can be “folded” for readability.
(but: this can also hinder readability.)

• Can even be taken from a different state-machine for re-use. S : s

• Entry/exit points ,

• Provide connection points for finer integration into the current level,
than just via initial state.

• Semantically a bit tricky:

• First the exit action of the exiting state,

• then the actions of the transition,

• then the entry actions of the entered state,

• then action of the transition from
the entry point to an internal state,

• and then that internal state’s entry action.
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Entry andExit Point, SubmachineState, Terminate

• Hierarchical states can be “folded” for readability.
(but: this can also hinder readability.)

• Can even be taken from a different state-machine for re-use. S : s

• Entry/exit points ,

• Provide connection points for finer integration into the current level,
than just via initial state.

• Semantically a bit tricky:

• First the exit action of the exiting state,

• then the actions of the transition,

• then the entry actions of the entered state,

• then action of the transition from
the entry point to an internal state,

• and then that internal state’s entry action.

• Terminate Pseudo-State

• When a terminate pseudo-state is reached,
the object taking the transition is immediately killed.
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Deferred Events in State-Machines
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Deferred Events: Idea

For ages, UML state machines comprises the feature of deferred events.

The idea is as follows:

• Consider the following state machine:

s1 s2 s3
E/ F/

• Assume we’re stable in s1, and F is ready in the ether.

• In the framework of the course, F is discarded.
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Deferred Events: Idea

For ages, UML state machines comprises the feature of deferred events.

The idea is as follows:

• Consider the following state machine:

s1 s2 s3
E/ F/

• Assume we’re stable in s1, and F is ready in the ether.

• In the framework of the course, F is discarded.

• But we may find it a pity to discard the poor event
and may want to remember it for later processing, e.g. in s2,
in other words, defer it.
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Deferred Events: Idea

For ages, UML state machines comprises the feature of deferred events.

The idea is as follows:

• Consider the following state machine:

s1 s2 s3
E/ F/

• Assume we’re stable in s1, and F is ready in the ether.

• In the framework of the course, F is discarded.

• But we may find it a pity to discard the poor event
and may want to remember it for later processing, e.g. in s2,
in other words, defer it.

General options to satisfy such needs:

• Provide a pattern how to “program” this (use self-loops and helper attributes).

• Turn it into an original language concept.
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Deferred Events: Idea

For ages, UML state machines comprises the feature of deferred events.

The idea is as follows:

• Consider the following state machine:

s1 s2 s3
E/ F/

• Assume we’re stable in s1, and F is ready in the ether.

• In the framework of the course, F is discarded.

• But we may find it a pity to discard the poor event
and may want to remember it for later processing, e.g. in s2,
in other words, defer it.

General options to satisfy such needs:

• Provide a pattern how to “program” this (use self-loops and helper attributes).

• Turn it into an original language concept. (← OMG’s choice)
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Deferred Events: Syntax and Semantics

• Syntactically,

• Each state has (in addition to the name) a set of deferred events.

• Default: the empty set.
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Deferred Events: Syntax and Semantics

• Syntactically,

• Each state has (in addition to the name) a set of deferred events.

• Default: the empty set.

• The semantics is a bit intricate, something like

• if an event E is dispatched,

• and there is no transition enabled to consume E,

• and E is in the deferred set of the current state configuration,

• then stuff E into some “deferred events space” of the object, (e.g. into the
ether (= extend ε) or into the local state of the object (= extend σ))

• and turn attention to the next event.
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Deferred Events: Syntax and Semantics

• Syntactically,

• Each state has (in addition to the name) a set of deferred events.

• Default: the empty set.

• The semantics is a bit intricate, something like

• if an event E is dispatched,

• and there is no transition enabled to consume E,

• and E is in the deferred set of the current state configuration,

• then stuff E into some “deferred events space” of the object, (e.g. into the
ether (= extend ε) or into the local state of the object (= extend σ))

• and turn attention to the next event.

• Not so obvious:

• Is there a priority between deferred and regular events?

• Is the order of deferred events preserved?

• ...

[Fecher and Schönborn, 2007], e.g., claim to provide semantics for the complete

Hierarchical State Machine language, including deferred events.
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ActiveandPassiveObjects [Harel andGery, 1997]

–
1
9

–
2
0
1
3
-0

1
-2

3
–

m
a
in

–

47/57

What about non-ActiveObjects?

Recall:

• We’re still working under the assumption that all classes in the class
diagram (and thus all objects) are active.

• That is, each object has its own thread of control and is (if stable)
at any time ready to process an event from the ether.
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What about non-ActiveObjects?

Recall:

• We’re still working under the assumption that all classes in the class
diagram (and thus all objects) are active.

• That is, each object has its own thread of control and is (if stable)
at any time ready to process an event from the ether.

But the world doesn’t consist of only active objects.

For instance, in the crossing controller from the exercises we could wish to have
the whole system live in one thread of control.

So we have to address questions like:

• Can we send events to a non-active object?

• And if so, when are these events processed?

• etc.
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ActiveandPassiveObjects: Nomenclature

[Harel and Gery, 1997] propose the following (orthogonal!) notions:

• A class (and thus the instances of this class) is either active or passive
as declared in the class diagram.

• An active object has (in the operating system sense) an own thread:
an own program counter, an own stack, etc.

• A passive object doesn’t.
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ActiveandPassiveObjects: Nomenclature

[Harel and Gery, 1997] propose the following (orthogonal!) notions:

• A class (and thus the instances of this class) is either active or passive
as declared in the class diagram.

• An active object has (in the operating system sense) an own thread:
an own program counter, an own stack, etc.

• A passive object doesn’t.

• A class is either reactive or non-reactive.

• A reactive class has a (non-trivial) state machine.

• A non-reactive one hasn’t.

–
1
9

–
2
0
1
3
-0

1
-2

3
–

S
a
ct

p
a
ss

–

49/57

ActiveandPassiveObjects: Nomenclature

[Harel and Gery, 1997] propose the following (orthogonal!) notions:

• A class (and thus the instances of this class) is either active or passive
as declared in the class diagram.

• An active object has (in the operating system sense) an own thread:
an own program counter, an own stack, etc.

• A passive object doesn’t.

• A class is either reactive or non-reactive.

• A reactive class has a (non-trivial) state machine.

• A non-reactive one hasn’t.

Which combinations do we understand?

active passive

reactive ✔ (∗)

non-reactive (✔) (✔)
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PassiveandReactive

• So why don’t we understand passive/reactive?

• Assume passive objects u1 and u2, and active object u,
and that there are events in the ether for all three.

Which of them (can) start a run-to-completion step...?
Do run-to-completion steps still interleave...?
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PassiveandReactive

• So why don’t we understand passive/reactive?

• Assume passive objects u1 and u2, and active object u,
and that there are events in the ether for all three.

Which of them (can) start a run-to-completion step...?
Do run-to-completion steps still interleave...?

Reasonable Approaches:

• Avoid — for instance, by

• require that reactive implies active for model well-formedness.

• requiring for model well-formedness that events are never sent to
instances of non-reactive classes.

• Explain — here: (following [Harel and Gery, 1997])

• Delegate all dispatching of events to the active objects.
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PassiveReactiveClasses

• Firstly, establish that each object u knows, via (implicit) link itsAct ,
the active object uact which is responsible for dispatching events to u.

• If u is an instance of an active class, then ua = u.

C1 C2 D
n

0..1 itsAct

1
itsAct

1

itsAct

1

〈〈signal〉〉

EC1

〈〈signal〉〉

EC2

〈〈signal〉〉

ED

dest
1

dest
1

dest
1

C
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PassiveReactiveClasses

• Firstly, establish that each object u knows, via (implicit) link itsAct ,
the active object uact which is responsible for dispatching events to u.

• If u is an instance of an active class, then ua = u.

u1 : C1 ud : C2 ua : D
n

itsAct
itsAct

itsAct

Sending an event:

• Establish that of each signal we
have a version EC with an
association dest : C0,1, C ∈ C .

• Then n!E in u1 : C1 becomes:

• Create an instance ue of EC2
and

set ue’s dest to ud := σ(u1)(n).

• Send to ua := σ(σ(u1)(n))(itsAct),

i.e., ε′ = ε⊕ (ua, ue).
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PassiveReactiveClasses

• Firstly, establish that each object u knows, via (implicit) link itsAct ,
the active object uact which is responsible for dispatching events to u.

• If u is an instance of an active class, then ua = u.

u1 : C1 ud : C2 ua : D
n

itsAct
itsAct

itsAct

Sending an event:

• Establish that of each signal we
have a version EC with an
association dest : C0,1, C ∈ C .

• Then n!E in u1 : C1 becomes:

• Create an instance ue of EC2
and

set ue’s dest to ud := σ(u1)(n).

• Send to ua := σ(σ(u1)(n))(itsAct),

i.e., ε′ = ε⊕ (ua, ue).

Dispatching an event:

• Observation: the ether only has
events for active objects.

• Say ue is ready in the ether for ua.

• Then ua asks σ(ue)(dest) = ud to
process ue — and waits until
completion of corresponding RTC.

• ud may in particular discard event.
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And What About Methods?
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And What About Methods?

• In the current setting, the (local) state of objects is only modified by
actions of transitions, which we abstract to transformers.

• In general, there are also methods.

• UML follows an approach to separate

• the interface declaration from

• the implementation.

In C++ lingo: distinguish declaration and definition of method.
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And What About Methods?

• In the current setting, the (local) state of objects is only modified by
actions of transitions, which we abstract to transformers.

• In general, there are also methods.

• UML follows an approach to separate

• the interface declaration from

• the implementation.

In C++ lingo: distinguish declaration and definition of method.

• In UML, the former is
called behavioural feature
and can (roughly) be

C

ξ1 f(τ1,1, . . . , τ1,n1
) : τ1 P1

ξ2 F (τ2,1, . . . , τ2,n2
) : τ2 P2

〈〈signal〉〉 E
• a call interface f(τ11

, . . . , τn1
) : τ1

• a signal name E

Note: The signal list can be seen as redundant (can be looked up in the state

machine) of the class. But: certainly useful for documentation (or sanity check).
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Behavioural Features C

ξ1 f(τ1,1, . . . , τ1,n1
) : τ1 P1

ξ2 F (τ2,1, . . . , τ2,n2
) : τ2 P2

〈〈signal〉〉 E

Semantics:

• The implementation of a behavioural feature can be provided by:

• An operation.

• The class’ state-machine (“triggered operation”).
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Behavioural Features C

ξ1 f(τ1,1, . . . , τ1,n1
) : τ1 P1

ξ2 F (τ2,1, . . . , τ2,n2
) : τ2 P2

〈〈signal〉〉 E

Semantics:

• The implementation of a behavioural feature can be provided by:

• An operation.

In our setting, we simply assume a transformer like Tf .

It is then, e.g. clear how to admit method calls as actions on transitions:
function composition of transformers (clear but tedious: non-termination).

In a setting with Java as action language: operation is a method body.

• The class’ state-machine (“triggered operation”).
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Behavioural Features C

ξ1 f(τ1,1, . . . , τ1,n1
) : τ1 P1

ξ2 F (τ2,1, . . . , τ2,n2
) : τ2 P2

〈〈signal〉〉 E

Semantics:

• The implementation of a behavioural feature can be provided by:

• An operation.

In our setting, we simply assume a transformer like Tf .

It is then, e.g. clear how to admit method calls as actions on transitions:
function composition of transformers (clear but tedious: non-termination).

In a setting with Java as action language: operation is a method body.

• The class’ state-machine (“triggered operation”).

• Calling F with n2 parameters for a stable instance of C
creates an auxiliary event F and dispatches it (bypassing the ether).

• Transition actions may fill in the return value.
• On completion of the RTC step, the call returns.

• For a non-stable instance, the caller blocks until stability is reached again.
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Behavioural Features: Visibilit y andProperties

C

ξ1 f(τ1,1, . . . , τ1,n1
) : τ1 P1

ξ2 F (τ2,1, . . . , τ2,n2
) : τ2 P2

〈〈signal〉〉 E

• Visibility:

• Extend typing rules to sequences of actions such that
a well-typed action sequence only calls visible methods.
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Behavioural Features: Visibilit y andProperties

C

ξ1 f(τ1,1, . . . , τ1,n1
) : τ1 P1

ξ2 F (τ2,1, . . . , τ2,n2
) : τ2 P2

〈〈signal〉〉 E

• Visibility:

• Extend typing rules to sequences of actions such that
a well-typed action sequence only calls visible methods.

• Useful properties:

• concurrency
• concurrent — is thread safe
• guarded — some mechanism ensures/should ensure mutual exclusion

• sequential — is not thread safe, users have to ensure mutual exclusion

• isQuery — doesn’t modify the state space (thus thread safe)

• For simplicity, we leave the notion of steps untouched, we construct our
semantics around state machines.

Yet we could explain pre/post in OCL (if we wanted to).
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