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Contents & Goals

Last Lecture:

• Live Sequence Charts Semantics

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What’s the Liskov Substitution Principle?

• What is late/early binding?

• What is the subset, what the uplink semantics of inheritance?

• What’s the effect of inheritance on LSCs, State Machines, System States?

• What’s the idea of Meta-Modelling?

• Content:

• Quickly complete State Machine semantics

• Inheritance in UML: concrete syntax

• Liskov Substitution Principle — desired semantics

• Two approaches to obtain desired semantics
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TheConcept of History, andOther Pseudo-States
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History andDeep History: By Example

susp

•

s0

act

H H∗

•

s1 s2

s3
sb

•

s4

s5

E/

B/

C/

D/

F/

Rs/

Rd/
A/

S/

Rs/
Rd/

What happens on...

• Rs?
s0, s2

• Rd?
s0, s2

• A, B,C, S, Rs?
s0, s1, s2, s3, susp, s3

• A, B, S, Rd?
s0, s1, s2, s3, susp, s3

• A, B,C, D, E, Rs?
s0, s1, s2, s3, s4, s5, susp, s3

• A, B,C, D, Rd?
s0, s1, s2, s3, s4, s5, susp, s5
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Junction andChoice

• Junction (“static conditional branch”): •
[gd

1
]/a

ct 1

[gd
2 ]/act

2
• good: abbreviation

• unfolds to so many similar transitions with different guards,
the unfolded transitions are then checked for enabledness

• at best, start with trigger, branch into conditions, then apply actions

• Choice: (“dynamic conditional branch”)

• evil: may get stuck

• enters the transition without knowing whether there’s an enabled path

• at best, use “else” and convince yourself that it cannot get stuck

• maybe even better: avoid

Note: not so sure about naming and symbols, e.g.,
I’d guessed it was just the other way round...
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Entry andExit Point, SubmachineState, Terminate

• Hierarchical states can be “folded” for readability.
(but: this can also hinder readability.)

• Can even be taken from a different state-machine for re-use. S : s
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Entry andExit Point, SubmachineState, Terminate

• Hierarchical states can be “folded” for readability.
(but: this can also hinder readability.)

• Can even be taken from a different state-machine for re-use. S : s

• Entry/exit points ,

• Provide connection points for finer integration into the current level,
than just via initial state.

• Semantically a bit tricky:

• First the exit action of the exiting state,

• then the actions of the transition,

• then the entry actions of the entered state,

• then action of the transition from
the entry point to an internal state,

• and then that internal state’s entry action.

• Terminate Pseudo-State

• When a terminate pseudo-state is reached,
the object taking the transition is immediately killed.
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Deferred Events in State-Machines
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Deferred Events: Idea

For ages, UML state machines comprises the feature of deferred events.

The idea is as follows:

• Consider the following state machine:

s1 s2 s3
E/ F/

• Assume we’re stable in s1, and F is ready in the ether.

• In the framework of the course, F is discarded.

• But we may find it a pity to discard the poor event
and may want to remember it for later processing, e.g. in s2,
in other words, defer it.

General options to satisfy such needs:

• Provide a pattern how to “program” this (use self-loops and helper attributes).

• Turn it into an original language concept. (← OMG’s choice)
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Deferred Events: Syntax and Semantics

• Syntactically,

• Each state has (in addition to the name) a set of deferred events.

• Default: the empty set.

• The semantics is a bit intricate, something like

• if an event E is dispatched,

• and there is no transition enabled to consume E,

• and E is in the deferred set of the current state configuration,

• then stuff E into some “deferred events space” of the object, (e.g. into the
ether (= extend ε) or into the local state of the object (= extend σ))

• and turn attention to the next event.

• Not so obvious:

• Is there a priority between deferred and regular events?

• Is the order of deferred events preserved?

• ...

[Fecher and Schönborn, 2007], e.g., claim to provide semantics for the complete

Hierarchical State Machine language, including deferred events.
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ActiveandPassiveObjects [Harel andGery, 1997]
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What about non-ActiveObjects?

Recall:

• We’re still working under the assumption that all classes in the class
diagram (and thus all objects) are active.

• That is, each object has its own thread of control and is (if stable)
at any time ready to process an event from the ether.

But the world doesn’t consist of only active objects.

For instance, in the crossing controller from the exercises we could wish to have
the whole system live in one thread of control.

So we have to address questions like:

• Can we send events to a non-active object?

• And if so, when are these events processed?

• etc.
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ActiveandPassiveObjects: Nomenclature

[Harel and Gery, 1997] propose the following (orthogonal!) notions:

• A class (and thus the instances of this class) is either active or passive
as declared in the class diagram.

• An active object has (in the operating system sense) an own thread:
an own program counter, an own stack, etc.

• A passive object doesn’t.

• A class is either reactive or non-reactive.

• A reactive class has a (non-trivial) state machine.

• A non-reactive one hasn’t.

Which combinations do we understand?

active passive

reactive ✔ (∗)

non-reactive (✔) (✔)
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PassiveandReactive

• So why don’t we understand passive/reactive?

• Assume passive objects u1 and u2, and active object u,
and that there are events in the ether for all three.

Which of them (can) start a run-to-completion step...?
Do run-to-completion steps still interleave...?

Reasonable Approaches:

• Avoid — for instance, by

• require that reactive implies active for model well-formedness.

• requiring for model well-formedness that events are never sent to
instances of non-reactive classes.

• Explain — here: (following [Harel and Gery, 1997])

• Delegate all dispatching of events to the active objects.
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PassiveReactiveClasses

• Firstly, establish that each object u knows, via (implicit) link itsAct ,
the active object uact which is responsible for dispatching events to u.

• If u is an instance of an active class, then ua = u.

C1 C2 D
n

0..1 itsAct

1
itsAct

1

itsAct

1

〈〈signal〉〉

EC1

〈〈signal〉〉

EC2

〈〈signal〉〉

ED

dest
1

dest
1

dest
1

C
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PassiveReactiveClasses

• Firstly, establish that each object u knows, via (implicit) link itsAct ,
the active object uact which is responsible for dispatching events to u.

• If u is an instance of an active class, then ua = u.

u1 : C1 ud : C2 ua : D
n

itsAct
itsAct

itsAct

Sending an event:

• Establish that of each signal we
have a version EC with an
association dest : C0,1, C ∈ C .

• Then n!E in u1 : C1 becomes:

• Create an instance ue of EC2
and

set ue’s dest to ud := σ(u1)(n).

• Send to ua := σ(σ(u1)(n))(itsAct),

i.e., ε′ = ε⊕ (ua, ue).

Dispatching an event:

• Observation: the ether only has
events for active objects.

• Say ue is ready in the ether for ua.

• Then ua asks σ(ue)(dest) = ud to
process ue — and waits until
completion of corresponding RTC.

• ud may in particular discard event.
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And What About Methods?
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And What About Methods?

• In the current setting, the (local) state of objects is only modified by
actions of transitions, which we abstract to transformers.

• In general, there are also methods.

• UML follows an approach to separate

• the interface declaration from

• the implementation.

In C++ lingo: distinguish declaration and definition of method.

• In UML, the former is
called behavioural feature
and can (roughly) be

C

ξ1 f(τ1,1, . . . , τ1,n1
) : τ1 P1

ξ2 F (τ2,1, . . . , τ2,n2
) : τ2 P2

〈〈signal〉〉 E
• a call interface f(τ11

, . . . , τn1
) : τ1

• a signal name E

Note: The signal list is redundant as it can be looked up in the state machine

of the class. But: certainly useful for documentation.
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Behavioural Features C

ξ1 f(τ1,1, . . . , τ1,n1
) : τ1 P1

ξ2 F (τ2,1, . . . , τ2,n2
) : τ2 P2

〈〈signal〉〉 E

Semantics:

• The implementation of a behavioural feature can be provided by:

• An operation.

In our setting, we simply assume a transformer like Tf .

It is then, e.g. clear how to admit method calls as actions on transitions:
function composition of transformers (clear but tedious: non-termination).

In a setting with Java as action language: operation is a method body.

• The class’ state-machine (“triggered operation”).

• Calling F with n2 parameters for a stable instance of C
creates an auxiliary event F and dispatches it (bypassing the ether).

• Transition actions may fill in the return value.
• On completion of the RTC step, the call returns.

• For a non-stable instance, the caller blocks until stability is reached again.
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Behavioural Features: Visibilit y andProperties

C

ξ1 f(τ1,1, . . . , τ1,n1
) : τ1 P1

ξ2 F (τ2,1, . . . , τ2,n2
) : τ2 P2

〈〈signal〉〉 E

• Visibility:

• Extend typing rules to sequences of actions such that
a well-typed action sequence only calls visible methods.

• Useful properties:

• concurrency
• concurrent — is thread safe
• guarded — some mechanism ensures/should ensure mutual exclusion

• sequential — is not thread safe, users have to ensure mutual exclusion

• isQuery — doesn’t modify the state space (thus thread safe)

• For simplicity, we leave the notion of steps untouched, we construct our
semantics around state machines.

Yet we could explain pre/post in OCL (if we wanted to).
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Discussion.
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Semantic Variation Points

Pessimistic view: They are legion...

• For instance,

• allow absence of initial pseudo-states
can then “be” in enclosing state without being in any substate; or assume
one of the children states non-deterministically

• (implicitly) enforce determinism, e.g.
by considering the order in which things have been added to the CASE
tool’s repository, or graphical order

• allow true concurrency

Exercise: Search the standard for “semantical variation point”.

• [Crane and Dingel, 2007], e.g., provide an in-depth comparison of
Statemate, UML, and Rhapsody state machines — the bottom line is:

• the intersection is not empty
(i.e. there are pictures that mean the same thing to all three communities)

• none is the subset of another

(i.e. for each pair of communities exist pictures meaning different things)

Optimistic view: tools exist with complete and consistent code generation.

–
1
9

–
2
0
1
2
-0

2
-0

1
–

S
se

m
va

r
–

20/107



Course Map

UML
M

o
d
e
l

In
s
t
a
n
c
e
s

N

S

W E

CD, SM

S = (T,C, V, atr ), SM

M = (ΣDS , AS ,→SM )

ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, consi, Snd i))i∈N

G = (N, E, f) Mathematics

OD UML

✔ ✔

✔ ✔

✔

✔

✔

✔

✔✔

✔

✔

✔

✔
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Inheritance: Syntax

–
1
9

–
2
0
1
2
-0

2
-0

1
–

m
a
in

–

22/107



Inheritance: Generalisation Relation

C

D1 D2

• Alternative renderings:

C

D1 D2

C

D1 D2

C

D1 D2

• Read:

• C generalises D1 and D2; C is a generalisation of D1 and D2,

• D1 and D2 specialise C; D1 is a (specialisation of) C,

• D1 is a C; D2 is a C.

• Well-formedness rule: No cycles in the generalisation relation.
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Abstract Syntax

Recall: a signature (with signals) is a tuple S = (T,C, V, atr , E ).

Now (finally): extend toS = (T,C, V, atr , E , F,mth , ⊳)

where F/mth are methods, analogously to attributes and

⊳ ⊆ (C × C ) ∪ (E × E )

is a generalisation relation such that C ⊳
+ C for no C ∈ C (“acyclic”).

C ⊳ D reads as

• C is a generalisation of D,

• D is a specialisation of C,

• D inherits from C,

• D is a sub-class of C,

• C is a super-class of D,

• . . .
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MappingConcrete to Abstract Syntax by Example

C0

x : Int

C1

D

x : Int

C2

Note: we can have multiple inheritance.–
1
9

–
2
0
1
2
-0

2
-0

1
–

S
sy

n
ta

x
–

25/107

Reflexive, TransitiveClosure of Generalisation

Definition. Given classes C0, C1, D ∈ C , we say D inherits from
C0 via C1 if and only if there are C1

0 , . . . Cn
0 , C1

1 , . . . Cm
1 ∈ C such

that

C0 ⊳ C1
0 ⊳ . . . Cn

0 ⊳ C1 ⊳ C1
1 ⊳ . . . Cm

1 ⊳ D.

We use ‘�’ to denote the reflexive, transitive closure of ‘⊳’.

In the following, we assume

• that all attribute (method) names are of the form

C::v, C ∈ C ∪ E (C::f, C ∈ C ),

• that we have C::v ∈ atr(C) resp. C::f ∈ mth(C) if and only if v (f)
appears in an attribute (method) compartment of C in a class diagram.

We still want to accept “context C inv : v < 0”, which v is meant? Later!
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Inheritance: Desired Semantics
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Desired Semantics of Specialisation: Subtyping

There is a classical description of what one expects from sub-types,
which in the OO domain is closely related to inheritance:

The principle of type substitutability [Liskov, 1988, Liskov and Wing, 1994].
(Liskov Substitution Principle (LSP).)

“If for each object o1 of type S there is an object o2 of type T such that
for all programs P defined in terms of T ,

the behavior of P is unchanged when o1 is substituted for o2

then S is a subtype of T .”

S sub-type of T : ⇐⇒ ∀ o1 ∈ S ∃ o2 ∈ T ∀PT • JPT K(o1) = JPT K(o2)
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