Contents & Goals

Last Lecture:
o State Machine semantics completed WWI Y
« Inheritance in UML: concrete syntax b & @ (4D
This Lecture:
Ledure 21: Inheritancell » Educational O,Emnn:\mm".nm.nm t m for following tasks/questions.
» What's the Liskov Substitution Principle?
« What is late/early binding?
* What is the subset, what the uplink semantics of inheritance?

» What's the effect of inheritance on LSCs, State Machines, System States?
* What's the idea of Meta-Modelling?

Sdtware Design, Modelling andAnalysisin UML Inheritance: Syntax

201302-05

Content:

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal « Liskov Substitution Principle — desired semantics
+ Two approaches to obtain desired semantics

20130205 - mai

Albert-Ludwigs-Universitat Freiburg, Germany

Reall: Abstract Syntax Reall: Reflexive Transitive Closure of Generalisation

Recall: a signature (with signals) is a tuple . = (7,6, V, atr, &).
Definition. Given classes Cy, Cy, D € €, we say D inherits from

Now (finally): extend to :)
Cy via Cy if and only if there are C§,...C§, C},...C]" € € such

ST\
> 9

S = (F,,V, atr, &, F, mth, <) that Inheritance Desired Semantics
where F/mth are methods, analogously to attributes and Cop 9C3<...Cpa Cp 90 <...C"<a D. 7
AC(EXE)U(EXE) We use ‘=" to denote the reflexive, transitive closure of '<'.

is a generalisation relation such that C' <™ C for no C € ¢ (“acycli

In the following, we assume
C < D reads as

 C'is a generalisation of D,

»ﬂ

o that all attribute (method) names are of the form

Cetus (Cuf, Ce%),

© Dis a spec
D inherits from C,

ation of C, : c

. Disasubcl fc o that we have C::v € atr(C) resp. C:f € mth(C) if and only if v (f) .
s a sub-class of C', g appears in an attribute (method) compartment of C'in a class diagram. g
« C'is a super-class of D, E

M " We still want to accept “context C' inv:wv < 0", which v is meant? Later! 50

Desired Ssmantics of Spedali sation: Suliyping

“.acdclient.”?

There is a classical description of what one expects from sub-types,
which in the OO domain is closely related to inheritance:

The pri
T o,

ple of type substitutability [Liskov, 1988, Liskov and Wing, 1994].
(Liskov Substitution Principle (LSP).)

“If for each object 0 of type S there is an object 0y of type T such that
for all programs P defined in terms of 7',
m 0 the behavior of P is unchanged when oy is substituted for oy
then

§is a subtype of Vored 3 ozeT .«ﬁw__?_ 3 UPY(o,/o2)
T Tlos®

In other words: [Fischer and Wehrheim, 2000]

"An instance of the sub-type shall be usable whenever an instance
H of the supertype was expected,
g without a client being able to tell the difference.”

nt"? And what’s a “difference”?

So, what's “usable”? Who's a “c|

“..canttell difference.”? ——

“An instance of the sub-type shall be usable whenever an instance of the supertype
was expected, without a client being able to tell the difference.”

« Narrow interpretation: another object in the model.

« Widerinterpretation: another modeler.

sd A yht
Snt) - Int
o N
: uy: D
Ciixz 2
[]
- OCL:
el fif ot
o I[context C inv: 2 > 0](oy,®) vs. I[context C inv: x> ofﬂ?tv I&\Nﬁ
s
T (o, B = b
Bovedid) e

TAYY(, §2lfr))= e

1167

..shal beusable..” ?

&l

(.T :s;
HQ_,MHM,;F“&:_& ik bl oy i\.ﬂ.@.@r\\ 4
. ocL: / . wme_mw\a Diagrams: = ©
o context Clinv:xz > 0=

« Actions:
o itsCa =0 Sl
o itsC.f(0) M}
CitsCIE)y ad v

ek
vse Finhrutes hoe
« Triggers:

«EL.)/...

9ra7
“..canttell difference.”? ——
Tt
Snt) It
« Triggers, Actions: if
s (conso,Sndo)
og0) (o) Vavd
is possible, then b Lw 3
,m_#cmn\ (consg,Sndo), ~—
(0. €0) e (o1,21)
. should be possible — sub-type does less on inputs of super-type.
I sone vy womd
a pofs defclem &_ L3
1277

“..can't tell difference.”? |

| Moativations for Generali sation

« Sequence Diagram: w(u;/us] € L(By) implies w € L(BL,).

“..shall beusable..” for UML

* Re-use,
Sharing,
Avoiding Redundancy,

» Modularisation,

« Separation of Concerns,

D)l « Abstraction,

/ﬂm\

ey be. LSP .

et
1 P..NML\{A o

13787 14767

Easy: Satic Typing o

Given: sy

g, ombet Dyivix 20

<<m=nmn_. _w
« 2 >0 also well-typed for b_\\ conksl /b (ix00

» assignment itsC1 := itsD1 being well-typed
o itsCl.x =0, itsC1.f(0), itsC1 | F

being well-typed (and doing the right thing). g
by K,F.Fm
Approach: ype

@© Simply define it as being well-typed,
@m&:mn system state definition to do the right thing.

1667 17/

What Does [Fischer andWehrheim, 2009 Mean for UML?

“An instance of the sub-type shall be usable whenever an instance of the supertype
was expected, without a client being able to tell the difference.”

%, &) it 0
dlr\Ww\WllG

Moy

+ Wanted: sub-typing for UML.
« With [
7 c

we don't even have usability.

the well-formedness rules and semantics of
c

i Dy D2 i

« It would be nice, i

would ensure D, is a sub-type of C
o that D; objects can be used interchangeably by everyone who is using C''s,

« is not able to tell the difference (i.e. see unexpected behaviour). 1500

Satic Typing Cont’d Assawiny Dped) CD(d) < ATt

tls Codespondiing Tope - gysbew,

Notions (from category theory): agst smsﬁ
« invariance, e s

« covariance,

« contravariance.

We could call, e.g. a method, sub-type preserving, if and only if it

! « accepts more general types as input (contravariant),

3 « provides a more spe ed type as output (covariant).

This is a notion used by many programming languages — and easily type-checked
! 18/a7

Late Binding

What transformer applies in what situation? (Early (compile time) binding.)

e bpe of Hoe

J ot overridden in D

1 overridden in D

Late Binding in the Sandad andProgramning Lang

o In the standard, Section 11.3.10, “CallOperationAction
“Semantic Variation Points

Lok fefewians " The mechanism for determining the method to be invoked as a
Excursus: Late Binding o Behavioural Features &ﬁéﬂ}si “ result of a call operation is unspecified.” [OMG, 2007b, 247]

X 3
(ot axing i o o In CH+,

bt A someC>1() c+a a:fq = methods are by default “(early) compile time binding”,

Ak 1ol o1 2] A0 + can be declared to be “late binding” by keyword “virtual”,

') come0 10 =40 ,mf\«\ « the declaration applies to all inheriting classes
% gl of O wchatty 40 "D"

In Java,

What one could want is something different: (Late binding.) nods are “late bind
« methods are “late bindi

%
. «wﬁ am someC -> £() =0 @
| e ®
®

« there are patterns to imitate the effect of “early binding”
someD -> £() DL

24 1@

e

o B o) acblly 15 o " ° Note: late binding typically applies only to methods, not to attributes.
~ (But: getter/setter methods have been invented recently.)

19787 20757 ! 217

Exercise: What could have driven the designers of C4+ to take that approach?

Wth Only Early Binding... Difficult: Dynamic Suliyping

+ ...we're done (if we realise it correctly in the framework).
o Then
« if we're calling method f of an object u,
« which is an instance of D with C' < D
o via a C-link,
« then we (by definition) only see and change the C-part. o Examples: (C++)
« We cannot tell whether u is a C' or an D instance.

Back to the Main Track “...tell the difference.” for UML « C:f and D::f are type compatible,

but D is not necessarily a sub-type of C.

. " o | . " int C::f(int) { int D::f(int) {
So we ly also have /dynamic o O s e g
b b
3 H int C::f(int) { int D::f(int x) {
[3 return (rand() % 2); Vs Teturn (x % 2);
B H Us b

22/m1 23/e7 ! 247

SubTyping Principles Cont'd

+ In the standard, Section 7.3.36, “Operation”:

“Semantic Variation Points

[..] When operations are redefined in a specialization, rules regarding
iance of types and pr iti
r is substitutable for
variation points with
[OMG, 2007a, 106]
« So, better: call a method sub-type preserving, if and only if it

(i) accepts more

(ii) on the old values! has fewer behaviour (covariant).

invariance, covariance, or conti

s more

put values (contravariant),

Note: Fhis (ii) is no longer a matter of simple type-checking!

« And not necessarily the end of the story:
« One could, e.g. want to consider execution time.
« Or, like [Fischer and Wehrheim, 2000], relax to “fewer observable

, thus ad
Note: “testing” differences depends on the granularity of the semantics.

behaviou ing the sub-type to do more work on inputs.

+ Related: “has a weaker pre-con (contravariant),

“has a stronger post-condition.”

Domain Inclusion Semantics

(covariant). 25

Ensuring SubTyping for State Machines

N
In the CASE tool we consider, multiple classes

in an inheritance hierarchy can have state machines. >

« But the state machine of a sub-class cannot be drawn from scratch.

Instead, the state machine of a sub-class can only be obtained by
applying actions from a restricted set to a copy of the original one.

Roughly (cf. User Guide, p. 760, for details),

+ add things into (hierarchical) states,
« add more states,
+ attach a transition to a different target (limited).

« They ensure, that the sub-class is a behavioural sub-type of the super
class. (But method implementations can still destroy that property.)

.

Technically, the idea is that (by late binding) only the state machine of the most
specialised classes are running

By knowledge of the framework, the (code for) state machines of super-classes is sti

accessible — but using it is hardly a good idea... 2687

Domain Inclusion Sructure

Let . = (7,%,V, atr,&, F, mth, <) be a signature.

Now a structure 7
= [as before] maps types, classes, associations to domains,
o [for completeness] methods to transformers,

« [as before] indentities of instances of classes not (transitively) related by
generalisation are disjoint,

« [changed] the indentities of a super-class comprise al
sub-classes,

vCew:2(0)2 |J 2D).
cab

Note: the old setting coincides with the special case <1 = ()
28a7 2967

Towards System States

Wanted: a formal representation of “if C' < D then D ‘is a' C", that is,
(i) D has the same attributes and behavioural features as C, and
(ii) D objects (ident

We

es) can replace C' objects.

| discuss two approaches to semantics:

» Domain-inclusion Semantics
o lon) - 890

s () “?«_IVGPC

L/ o) Fug) D0

« Uplin m.
w . (=7

sonD. x }5\/,4W.(\V stmeDoyle.

(more theoretical)

mxt vz
. 62 g<3

(2

Domain Inclusion System Sates

Now: a system state of .7 wrt. 7

o 9(E) = (V- (2(T) V(1)U 2(%.))

a type-consistent mapping

that is, for

| € dom(ar) N 2(C),
o [as before] o(u)(v) € 2(r) if v:T, 7€ T or 7€ {C.,Cor}.

« [changed] dom(a(u)) = Ug, <c atr(Co),

Example:
0.1 <
x: It
n
D
a: Int
y: Int
Note: the old setf coincides with the special case <1 = {). 3087

Preliminaries: Expresson Normali sation it Preliminaries: Expresson Normalisation (oot | Preliminaries: Expresson Normalisation oIt

Recall: Recall: Recall:

« we want to “context D inv:v <0". * we want to “context D inv:v < 0".

low, e.g.

low, e.g. + we want to allow, e.g., “context D inv:v <0".

« we assume fully qualified names, e.g. C::v. « we assume fully qualified names, e.g. C' « we assume fully qualified names, e.g. C::v.

Intuitively, v shall denote the
“most special more general” C'::v according to <.

Intuitively, v shall denote the
“most special more general” C::v according to <.

Intuitively, v shall denote the
“most special more general” C'::v according to <.

To keep this out of typing rules, we assume that the following normalisa

To keep this out of typing rules, we assume that the following normalisas

has been applied to all OCL expressions and all actions. has been applied to all OCL expressions and all actions.
« Given expression v (or f) in context of class D, as determined by, e.g. » Given expression v (or f) in context of class D, as determined by, e.g.
© by the (type of the) navigation expression prefix, or © by the (type of the) navigation expression prefix, or
« by the class, the state-machine where the action occcurs belongs to, « by the class, the state-machine where the action occcurs belongs to,

« similar for method bodies, « similar for method bodies,

+ normalise v to (= replace by) C: + normalise v to (= replace by) C:

« where C' is the greatest class wrt. "<" such that 2 « where C'is the greatest class wrt. “<" such that
« C=Dand C:iv€ atr(C). « C'=%Dand C:w € atr(C).
. If no (unique) such class exists, the model is considered not well-formed; the
38 317 ' expression is ambiguous. Then: ex| ly provide the qualified name. 3l

20130205

OCL Syntax and Typing More Interesting: Well-Typed-ness WEll -Typed-nesswith Visibility Cont’d
. . « We want
« Recall (part of the) OCL syntax and typing: wreViCDe% e wan context D inv v <0 ADbeprite o (Pub)
. . A,DF C:vlepr): 7
expr == v(expr;) :1c — T(V) ifo:re7 to be well-typed.

| r(eapry) 7 =T if r: D A,DF eapr: e B Prot

apry) i Te = o, ifr: Dox Currently it isn't because D ADT Cooleapr) im0 S0 (Prot)

| r(expry) :7c = Set(rp), ifr: D, v(expry) s 7c = 7(v) _ADbFemprite £ (Priv)

The definition of the semantics remains (textually) the same. but A self : 7. A, D Cuvfeapr) : 7'

(Because 7, and 7¢: are still different types, although dom(7p) C dom(7c).)

.60, P) € atr(C).

So, add a (first) new typing rule

At eapr: T Example:
LZEPNTD e o< p, (Inh)
AF expr: e text/
. contex
H vy <0 vy < 0 Juz < 0
Which is correct in the sense that, if ‘capr is of type 1, then we can use it ny | (<0 (e <0 mes
everywhere, where a ¢ is allowed. N <
2 The system state is prepared for that. § b
E B

32 33/a7 347

Saisfying OCL Constraints (Domain Inclusion) Transformers (Domain Inclusion) Semantics of Method Calls

« Non late-binding: clear, by normalisation

o Let M = (69,09, %4, .5) be a UML model, and 2 a structure. « Transformers also remain the same, e.g. [VL 12, p. 18] L .
« Late-binding:
« We (continue to) say M |= expr for context C inv : ezpr € Inv(M) iff update(expry, v, exprs) : (0.€) = (0',€) Construct a method call transformer, which is applied to all method calls.
o e
—eaor with
Vi = (04, €i)ien € [M] Vie N Vuedom(o;)NZ(C): o' = ofus o(u)fv s I[expry](a)]]
I[eaprol(os, {self = u}) = 1. where u = I[expry[(o).

« M is (still) consistent if and only if it satisfies all constraints in /nv(M).

o Example:

2030205

35707 3657 ! 377

Inheritanceand Sate Machines: Triggers Domain Inclusion andinteractions

« Wanted: triggers shall also be sensitive for inherited events,

sub-class shall execute super-class’ state-machine (unless overridden). C D
C E
z

(cons,Snd)
(0,¢) LoD, (o1 o) if . .
" Uplink Semantics
« 3u e dom(0) N Z(C) Jup € F(&) : up € ready(e, u) c F
« wis stable and in state machine state s, i.e. o(u)(stable) = 1 and o(u)(st) = s,
« a transition is enabled, i.e.
3(s, F, expr, act,s') € (SMc) : F = E A I[eapr](5) = 1
_ Similar to satisfaction of OCL expressions above:
where & = o[u.parums 5 - uc]
and » An instance line stands for all instances of C' (exact or inhel
* (o",€') results from applying tuc to (<) and removing u from the ether, i.. « Satisfaction of event observation has to take inheritance
(0",&) = tue (7,2 S up), into account, too, so we have to fix, e.g.
o' = (0" [ust —+ ', u.stable — b, uparams ; — 0])
a, cons, Snd =4 E, Y s
where b depends: §
« If u becomes stable in &', then b= 1. It does become stable if and only if there H if and only H
is no transition without trigger enabled for u in (”,<') g 8
© Otherwise b = 0. o B(x) sends an F-event to Sy where E <X F. 7
+ Consumption of uz: and the side effects of the action are observed, i.e. mw] 3 : o
o . . O i i obi o o
cons — {(, (B, o(u)))}, Snd — Obsy (5, & uz). Note: C-instance line also binds to C’-objects.

Uplink Semantics

o Idea:
» Continue with the exi
domains for iden

n of structure, i.e. disjoint

« Have an implicit association from the child to each parent part
(similar to the implicit attribute for stability).

m_
it
o |
« Apply (a different) pre-processing to make appropriate use of that

association, e.g. rewrite (C++)

in D to
uplink, ->x = 0;

Saisfying OCL Constraints (Uplink)

o let M=(62,09,%4,.7) be a UML model, and 7 a structure.

+ We (continue to) say
M = expr
for
context C' inv : expry € Inv(M)
-

=eupr

V= (e € IM]
Vie N
Yu € dom(e;) N Z(C) :
Iexpro] (o, {self — u}) =1.

« M is (still) consistent if and only if it satisfies all constraints in /nv(M).

411

A4/m1

Pre-Processng for the Uplink Semantics

2013.02.05 - Supink

« For each pair C' <1 D, extend D by a (fresh) association
uplink : C with 1= [1,1], € =+

(Exercise: public necessary?)

» Given expression v (or f) in the context of class D,

o let C' be the smallest class wrt. “<" such that
« C =D, and
o Cuw € atr(D)

o then there exists (by definition) C < Cy <... < C,, < D,
+ normalise v to (= replace by)

uplink,, => -+ => plinke, .Cxv

+ Again: if no (unique) smallest class exists,

the model is considered not well-formed; the expression is ambiguous.

Transformers (Uplink)

« What has to change is the create transformer:
create(C, expr,v)
» Assume, C’s inheritance relations are as follows.

Ci11<...<4C1p, 2C,

Crna Q... ACmp, <C.

« Then, we have to
« create one fresh object for each part, e.g.

U1,

sULngs e ooy Um 1y s

« set up the uplinks recursively, e.g.

o (ur) (uplinke,) = u

« And, if we had constructors, be careful with their order.

42

4531

Uplink Structure, System Sate, Typing

« Definition of structure remains unchanged.
« Definition of system state remains unchanged.

« Typing and transformers remain unchanged —
the preprocessing has put everything in shape.

437

Late Binding (Upli nk)

« Employ something similar to the “mostspec” trick (in a minute!). But the result
is typically far from concise.
(Related to OCL's isKind0£ () function, and RTTI in C-+.)

! 46/a7

Cast-Transformers

Castsin Domain Inclusion andUplink Semantics

“Cg Domain Inclusion Uplink
«Dd; Cx cp casy: immediately compatible | easy: By pre-processing,
N . = &d; (in underlying system state) be- | Cx cp = d.uplink;
. i B : o ldentity upcast (C++): . <
Domain Inclusion vs. Uplink Semartics y upcast (C++) cause &d yields an identity from
o Cx cp = &d; // assign address of ‘d’ to pointer ‘cp’ 7(D) C 2(C).
D+ dp = easy: the value of cpisin Z(D)N | difficult: we need the identity
« Identity downcast (C++): (D#)cp; 7(C) because the pointed-to ob- | of the D whose C-slice is de-
. . P jectis a D. noted by cp.
+ D+ dp = (D¥)cp; |/ assign address of 'd’ to pointer ‘dp Jectisa
Otherwise, error condition. (See next slide.)

« Value upcast (C++):

bit difficult: set (for all C < D)
(©)(,)70 X = Slanie

casy: By pre-proces
¢ = #(d.uplink,);

o #c = *d; // copy attribute values of ‘d" into ‘c’, or,
// more precise, the values of the C-part of ‘d’

(u,0) = o (W)]ar(c)
Note: o' = ofuc — o(up)]
not type-compatible!

2013.02.05 -
13.02.05 - Sdif -

4707 4857 ! 4987

Identity Downcast with Uplink Semantics Domain Inclusion vs. Uplink Semartics: Differences Domain Inclusion vs. Uplink Semartics. Motives

» Note: The uplink semantics views inheritance as an abbreviation:

Recall (C++): Dd; C* cp=&d; D dp = (Dx)cp;

« Exercise:
« Problem: we need the identity of the D whose C-slice is denoted by cp. * We w:é need to touch transformers (create) — and if we had no.ﬂ_m::ns‘m. we
didn't even needed that (we could encode the recursive construction of the upper What's the point of
« One technical solution: slices by a transformation of the existing constructors.)
» Give up disjointness of domains for one additional type comprising a » having the tedious adjustments of the theory

identities, i.e. have » So:
« Inheritance doesn’t add expressive power.
« And it also doesn’t improve conciseness soo dramatically.

if it can be approached technically?
alte 7, ()= J 2(0)

« having the tedious technical pre-processing
oo

- - if it can be approached cleanly in the theory?

In each =< I class have " pointing to most
specialised slices, plus information of which type that slice is.

« Then downcast means, depending on the mostspec type (only finitely
many possibilities), going down and then up as necessary, e.g.

As long as we're “early binding”, that is.

switch(mostspec_type){ 3
case C':
dp = cp ->mostspec -> uplink,, ->...->uplink, ->uplink,

! 50/a7 5167 ! 527

— 21— 20130205 - main—

References

86/87

2013.02.05 - main

2

References

[Buschermahle and Oelerink, 2008] Buschermdhle, R. and Oelerink, J. (2008). Rich meta object
facility. In Proc. 1st IEEE Int'l workshop UML and Formal Methods

cher and Wehrheim, 2000] Fischer, C. and Wehrheim, H. (2000). Behavioural subtyping relations
for object-oriented formalisms. In Rus, T, editor, AMAST, number 1816 in Lecture Notes in
Computer Science. Springer-Verlag.

[Liskov, 1988] Liskov, B. (1988). Data abstraction and hierarchy. SIGPLAN Not., 23(5):17-34.

[Liskov and Wing, 1994] Liskov, B. H. and Wing, J. M. (1994). A behavioral notion of subtyping.
ACM Ti ions on ing Languages and Systems (TOPLAS), 16(6):1811-1841

[OMG, 2003] OMG (2003). Umi 2.0 proposal of the 2U group, version 0.2,
http://www . 2uworks . org/uml2submission.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2. Technical
Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2. Technical
Report formal/07-11-02

[Stahl and Vélter, 2005] Stahl, T. and Vélter, M. (2005). Model
dpunkt.verlag, Heidelberg.

etriebene Softwareentwicklun,

8751

