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Last Lecture:

o Inheritance in UML: desired semantics

This Lecture:
o Educational Objectives: Capabilities for following tasks/questions.
o What's the Liskov Substitution Principle?
o What is late/early binding?
o What is the subset, what the uplink semantics of inheritance?
o What's the effect of inheritance on LSCs, State Machines, System States?

o What's the idea of Meta-Modelling?

o Content:
o Meta-Modelling

e Two approaches to obtain desired semantics
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Meta-Modelling: 1dea andExample
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Meta-Modelling: Why and What
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Meta-Modelling is one major prerequisite for understanding
the standard documents [OMG, 2007a, OMG, 2007b], and
the MDA ideas of the OMG.

The idea is simple:
if a modelling language is about modelling things,
and if UML models are and comprise things,
then why not model those in a modelling language?

In other words:
Why not have a model My such that

the set of legal instances of My

the set of well-formed (!) UML models.
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Meta-Modelling: Example

— 22 - 2013-02-06 — Smm —

For example, let's consider a class.

A class has (on a superficial level)
a name,

any number of attributes,
any number of behavioural features.

Each of the latter two has
a name and

a visibility.

Behavioural features in addition have
a boolean attribute isQuery,
any number of parameters,
a return type.

Can we model this (in UML, for a sfart)?
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UML Meta-Model: Extract
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Operations [oma, 2007 30]
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Namespaces [oMG, 2007h 26]
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Interesting: Dedaratior/Definition [oma, 20074 424
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Meta-modelling has already
been used for UML 1.x.
For UML 2.0, the request
for proposals (RFP) asked
for a separation of concerns: '»Q
Infrastructure and
Superstructure.
One reason:
sharing with MOF (see XM/
later) and, e.g., CWM.
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Meta-Modelling: Principle
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Modelli ng vs. Meta-Modelli ng
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Modelling vs. Meta-Modelli ng
Class Property Type
Meta- name : Str name : Str name : Str
Model K -
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n(slvellg)ce of UML models is the set of instances of M. // c
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Other view: An object diagram wrt. meta-model My
can (alternatively) be rendered as the UML model M.

- 0})
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WAl -Formednessas Constraints in the Meta-Model

— 22 - 2013-02-06 — Sprinciple —

The set of well-formed UML models can be defined as the set of object
diagrams satisfying all constraints of the meta-model.

For example,

“[2] Generalization hierarchies must be directed and acyclical. A classifier
cannot be both a transitively general and transitively specific classifier

of the same classifier.

not self . allParents() => includes(self)” [OMG, 2007b, 53]

The other way round:

Given a UML model M, unfold it into an object diagram Oy wrt. M.
If Oy is a valid object diagram of My, (i.e. satisfies all invariants from Inv(My)),
then M is a well-formed UML model.

That is, if we have an object diagram validity checker for of the meta-modelling
language, then we have a well-formedness checker for UML models.
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Window

public

size: Area = (100, 100)
defaultsize: Rectangle

visibily: Boolean = true

XWin: XWindow

attachX(xWin: XWindow)

Figure 7.29 - Class notation: attributes and operations grouped according to visibility
7.3.8 Classifier (from Kernel, Dependencies, PowerTypes)
A classifier is a dassification of instince, it desribes a seof instances that have features in common.

Generalizations
- “Namespace(from Kernel)’on page 99
+ “RedefinableElement (froriternel)’ on page 130
+ “Type (fran Kernel)”on page 135

Description

A clasdfier is

whoe Classifier is an abstract metaclass

A classifier is a type and can own geiizations,thereby makig it possible tadefine generalization relatiorigis to
othe classifiers. A classfier can speify a ion hierarchy its i

A classifier is a relefinableelemett, meaning thatit is posible to reddine nesed dasifiers
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+ isAbstract: Boolean
If true, the Clasifier does noprovide acomplete and capically An abstract
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<
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b
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! Refers to albf the Properties thatre diect (ie..nat inherited or imported) attributesof the classifierSubses
- Classifier:feature andis a derved urion.
3
& + [feature : Feature [*]
=] Spedfies each feaure defined in the ckaifier. his is &
o
= |+ /general: Classifi
I Specifies the general Chiiers for this Classfier. This is deved.
|
&
| 52 UML Superstructure Specification, v2.1.2
Readi ng the Sandad Cont’d
. i 1
i for tis Classfier These Generalizians naviate tomore gereral
the
Win ,
ol ° IElerent*]
e Avea = Specifisal by from is
defaultSize: R derived.
protected - - .
visiilty: Boold *  redefinedClassifier: Classifig]
private the Clagiers by this Classifier
XWin: XWinde
public i
display0 Package Dependencies
hae) «  substitution : Stbstitution
prvate are owed by this Classfier. Subset&lement::ownedElemeand
Figure 7.29 - C|
Package PowerTypes
738 Clas{ . poweryeExtent: GeneralizationSet
) D of wiich the fier is
A classifier is
Constraints
Generalizatiol
[1] The i byhe
* “Nameg] general = self.parents()
+ “Redefi i i be diecte Aclassfier cannotbe bath a trassitively general and
« “Type (i transtively specific clasifier of thesameclassifier
Description not self.allParents()->includes(self)
[3] A clasfier mayonly speciaize clasifiersof avalid type.
A classfier is " forAl(c | self. P
A classifier is | [4] Theinheri ition s derivedby inheritab membersof the perenss.
other classifier elf. inherit(self. llect(p | p.
A classifier is
Package PowerTypes
Attributes [5] The Clasifier thatmaps to aGenealizationSemay neither be apscific nor a generaClassfier in any ofthe
+ isAbstract i definedor that onSet n other words,a pover type may notbean irsance of
If true, itself nor may its instares also be its sutasises.
) classif . ‘
o relatiofl Additional Operations
£ [1] ThequeryallFeature§ gives all ofthe features in the namespace of the classifi general, through mechanissuchas
3 Associations inheritance, this will be a lager set than feate.
& «  Jattribute: Classifier:allFeatures(): Set(Feature);
| 5‘9'9(5 allFeatures = member->select(oclisKindOf(Feature))
S @M (2] The query parerts() gives al of theimmatiate ancestorsf ageneralized Classifier
&  [feature: | Classifier::parents(): Set(Classifier);
i Spedi parents = generalization.general
= |+ general:
I Specif|
|
N
‘\“ 52 UML Superstructure Specification, v2.1.2 53
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Reading

[3] The query
Classii

al of thedirect ancesrs ofa f
arents(): Set(Classifier);

Specii allParents = self.parents()->union(self. parents()->collect(p | p.allParents())
classfi§ [4] The queryinheritatieMenbers()gives all of the membersf aclassifierthat maybe irherited inone of its descendas,
wing Jinheritedd subjectto whatever visilii ty restictions appy.
ibli N .
Poize: Area = Specif cl Classifier)
defaultSize: R derive pre: c.allParents(->includes(self)
visibilty: Boold *  redefinedd = memb I | Of(m))
private Refere| [5] The giery hasvisibilityOf() determineswhetheranamel element is visiblén the chssfier. By default all are visiblelt is
XWin: XWind only called wien the agumert s something owned by a pardn
ibli
Pieplay0 Package Depe] Classifier::hasVisibilityOf(n: NamedElement) : Boolean;
hide() «  substitution| pre: self.allParents()->collect(c | c.member)->includes(n)
P e owin] Referel if (selfinheritedMember->includes(n)) then
Name hasVisibilityOf = (n.visibility <> #private)
Figure 7.29 - CI else
Package Powe] hasVisibilityOf = true
738 Clas{ . powenymd [6] Thequery corfomsTo) gives tue for a chssifier that defines typethat conformo anotherThis isused, for example,
Desig in the specfication of sgnatrre conformaoe for oferatns.
A classifier is Classifier::conformsTo(other: Classifier): Boolean;
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+ ‘Redefi ) Genersizal
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Description | classfir| {1 Specifiedype. By default a classifienay specialize claers of the ame or aore gertal bype. It itenced 0 be
A classfier is selt parents that! congaints.
A classifier is Classifier::maySpecializeType(c : Classifier) : Boolean;
[4] Theinherit -
othe clasifier: sefinherte maySpecializeType = self.oclIsKindOf(c.ocIType)
A classifier is Semantics
Package Powd]
Atiributes | (5] The Clasi]  c12ifer isa dasification of insance cording tother featres
«  isAbstract: Generalzal A Classifier may icil in with other Classifiers. Arstance ofa specificClassifier is
If true, itselfnor m{ also an (indirect) ingane of eah of the gnerd Classifiers. Therefore, featurs spedfied for instaicesof the gaerd
| classif| B classifier ae implicitly specifed for instances of the specifitassifier Any castraint applying to instances tife
0 relatior| Additional Opf general classifier also applies to instances of the specific classifier
5
S | associations| 1 T"eAUeVd The specific seantics of how generalizion afects each concrete subtypeGisssfier varies. All instances of a
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Meta Objea Facility (MOF)
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Open Questions...

— 22 - 2013-02-06 — Smof —

o(Now you've been “tricked” agairy Twice.

o We didn't tell what the modelling language for meta-modelling is.
o We didn't tell what the is-instance-of relation of this language is.

o ldea: have a minimal object-oriented core comprising the notions of
class, association, inheritance, etc. with “self—ex_g_laining” semantics.

o This is Meta Object Facility (MOF),
which (more or less) coincides with UML Infrastructure [OMG, 2007a].

o So: things on meta level

o MO are object diagrams/system states (054"3/""4"““ of chiss i a WL '/
e M1 are words of the language UML (ﬂé/aéﬂm#w of s fhwﬁ%;}
e M2 are words of the language MOF (insbonces § tor ﬁo‘r-“fe//

M3 are words of the language M(F !

L :
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MOF Semantics
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One approach:
Treat it with our signature-based theory
This is (in effect) the right direction, but may require new (or extended)

signatures for each level.
(For instance, MOF doesn’t have a notion of Signal, our signature has.)

Other approach:
Define a generic, graph based "“is-instance-of” relation.
Object diagrams (that are graphs) then are the system states —

not only graphical representations of system states.

If this works out, good: We can easily experiment with different language
designs, e.g. different flavours of UML that immediately have a semantics.

Most interesting: also do generic definition of behaviour within a closed

modelling setting, but this is clearly still research, e.g.

[Buschermdhle and Oelerink, 2008]
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Meta-Modelling: (Anticipated) Benefits
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Benefits; Overview
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d|
We'll (superficially) look at three aspects: {- 3‘/’174{5‘,
Benefits for Modelling Tools.
Benefits for Language Design. ?

Benefits for Code Generation and MDA.

25/63

Benefits for Modelli ng Todls
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The meta-model My of UML immediately provides a data-structure
representation for the abstract syntax (~ for our signatures).

If we have code generation for UML models, e.g. into Java,
then we can immediately represent UML models in memory for Java.

(Because each MOF model is in particular a UML model.)

There exist tools and libraries called MOF-repositories, which can
generically represent instances of MOF instances (in particular UML
models).

And which can often generate specific code to manipulate instances of
MOF instances in terms of the MOF instance.
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Benefits for Modelling Todls Cont’d
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And not only in memory, if we can represent MOF instances in files, we
obtain a canonical representation of UML models in files, e.g. in XML.

— XML Metadata Interchange (XMI)

Note: A priori, there is no graphical information in XMI (it is only
abstract syntax like our signatures) — OMG Diagram Interchange.

Note: There are slight ambiguities in the XMI standard.

And different tools by different vendors often seem to lie at opposite ends on
the scale of interpretation. Which is surely a coincidence.

In some cases, it's possible to fix things with, e.g., XSLT scripts, but full
vendor independence is today not given.

Plus XMI compatibility doesn't necessarily refer to Diagram Interchange.

To re-iterate: this is generic for all MOF-based modelling languages
such as UML, CWM, etc.
And also for Domain Specific Languages which don't even exit yet.

Benefits: Overview

— 22 — 2013-02-06 — Sbenefits —

We'll (superficially) look at three aspects:
Benefits for Modelling Tools. [
Benefits for Language Design.
Benefits for Code Generation and MDA.
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Benefits for Language Design
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Recall: we said that code-generators are possible “readers” of stereotypes.

For example, (heavily simplifying) we could
introduce the stereotypes Button, Toolbar, ...

for convenience, instruct the modelling tool to use special pictures for
stereotypes — in the meta-data (the abstract syntax), the stereotypes
are clearly present.

instruct the code-generator to automatically add inheritance from
Gtk::Button, Gtk::Toolbar, etc. corresponding to the stereotype.

Et voila: we can model Gtk-GUIs and generate code for them.

Another view:
UML with these stereotypes is a new modelling language: Gtk-UML.
Which lives on the same meta-level as UML (M2).

It's a Domain Specific Modelling Language (DSL).
One mechanism to define DSLs (based on UML, and “within” UML): Profiles.

29/63

Benefits for Languag Design Cont’d
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For each DSL defined by a Profile, we immediately have
in memory representations,
modelling tools,
file representations.

Note: here, the semantics of the stereotypes (and thus the language of
Gtk-UML) lies in the code-generator.

That's the first “reader” that understands these special stereotypes.
(And that’s what's meant in the standard when they're talking about giving
stereotypes semantics).

One can also impose additional well-formedness rules, for instance that
certain components shall all implement a certain interface (and thus have
certain methods available). (Cf. [Stahl and Vodlter, 2005].)
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Benefits for Languag Design Cont’d
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One step further:
Nobody hinders us to obtain a model of UML (written in MOF),
throw out parts unnecessary for our purposes,
add (= integrate into the existing hierarchy) more adequat new
constructs, for instance, contracts or something more close to
hardware as interrupt or sensor or driver,

and maybe also stereotypes.

— a new language standing next to UML, CWM, etc.

Drawback: the resulting language is not necessarily UML any more,
so we can’t use proven UML modelling tools.

But we can use all tools for MOF (or MOF-like things).
For instance, Eclipse EMF/GMF /GEF.

Benefits: Overview

— 22 — 2013-02-06 — Sbenefits —

We'll (superficially) look at three aspects:
Benefits for Modelling Tools. [
Benefits for Language Design. [J
Benefits for Code Generation and MDA.
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Benefits for Model (to Model) Transformation
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There are manifold applications for model-to-model transformations:

For instance, tool support for re-factorings, like moving common
attributes upwards the inheritance hierarchy.

This can now be defined as graph-rewriting rules on the level of
MOF.
The graph to be rewritten is the UML model

Similarly, one could transform a Gtk-UML model into a UML model,
where the inheritance from classes like Gtk::Button is made explicit:

The transformation would add this class Gtk::Button and the
inheritance relation and remove the stereotype.

Similarly, one could have a GUI-UML model transformed into a
Gtk-UML model, or a Qt-UML model.

The former a PIM (Platform Independent Model), the latter a PSM
(Platform Specific Model) — cf. MDA.

Speaal Case: Code Generation

— 22 — 2013-02-06 — Sbenefits —

Recall that we said that, e.g. Java code, can also be seen as a model.

So code-generation is a special case of model-to-model transformation;
only the destination looks quite different.

Note: Code generation needn’t be as expensive as buying a modelling
tool with full fledged code generation.

If we have the UML model (or the DSL model) given as an XML file,
code generation can be as simple as an XSLT script.

“Can be” in the sense of

“There may be situation where a graphical and abstract
representation of something is desired which has a clear and
direct mapping to some textual representation.”

In general, code generation can (in colloquial terms) become arbitrarily
difficult.
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Example: Model and XMl
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{pt100)) gather (65C02)) update | (INET2270))
SensorA 1 ControllerA 1 UsbA
<?xml version = ’1.0’ encoding = ’UTF-8° 7>

<XMI xmi.version = ’1.2’ xmlns:UML = ’org.omg.xmi.namespace.UML’ timestamp = ’Mon Feb 02 18:23:12 CET 2009°’>

<XMI.content>

<UML:Model xmi.id = ’...’>
<UML:Namespace.ownedElement>
<UML:Class xmi.id = ’...’ name = ’SensorA’>

<UML:ModelElement.stereotype>
<UML:Stereotype name = ’pt100°’/>
</UML:ModelElement .stereotype>
</UML:Class>
<UML:Class xmi.id = ’...’ name = ’ControllerA’>
<UML:ModelElement.stereotype>
<UML:Stereotype name = ’65C02’°/>
</UML:ModelElement .stereotype>
</UML:Class>
<UML:Class xmi.id = ’...’ name = ’UsbA’>
<UML:ModelElement.stereotype>
<UML:Stereotype name = ’NET2270°/>

</UML:ModelElement .stereotype>
</UML:Class>
<UML:Association xmi.id = ’...’ name = ’in’ >...</UML:Association>
<UML:Association xmi.id = ’...’° name = ’out’ >...</UML:Association>

</UML:Namespace . ownedElement>
</UML:Model>
</XMI.content>
</XMI>

Reall
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Towards System Sates

Wanted: a formal representation of “if C < D then D ‘is a’ C", that is,

(i) D has the same attributes and behavioural features as C, and

(i) D objects (identities) can replace C' objects.

We'll discuss two approaches to semantics:
Domain-inclusion Semantics (more theoretical)

o) §18 -0 ¢ut] o

56 (uz) : Sy =530t )

@™
’ at 01) : fxnj] ‘—)'Md)

' \more technical)

$EwED. X A;"‘f/vb .S'Mlbtff’mk)(‘

b Uplink Semantics
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0 @E
s | s planle
&y %:D
9°3

2736/63




— 22 - 2013-02-06 — main

Domain Incluson Samantics

Domain Inclusion Sructure
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Let & = (J,6,V, atr, &, F, mth, 1) be a signature.

Now a structure 9
[as before] maps types, classes, associations to domains,
[for completeness] methods to transformers,

[as before] indentities of instances of classes not (transitively) related by
generalisation are disjoint,

[changed] the indentities of a super-class comprise all identities of

sub-classes, i.e.
veew:2(C)2 | 2(D).
Cc<D

Note: the old setting coincides with the special case <« = 0.
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Domain Inclusion Sy/stem States
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Now: a system state of ./ wrt. & is a type-consistent mapping
0:9(€)+ (V+(2(7)U2(61)U 2(%s)))
that is, for all u € dom(o) N 2(C),
[as before] o(u)(v) € D(1)ifv:T, 7€ T or 7€ {Cy,Co1}.

[changed] dom (o (u)) = Ug, ¢ atr(Co),

Example:

Ve D(D) N
Lp (o-(o) = ake D) v ade () .
= {D"’K/:D"-'j’ [j::xi

Note: the old setting still coincides with the special case <1 = 0.

Preliminaries. Expresson Normalisation v Int

— 22 - 2013-02-06 — Sdomincl —

Recall: %
C

we want to allow, e.g., “context D inv :L;]< 0".

we assume fully qualified names, e.g. C::v.

Intuitively,@shall denote the I
D

"most special more general” C::v according to <.

v Int

To keep this out of typing rules, we assume that the following normalisation
has been applied to all OCL expressions and all actions.

Given expression v (or f) in context of class D, as determined by, e.g.
by the (type of the) navigation expression prefix, or
by the class, the state-machine where the action occcurs belongs to,

similar for method bodies,

normalise v to (= replace by)lg__v__’

where C is the greatest class wrt. “<" such that
C <X D and C:w € atr(C).

If no (unique) such class exists, the model is considered not well-formed; the
expression is ambiguous. Then: explicitly provide the qualified name.
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OCL Syntax and Typing
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Recall (part of the) OCL syntax and typing: v,reV,C,De¥
expr = v(expry) :7c — T(v), ifv:Tred
| r(expry) :7c — 7D, if r: Do

| r(expry) :7¢c — Set(rp), ifr: D,

The definition of the semantics remains (textually) the same.

— 22 - 2013-02-06 — Sdomincl —

41/63
More Interesting: eIl - Typed-ness
C
We want v Int
context D inv:v <0
to be well-typed. %
Currently it isn't because D

v(expry) : 7o — 7(v)

but A & self : 1p.
(Because 7p and 7¢ are still different types, although dom(7p) C dom(7¢).)

So, add a (first) new typing rule

Al expr:Tmp .
————— fC<XD. Inh
Al—expr:TC’lc_ (Inh)

Which is correct in the sense that, if ‘exzpr’ is of type 7p, then we can use it
everywhere, where a 7¢ is allowed.

The system state is prepared for that.
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WEll -Typed-nesswith Visibility Cont’d
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A, Dt expr: 1o

= P
A,D [ C:ZU(empr) 0 5 + ( Ub)
A D+ exrpr . Tc
b _ '< P t
A, DF C:v(expr): 7’ §=#, <D (Prot)
A, Dt expr: 1o |
A, D C:ov(expr) : 7’ £ , C (Priv)
(Cv T, & 09, P) € atr(C).
C
Example: — vy & Int
# va: Int
°°"teXt/ + vz : Int
i (n.)vr <0 | (n)va <0 | (n.)vz <0
e inv .
D n
0,1l n

’ N

4363

Saisfying OCL Constraints (Domain Inclusion)

Let M = (62,09, 54#,.%) be a UML model, and 2 a structure.

We (continue to) say M |= expr for context C' inv : expr, € Inv(M) iff

=expr
V?T:(Ui,Ei)ie]NE [[M]] Vie N Vuedom(ai)ﬂ@(C’) :
Iexpry](o;, {self — u}) = 1.

M is (still) consistent if and only if it satisfies all constraints in Inv(M).

Example: ~A =2 .

2013-02-06 — Sdomincl

—2 -

TT 4% > 0D (s {2153 o

U mal:salol - x: Int

T Cotlf. Cox>00(e/P) =
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Transformers (Domain Inclusion)
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o Transformers also remain the same, e.g. [VL 12, p. 18]
update(expry, v, expry) : (0,€) — (o', €)

with
o' =olur o(u)v— I[expry](o)]]

where u = Iexpr,] (o).

Semarntics of Method Call s

— 22 — 2013-02-06 — Sdomincl —

e Non late-binding: clear, by normalisation.

o Late-binding:
Construct a method call transformer, which is applied to all method calls.
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Inheritance and Sate Machines; Triggers i @L)(j
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Wanted: triggers shall also be sensitive for inherited events,
sub-class shall execute super-class’ state-machine (unless overridden).

DISVATC‘Pll (0.0) Lomsssnd 1 i i (), vere nmt.;j
v an A- dntrhy,

Ju € dom(c) N 2(C) 31&6 D(&) : ug € ready(e,u)

u is stable and in state machine state s, i.e. o(u)(stable) # 1 and o(u)(st) = s,

a transition is enabled, i.e. 0",
3 (s, F, expr, act,s’) €— (SMc) : F = E N I[expr](5) =1
v,
where & = o[u.params g — ue]. gem(g)
B EDCA)

and [13 ,‘,.L,.)

(¢o',€") results from applying tac: to (o,€) and removing ug from the ether, i.e.
(0-”75/) :taCt(&veeuE)v MM a&u

o' = (0"[u.st — s, u.stable — b,u.params g — 0])| o)\ {ug) A:"'{[‘

where b depends:
If u becomes stable in s’, then b = 1. It does become stable if and only if there
is no transition without trigger enabled for u in (¢’,€’).
Otherwise b = 0.

Consumption of ur and the side effects of the action are observed, i.e.
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cons = {(u, (E,0(ug)))}, Snd = Obs;,,, (6,e Sug).

Domain Inclusion andinteractions

— 22 - 2013-02-06 — Sdomincl —

C D C E
£ T T
F C F

Similar to satisfaction of OCL expressions above:
An instance line stands for all instances of C' (exact or inheriting).

Satisfaction of event observation has to take inheritance
into account, too, so we have to fix, e.g.

o, cons, Snd =g Eg!c’y
if and only if
B(z) sends an F-event to By where £ <X F.

Note: C-instance line also binds to C’-objects. 486



Uplink Semantics

— 22 - 2013-02-06 — main
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Uplink Semantics

Idea:
Continue with the existing definition of structure, i.e. disjoint
domains for identities.
Have an implicit association from the child to each parent part
(similar to the implicit attribute for stability).

C

x:Int

Apply (a different) pre-processing to make appropriate use of that
association, e.g. rewrite (C++)

x =0

in D to

— 22 - 2013-02-06 — Suplink —

uplink, ->x = 0; 50,63



Pre-Processng for the Uplink Semarntics
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For each pair C' < D, extend D by a (fresh) association
uplinkq : C with p=[1,1], £ =+

(Exercise: public necessary?)

Given expression v (or f) in the context of class D,

let C be the smallest class wrt. “<" such that
C <D, and
C:w € atr(D)

then there exists (by definition) C' < C; < ... < C, < D,
normalise v to (= replace by)

uplinks, >+ =>uplinkg, .C:v

Again: if no (unique) smallest class exists,
the model is considered not well-formed; the expression is ambiguous.
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Uplink Sructure, System State, Typing
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Definition of structure remains unchanged.
Definition of system state remains unchanged.

Typing and transformers remain unchanged —
the preprocessing has put everything in shape.
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Saisfying OCL Constraints (Uplink)
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Let M =(€¢2,02,54#,.%) be a UML model, and Z a structure.

We (continue to) say

M = expr
for
context C' inv : expr, € Inv(M)
=eapr
if and only if

V= (0i)ien € [M]
Vie N
Vu € dom(o;) N 2(C) :
Ifexpry](os, {self — u}) = 1.

M is (still) consistent if and only if it satisfies all constraints in Inv(M).

Transformers (Uplink)

— 22 - 2013-02-06 — Suplink —

What has to change is the create transformer:
create(C, expr,v)
Assume, C''s inheritance relations are as follows.

C171 <... QCl,nl <]C’7

Cmi<...<4Chp,, <C.

Then, we have to
create one fresh object for each part, e.g.

UL 1y Ulmgy-- s Umly-- s Umn,,;
set up the uplinks recursively, e.g.
o(u1,2)(uplinke, ) = ui1.

And, if we had constructors, be careful with their order.
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Late Binding (Uplink)
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— 22 - 2013-02-06 — main

o Employ something similar to the “mostspec” trick (in a minute!). But the result
is typically far from concise.

(Related to OCL's isKind0f£() function, and RTTI in C4++.)
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Domain Inclusion vs. Uplink Semantics
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Cast-Transformers

Cc;
D d;
Identity upcast (C++):
Cx cp = &d; // assign address of ‘d’ to pointer ‘cp’

Identity downcast (C++):

— 22 - 2013-02-06 — Sdiff —

Dx dp = (Dx)cp;

Value upcast (C++):

*op= *d{;,’

// assign address of ‘d’ to pointer ‘dp’

// copy attribute values of ‘d’ into ‘c’, or,

// more precise, the values of the C-part of ‘d’
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Casts in Domain Inclusion andUplink Semarntics
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Domain Inclusion

Uplink

Cx cp easy: immediately compatible | easy: By pre-processing,
= &d; (in underlying system state) be- | Cx cp = d.uplink;
cause &d yields an identity from
2(D) C 2(C).
Dx dp = easy: the value of cpisin Z(D)N | difficult: we need the identity
(D*)cp; 2(C') because the pointed-to ob- | of the D whose C-slice is de-

jectis a D.

Otherwise, error condition.

noted by cp.
(See next slide.)

bit difficult: set (for all C < D)
(C)(, ) TpD X X — E'atr(c’)
(u,0) — o U)\azrgc‘)

Note: o' = ofuc — o(up)] is
not type-compatible!

easy: By pre-processing,
¢ = *(d.uplink.);
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|dentity Downcast with Uplink Semantics
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Recall (C++): Dd; Cx cp=&d; Dx dp = (Dx)cp;
Problem: we need the identity of the D whose C-slice is denoted by cp.

One technical solution:

Give up disjointness of domains for one additional type comprising all
identities, i.e. have

alle 7, 9(a1)= |J 2(C)
Ce€

In each <-minimal class have associations “mostspec” pointing to most
specialised slices, plus information of which type that slice is.

Then downcast means, depending on the mostspec type (only finitely
many possibilities), going down and then up as necessary, e.g.

switch(mostspec_type){
case C':
dp = cp ->mostspec ->uplink, ->...->uplink, ->uplinkp;
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Domain Inclusion vs. Uplink Semartics. Differences
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Note: The uplink semantics views inheritance as an abbreviation:

We only need to touch transformers (create) — and if we had constructors, we
didn’t even needed that (we could encode the recursive construction of the upper
slices by a transformation of the existing constructors.)

So:
Inheritance doesn’t add expressive power.
And it also doesn’t improve conciseness soo dramatically.

As long as we're “early binding”, that is...
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Domain Inclusionvs. Uplink Semantics: Motives
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o Exercise:

What's the point of

o having the tedious adjustments of the theory
if it can be approached technically?

o having the tedious technical pre-processing

if it can be approached cleanly in the theory?

References
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