
SoftwareDesign, Modelli ng andAnalysis in UML

Lecture23: Wrapup

2013-02-13

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

–
2
3
–
2
0
1
3
-0
2
-1
3
–
m
a
in

–

Content
• Lecture 1: Motivation and Overview

• Lecture 2: Semantical Model

• Lecture 3: Object Constraint Language (OCL)

• Lecture 4: Object Diagrams
• Lecture 5: Class Diagrams I
• Lecture 6: Type Systems and Visibility
• Lecture 7: Class Diagrams II
• Lecture 8: Class Diagrams III
• Lecture 9: Class Diagrams IV

• Lecture 10: Core State Machines I
• Lecture 11: Core State Machines II
• Lecture 12: Core State Machines III
• Lecture 13: Core State Machines IV
• Lecture 14: Core State Machines V, Rhapsody
• Lecture 15: Hierarchical State Machines I
• Lecture 16: Hierarchical State Machines II

• Lecture 17: Live Sequence Charts I
• Lecture 18: Live Sequence Charts II
• Lecture 19: Live Sequence Charts III

• Lecture 20: Inheritance I
• Lecture 21: Deferred Events, Behavioural Features, Inheritance II
• Lecture 22: Meta-Modelling, Inheritance III

• Lecture 23: Wrapup & Questions

–
2
3
–
2
0
1
3
-0
2
-1
3
–
m
a
in

–

2/25



Course Path: Over Map

• Motivation

• Semantical
Model

• OCL

• Object
Diagrams

• Class Diagrams

• State Machines

• Live Sequence
Charts

• Real-Time

• Components

• Inheritance

• Meta-Modeling

• (MDA, MDSE)

UML

M
o
d
e
l

In
s
t
a
n
c
e
s

CD, SM

S = (T,C, V, atr ), SM

M = (ΣD
S
, AS ,→SM )

ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, consi, Snd i))i∈N

G = (N,E, f) Mathematics

OD UML

✔ ✔

✔ ✔

✔

✔

✔

✔
✔

✔

✔✔

✔

✔

✔

✔

–
2
3
–
2
0
1
3
-0
2
-1
3
–
m
a
in

–

3/25

Wrapup: Motivation
• Lecture 1: Motivation and Overview

• Lecture 2: Semantical Model

• Lecture 3: Object Constraint Language (OCL)

• Lecture 4: Object Diagrams
• Lecture 5: Class Diagrams I
• Lecture 6: Type Systems and Visibility
• Lecture 7: Class Diagrams II
• Lecture 8: Class Diagrams III
• Lecture 9: Class Diagrams IV

• Lecture 10: Core State Machines I
• Lecture 11: Core State Machines II
• Lecture 12: Core State Machines III
• Lecture 13: Core State Machines IV
• Lecture 14: Core State Machines V, Rhapsody
• Lecture 15: Hierarchical State Machines I
• Lecture 16: Hierarchical State Machines II

• Lecture 17: Live Sequence Charts I
• Lecture 18: Live Sequence Charts II
• Lecture 19: Live Sequence Charts III

• Lecture 20: Inheritance I
• Lecture 21: Deferred Events, Behavioural Features, Inheritance II
• Lecture 22: Meta-Modelling, Inheritance III

• Lecture 23: Wrapup & Questions

–
2
3
–
2
0
1
3
-0
2
-1
3
–
m
a
in

–

4/25



Wrapup: Motivation

Lecture 1:

• Educational Objectives: you should

• be able to explain the term model.

• know the idea (and hopes and promises) of model-driven SW development.

• be able to explain how UML fits into this general picture.

• know what we’ll do we’ve done in the course, and why.

• thus be able to decide whether you want to stay with us...

Lecture 22:

• Educational Objectives: Capabilities for following tasks/questions.

• How can UML help with software development?

• Where is which sublanguage of UML useful?

• For what purpose? With what drawbacks?

–
2
3
–
2
0
1
3
-0
2
-1
3
–
m
a
in

–

5/25

Wrapup: ExaminingMotivation

• what is a model? for example?

• “a model is an image or a pre-image” — of what? please explain!

• when is a model a good model?

• what is model-based software engineering?

• MDA? MDSE?

• what do people hope to gain from MBSE? Why? Hope Justified?

• what are the fundamental pre-requisites for that?

• what are purposes of modelling guidelines?

• could you illustrate this with examples?

• how can we establish/enforce them? can tools or procedures help?

• what’s the qualitative difference between the modelling guideline “all
association ends have a multiplicity” and “all state-machines are
deterministic”?

• . . .

–
2
3
–
2
0
1
3
-0
2
-1
3
–
m
a
in

–

6/25



Wrapup: ExaminingMotivation

• what is UML (definitely)? why?

• what is it (definitely) not? why?

• how does UML relate to programming languages?

• what are the intentions of UML?

• what is the history of UML? Why could it be useful to know that?

• where can (what part of) UML be used in MBSE?

• for what purpose? to improve what?

• we discussed a notion of “UML mode” by M. Fowler.

• what is that? why is it useful to think about it?

–
2
3
–
2
0
1
3
-0
2
-1
3
–
m
a
in

–

7/25

Wrapup: Examining “T heBig Picture”

• what kinds of diagrams does UML offer?

• what is the purpose of the X diagram?

• what do the diagrams X and Y have in common?

• what is a UML model (our definition)? what does it mean?

• what is the difference between well-formedness ruless
and modelling guidelines?

• what is meta-modelling?

• could you explain it on the example of UML?

• what is a class diagram in the context of meta-modelling?

• what benefits do people see in meta-modelling?

• the standard is split into the two documents “Infrastructure” and
“Superstructure”. what is the rationale behind that?

• in what modelling language is UML modelled?

–
2
3
–
2
0
1
3
-0
2
-1
3
–
m
a
in

–

8/25



Wrapup: Modelli ng Structure
• Lecture 1: Motivation and Overview

• Lecture 2: Semantical Model

• Lecture 3: Object Constraint Language (OCL)

• Lecture 4: Object Diagrams
• Lecture 5: Class Diagrams I
• Lecture 6: Type Systems and Visibility
• Lecture 7: Class Diagrams II
• Lecture 8: Class Diagrams III
• Lecture 9: Class Diagrams IV

• Lecture 10: Core State Machines I
• Lecture 11: Core State Machines II
• Lecture 12: Core State Machines III
• Lecture 13: Core State Machines IV
• Lecture 14: Core State Machines V, Rhapsody
• Lecture 15: Hierarchical State Machines I
• Lecture 16: Hierarchical State Machines II

• Lecture 17: Live Sequence Charts I
• Lecture 18: Live Sequence Charts II
• Lecture 19: Live Sequence Charts III

• Lecture 20: Inheritance I
• Lecture 21: Deferred Events, Behavioural Features, Inheritance II
• Lecture 22: Meta-Modelling, Inheritance III

• Lecture 23: Wrapup & Questions

–
2
3
–
2
0
1
3
-0
2
-1
3
–
m
a
in

–

9/25

Wrapup: Modelli ng Structure

Lecture 2:

• Educational Objectives: Capabilities for these tasks/questions:

• Why is UML of the form it is?

• Shall one feel bad if not using all diagrams during software development?

• What is a signature, an object, a system state, etc.?
What’s the purpose in the course?

• How do Basic Object System Signatures relate to UML class diagrams?

Lecture 3:

• Educational Objectives: Capabilities for these tasks/questions:

• Please explain/read out this OCL constraint. Is it well-typed?

• Please formalise this constraint in OCL.

• Does this OCL constraint hold in this (complete) system state?

• Can you think of a system state satisfying this constraint?

• Please un-abbreviate all abbreviations in this OCL expression.

• In what sense is OCL a three-valued logic? For what purpose?

• How are D(C) and τC related?

–
2
3
–
2
0
1
3
-0
2
-1
3
–
m
a
in

–

10/25



Wrapup: Modelli ng Structure

Lecture 4:

• Educational Objectives: Capabilities for following tasks/questions.

• What is an object diagram? What are object diagrams good for?

• When is an object diagram called partial? What are partial ones good for?

• How are system states and object diagrams related?

• What does it mean that an OCL expression is satisfiable?

• When is a set of OCL constraints said to be consistent?

• Can you think of an object diagram which violates this OCL constraint?

• Is this UML model M consistent wrt. Inv(M)?

Lecture 5:

• Educational Objectives: Capabilities for following tasks/questions.

• What is a class diagram?

• For what purposes are class diagrams useful?

• Could you please map this class diagram to a signature?

• Could you please map this signature to a class diagram?

• What is a stereotype? What does it mean? For what can it be useful?–
2
3
–
2
0
1
3
-0
2
-1
3
–
m
a
in

–

11/25

Wrapup: Modelli ng Structure

Lecture 6:

• Educational Objectives: Capabilities for following tasks/questions.

• Is this OCL expression well-typed or not? Why?

• How/in what form did we define well-definedness?

• What is visibility good for? Where is it used?

Lecture 7 & 8:

• Educational Objectives: Capabilities for following tasks/questions.

• Please explain/illustrate this class diagram with associations.

• Which annotations of an association arrow are (semantically) relevant?
In what sense? For what?

• What’s a role name? What’s it good for?

• What’s “multiplicity”? How did we treat them semantically?

• What is “reading direction”, “navigability”, “ownership”, . . . ?

• What’s the difference between “aggregation” and “composition”?

–
2
3
–
2
0
1
3
-0
2
-1
3
–
m
a
in

–

12/25



Wrapup: Modelli ng Structure

Lecture 9:

• Educational Objectives: Capabilities for following tasks/questions.

• What are purposes of modelling guidelines? (Example?)

• When is a class diagram a good class diagram?

• Discuss the style of this class diagram.

Lecture 20 & 21:

• Educational Objectives: Capabilities for following tasks/questions.

• What’s the effect of inheritance on System States?

• What does the Liskov Substitution Principle mean regarding structure?

• What is the subset, what the uplink semantics of inheritance?

• What’s the idea of Meta-Modelling?

–
2
3
–
2
0
1
3
-0
2
-1
3
–
m
a
in

–

13/25

Wrapup: Modelli ngBehaviour, Constructive
• Lecture 1: Motivation and Overview

• Lecture 2: Semantical Model

• Lecture 3: Object Constraint Language (OCL)

• Lecture 4: Object Diagrams
• Lecture 5: Class Diagrams I
• Lecture 6: Type Systems and Visibility
• Lecture 7: Class Diagrams II
• Lecture 8: Class Diagrams III
• Lecture 9: Class Diagrams IV

• Lecture 10: Core State Machines I
• Lecture 11: Core State Machines II
• Lecture 12: Core State Machines III
• Lecture 13: Core State Machines IV
• Lecture 14: Core State Machines V, Rhapsody
• Lecture 15: Hierarchical State Machines I
• Lecture 16: Hierarchical State Machines II

• Lecture 17: Live Sequence Charts I
• Lecture 18: Live Sequence Charts II
• Lecture 19: Live Sequence Charts III

• Lecture 20: Inheritance I
• Lecture 21: Deferred Events, Behavioural Features, Inheritance II
• Lecture 22: Meta-Modelling, Inheritance III

• Lecture 23: Wrapup & Questions

–
2
3
–
2
0
1
3
-0
2
-1
3
–
m
a
in

–

14/25



Wrapup: Modelli ngBehaviour, Constructive

Main and General:

• Educational Objectives: Capabilities for following tasks/questions.

• What does this State Machine mean?

• What happens if I inject this event?

• Can you please model the following behaviour.

(And convince readers that your model is correct.)

–
2
3
–
2
0
1
3
-0
2
-1
3
–
m
a
in

–

15/25

Wrapup: Modelli ngBehaviour, Constructive

Lecture 10:

• Educational Objectives: Capabilities for following tasks/questions.

• What’s the difference between reflective and constructive descriptions of
behaviour?

• What’s the Basic Causality Model?

• What does the standard say about the dispatching method?

• What is (intuitively) a run-to-completion step?

Lecture 11:

• Educational Objectives: Capabilities for following tasks/questions.

• Can you please model the following behaviour.

• What is: trigger, guard, action?

• Please unabbreviate this abbreviated transition annotation.

• What is an ether? Example? Why did we introduce it?

• What’s the difference: signal, signal event, event, trigger, reception,
consumption?

• What’s a system configuration?

• When is an object stable (intuitively, formally)?–
2
3
–
2
0
1
3
-0
2
-1
3
–
m
a
in

–

16/25



Wrapup: Modelli ngBehaviour, Constructive

Lecture 12 & 13:

• Educational Objectives: Capabilities for following tasks/questions.

• What is a transformer? Example? Why did we introduce it?

• What is a re-use semantics? What of the framework would we change to go
to a non-re-use semantics?

• What labelled transition system is induced by a UML model?

• What is: discard, dispatch, commence?

• What’s the meaning of stereotype “signal,env”?

• Does environment interaction necessarily occur?

• What happens on “division by 0”?

Lecture 14:

• Educational Objectives: Capabilities for following tasks/questions.

• What is a step (definition)? Run-to-completion step (definition)? Microstep
(intuition)?

• Do objects always finally become stable?

• In what sense is our RTC semantics not compositional?

–
2
3
–
2
0
1
3
-0
2
-1
3
–
m
a
in

–

17/25

Wrapup: Modelli ngBehaviour, Constructive

Lecture 15:

• Educational Objectives: Capabilities for following tasks/questions.

• What’s a kind of a state? What’s a pseudo-state?

• What’s a region? What’s it good for?

• What is: entry, exit, do, internal transition?

• What’s a completion event? What has it to do with the ether?

Lecture 16:

• Educational Objectives: Capabilities for following tasks/questions.

• What’s a state configuration?

• When are two states orthogonal? When consistent?

• What’s the depth of a state? Why care?

• What is the set of enabled transitions in this system configuration and this

state machine?

–
2
3
–
2
0
1
3
-0
2
-1
3
–
m
a
in

–

18/25



Wrapup: Modelli ngBehaviour, Constructive

Lecture 21:

• Educational Objectives: Capabilities for following tasks/questions.

• What’s a history state? Deep vs. shallow?

• What is: junction, choice, terminate?

• What is the idea of “deferred events”?

• What is a passive object? Why are passive reactive objects special? What
did we do in that case?

• What’s a behavioural feature? How can it be implemented?

–
2
3
–
2
0
1
3
-0
2
-1
3
–
m
a
in

–

19/25

Wrapup: Modelli ngBehaviour, Reflective
• Lecture 1: Motivation and Overview

• Lecture 2: Semantical Model

• Lecture 3: Object Constraint Language (OCL)

• Lecture 4: Object Diagrams
• Lecture 5: Class Diagrams I
• Lecture 6: Type Systems and Visibility
• Lecture 7: Class Diagrams II
• Lecture 8: Class Diagrams III
• Lecture 9: Class Diagrams IV

• Lecture 10: Core State Machines I
• Lecture 11: Core State Machines II
• Lecture 12: Core State Machines III
• Lecture 13: Core State Machines IV
• Lecture 14: Core State Machines V, Rhapsody
• Lecture 15: Hierarchical State Machines I
• Lecture 16: Hierarchical State Machines II

• Lecture 17: Live Sequence Charts I
• Lecture 18: Live Sequence Charts II
• Lecture 19: Live Sequence Charts III

• Lecture 20: Inheritance I
• Lecture 21: Deferred Events, Behavioural Features, Inheritance II
• Lecture 22: Meta-Modelling, Inheritance III

• Lecture 23: Wrapup & Questions

–
2
3
–
2
0
1
3
-0
2
-1
3
–
m
a
in

–

20/25



Wrapup: Modelli ngBehaviour, Reflective

Lecture 17, 18, & 19:

• Educational Objectives: Capabilities for following tasks/questions.

• Is each LSC description of behaviour necessarily reflective?

• There exists another distinction between “inter-object” and “intra-object”
behaviour. Discuss in the context of UML.

• What does this LSC mean?

• Are this UML model’s state machines consistent with the interactions?

• Please provide a UML model which is consistent with this LSC.

• What is: activation (mode, condition), hot/cold condition, pre-chart, cut,

hot/cold location, local invariant, legal exit, hot/cold chart etc.?

–
2
3
–
2
0
1
3
-0
2
-1
3
–
m
a
in

–

21/25

Wrapup: Inheritance
• Lecture 1: Introduction

• Lecture 2: Semantical Model

• Lecture 3: Object Constraint Language (OCL)

• Lecture 4: Object Diagrams, Class Diagrams I
• Lecture 5: Class Diagrams I
• Lecture 6: Type Systems and Visibility
• Lecture 7: Class Diagrams II
• Lecture 8: Class Diagrams III
• Lecture 9: Class Diagrams IV

• Lecture 10: Core State Machines I
• Lecture 11: Core State Machines II
• Lecture 12: Core State Machines III

• Lecture 13: Hierarchical State Machines I
• Lecture 14: Hierarchical State Machines II
• Lecture 15: Hierarchical State Machines III
• Lecture 16: Methods, Live Sequence Charts II

• Lecture 17: Live Sequence Charts II
• Lecture 18: Live Sequence Charts III, Inheritance I

• Lecture 19: Inheritance II, Meta-Modelling I
• Lecture 20: Meta-Modelling II, Inheritance III

• Lecture 21: Wrapup & Questions

–
2
3
–
2
0
1
3
-0
2
-1
3
–
m
a
in

–

22/25



Wrapup: Inheritance

Lecture 20 & 21:

• Educational Objectives: Capabilities for following tasks/questions.

• What’s the effect of inheritance on LSCs, State Machines, System States?

• What’s the Liskov Substitution Principle?

• What is commonly understood under (behavioural) sub-typing?

• What is the subset, what the uplink semantics of inheritance?

• What is late/early binding?

• What’s the idea of Meta-Modelling?

–
2
3
–
2
0
1
3
-0
2
-1
3
–
m
a
in

–

23/25

Meta

–
2
3
–
2
0
1
3
-0
2
-1
3
–
m
a
in

–

24/25



Hmm...

• Open book or closed book...?

–
2
3
–
2
0
1
3
-0
2
-1
3
–
m
a
in

–

25/25


