Software Design, Modelling and Analysisin UML

Lecture 06: Type Systems and Visibility
2012-11-13

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Extended Classes

From now on, we assume that each class C' € ¢’ has:

« a finite (possibly empty) set S of stereotypes,

« a boolean flag a € B indicating whether C is abstract,

« a boolean flag ¢ € B indicating whether C' is active.
We use S¢ to denote the set [y Sc of stereotypes in ..

(Alternatively, we could add a set St as 5-th component to . to provides the stereo-
types (names of stereotypes) to choose from. But: too unimportant to care.)

Convention:

- We write
(C.Sc.a,t) €€

when we want to refer to all aspects of C.

H o If the new aspects are irrelevant (for a given context),
E we simply write C' € ¢ i.e. old definitions are still vall

25,

4as

Contents & Goals

Last Lecture:
= Representing class diagrams as (extended) signatures — for the moment
without associations (see Lectures 07 and 08).

o And: in Lecture 03, implicit assumption of well-typedness of OCL expressions.

This Lecture:
« Educational Objectives: Capabilities for following tasks/questions.
o s this OCL expression well-typed or not? Why?
» How/in what form did we define well-definedness?

« What is visibility good for?

« Content:
o Class diagram semantics.
o Stereotypes — for documentation.
type theory/static type systems.
 Well-typedness for OCL expression.
* Visil

ty as a matter of well-typedness.

Extended Attributes

« From now on, we assume that each attribute v € V' has

(in addition to the type):

values, e.g. OCL expresions
(If using Java as action language (later) Java expressions would be fine.)
ite (possibly empty) set of properties P,
We define Py analogously to stereotypes.

Convention:
] » We write (v : 7, &, expry, P,) € V when we want to refer to all aspects of v.

3 » Write only v : 7 or v if details are irrelevant.

265

Recall: From Class Boxes to Extended Signatures

From Class Boxes to Extended Signatures

A class box 7 induces an (extended) signature class as follows:

. Si}a(n), t(n))
Prm B e T §evo e {Pras
atr(n) = (C > {vre.oovr})

where
« "abstract” is determined by the font:

OR

false , otherwise

« “active” is determined by the frame:

%:u":% Jifn=[CJorn=| c

fals herwis
false , otherwise 20

orn=

ifn=

Class Diagram Semantics

What About The Rest?

o Classes:

o Active: not represented in 0.
Later: relevant for behaviour,

e., how system states evolve over time.

« Stereotypes: in a minute.

« Attributes:

« Initial value: not represented in 0.
L; : ides an initial value as effect of “creation action”

y: not represented in .
Later: viewed as additional typing information for well-formedness
of system transformers; and with inheritance.

« Properties: such as readOnly, ordered, composite
(Deprecated in the standard.)
» readOnly — later treated similar to visibility.
» ordered — too fine for our representation.
» composite — cf. lecture on associations.

21113

Semantics

» The semantics of a set of class diagrams ¢ 2 first of all is the induced
(extended) signature .7 (€ 2).

« The signature gives rise to a set of system states given a structure %.

« Do we need to redefine/extend 2?7 No.

(Would be different if we considered the definition of ion types in class
diagrams. Then the domain of an enumeration type 7, i.e. the set Z(7), would

be determined by the class diagram, and not free for choice.)

S J i
j D7) =54 bef

Sereotypes

10724

Semantics

The semantics of a set of class diagrams €2 first of all is the induced
(extended) signature .*(€'7).
The signature gives rise to a set of system states given a structure 2.

Do we need to redefine/extend 27 No.

(Would be different if we considered the definition of enumeration types in class
diagrams. Then the domain of an enumeration type 7, i.e. the set Z(), would
be determined by the class diagram, and not free for choice.)

What is the effect on 2.7 Little.

For now, we only remove abstract class instances,
o D(C)» (V» (2(7)U2(%.))
is now only called system state if and only if, for all (C,S¢,1,t) € €,

dom() N 2(C) = 0.

With a = 0 as default “abstractness”, the earlier def
We'll revisit this when discussing inheritance.

ons apply directly.

Sereotypes as Labels or Tags

.

So, a class

(€. S0, t)

h a the abstractness flag, ¢ activeness flag, and S¢ a set of stereotypes.

What are Stereotypes?
« Not represented in system states.

« Not contributing to typing rules.
(cf. type theory for UML later)

[Oestereich, 2006]:
w stereotypes as (additional) “labelling” (“tags’) or as “grouping”.

Useful for documentation and MDA.

+ Documentation: e.g. layers of an architecture.
Sometimes, packages (cf. the standard) are already sufficient and “right”

« Model Driven Architecture (MDA): later.

116

Example: Sereotypes for Documentation

 Example: Timing Diagram Viewer
[Schumann et al., 2008]
© Architecture of four layers:
« core, data layer
o abstract view layer
toolkit-specific view layer/widget ;i
o application using widget

© Stereotype “=" layer “=" colour
12
Type Theory
Recall: In lecture 03, we introduced OCL expressions with types, for instance:
iT ... logical variable w
| true | false : Bool ...constants
[O] =1 1]... :Int .. constants

| ezpry + expry, :Int x Int — Int ... operation
| size(expry) : Set(t) — Int
Wanted: A procedure to tell well-typed, such as (w : Bool)
notw
from not well-typed, such as,

size(

Approach: Derivation System, that is, a finite set of derivation rules.
We then say capr is well-typed if and only if we can derive

)
e. 7€ TgUTe U{Set(r) | 70 € TgUTg}, C€C.

ACF eaprir (read: “expression capr has type

for some OCL type T
15/

Sereotypes as Inheritance

0121113

« Another view (due to whom?): distinguish

« Technical Inheritance

If the target platform, such as the programming language for the implementation of
the blueprint, is object-oriented, assume a 1-on-1 relation between inheritance in the
model and on the target platform.

Conceptual Inheritance

Only meaningful with a common idea of what stereotypes stand for. For instance,
one could label each class with the team that is responsible for realising it. Or with
licensing information (e.g., LGPL and proprietary)

Or one could have labels understood by code generators (cf. lecture on MDSE).

» Confusing:
o Inheritance is often referred to as the “is a”-relation.
Sharing a stereotype also expresses “being something”.

» We can always (ab-)use Core
UML-inheritance for the
conceptual case, e.g, = e

13/

A Type System for OCL

16724

Excursus. Type Theory (cf. Thiemann, 2008)

140
A Type System for OCL
We will give a finite set of type rules (a type system) of the form
(“name”) E “side con
‘conclusion
These rules will establish well-typedness statements (type sentences)
of three different “qualities’
(i) Universal well-typedness:
Feapr:T
F142:Int
Well-typed in a type i A: (for logical variables)
, Ab expr:T
H self 7o b self.v: Int
m i) Well-typedness in type environment A and context B: (for vi
; A Bt expr:T
S self 70, C'& self .r.v: Int 17

Constants and Operations

o If expr is a boolean constant, then expr is of type Bool:

(BOOL) 5ot

B € {true, false}

o If expr is an integer constant, then expr is of type Int:

(NT) EN:Int'

o If expr is the ap

Ne{0,1,-1,

}

ation of operation w: 7y X -+ X 7, — T to expressions

expry, ..., expr, which are of type 71,...,7,, then expr is of type 7:
Foexpry iy ... b e :
(Pung) Mé} n 8@?. T W iT XX Ty — T,
w(expry,... expr,): T 1w atr(®)
(Note: this rule also covers ‘=", ‘isEmpty’, and ‘size’.)

184

Environment Introduction and Logical Variables

o If expr is of type 7, then it is of type 7 in any type environment:

(Bnulntro)

« Care for logical variables in sub-expressions of operator application:

AF eapry i

CAb epr, i

(Pum) = oo,

L WITIX X Ty T,

eapry) i T 021w air(®)

« If expr is a logical variable such that w : 7 occurs in A,

then we say w is of type 7,

(Var)

wiTeA
Abw:T

21/

Constants and Operations Example

(BooL) = B € {true, false}
(INT) Ne{01,-1,...}
(Pung) .
" n> _H.xem wiﬁ
Example:
o not true o isbupls (§7,23):
_ L& 5
el “r(h012))
ot cou < Sal ey
oS .
o true+3 ek T 00)
. Kq\%“ﬂ?&; wles - oy ke
: T r43(1,2): set (ut)
D pheche HR) s (A (12)) e
Pl 3 <t g & (4 (12)) : ar
8 G o1 b Y
194
Type Environment Example
(Enulntro)
(Funy) L WITIX e XTa T,
n>1w¢ atr()
(Var)
Example:
cw+3 A=w:Int
2 (ur)
= N
EE HhE (6 o)
(S e wht b3t o
st F w3 K
c»r Futdhe
3 G 112 rltdped b fpr owimend A
22

Type Environment

« Problem: Whether
w43
is well-typed or not depends on the type of logical variable w & TV,

« Approach: Type Environments

Definition. A type environment is a (possibly empty) finite se-
quence of type declarations.

The set of type environments for a given set W of logical variables
and types T is defined by the grammar

As=0]Aw:r

wherew e W, 7 €T.

Clear: We use this definition for the set of OCL logical variables 1V
the types T = T U Ty U {Set(ro) | 70 € T U T4}

All Instances and Attributes in Type Environment

3— Sodlyp -

o If expr refers to all instances of class C, then it is of type Set(7¢),

(AllInst) - i anceso + Set(0)

and

o If expr is an attribute access of an attribute of type 7 for an object of
C' as denoted by exzpr), then the premise is that ezpr, is of type 7¢:

At eapr, :7E L

(Attrg) AF o(eapry) catr(C), 7€ T
o1, AF empr 7l . L
(Attrgt) A rlearr) o a&f € atr(C)

(Attr3) AF empryiTo 12D, € atr(C)

AT raleapry) : Set(rp)’

20/

23/

Attributes in Type Environment Example

(Attro) Tﬁbﬁwﬁﬁi virear(C).re T
(o) ATt c () W -
(Attrg) %. r2: D. € atr(C) ﬂ.w\,mz
wol 4ireG
c i B,
I3 SonfL
a: Int ‘Te
kel B
kel s
o self s7e b selfy < Int k() bt
(ool li opet
o self 7o boself.x s Int el by () ()
MTpEA
el ot oself oo el by (HG), () yI=TE T Nkbé
G
©self e bself s Int vt wU-bpe, xEALE) lel?v
o Tem ANyt bl gy A yte el
pL N

« I only defined for well-typed expressions.
+ What can hinder something, which looks like a well- zn& ocL
pression, from being a well-typed OCL exp!

S = ({Int}, {C, D}, {x: Int,n: Do1},{C + {n} {D > {z})
win synbre eqe \2
context C': false
R \i ik of
context C'inv:y =0

o Tge e % W st

——
context self : Cinv: self .n=self .n.x

27/

21113

Iterate

o If expr is an iterate expression, then

© the iterator variable has to be type consistent with the base set, and
al and update expressions have to be consistent with the result
variable:

/
Ab e, i) Arepar, Aleqs:g
Ak m%ﬁ v_am_‘mnm?b I Fn J = eapry | exprg) 172
22

o7 A

where A' = A @ ASH 1) ®A .Gv N

Nw& o iy o A
?::N lide owles kmwfx

(Iter)

25/

References

Iterate Example

AF eapry i 10
Alll . -
(Alimst) e 1) (Attr) Aoy or
(lter) At emriSet(n) Avemryir Ak empryin

At eapr,->iterate(w; : 71 ; wa : T2 = expr, | eapry) i T

where A" = A® (w5 71) & (wa 5 72)

Example: (# = ({Int},{C}, {o : Int},{C — {2}))

oz e Al

?c
;IP& s > o r\?%

.) -
R e Banl

F ol = ek (1 5. Bl = Ei?) 0 %f)
 context C'inv:a =0 :8am/
(ol -Hped
26/4a
References

[Oestereich, 2006] Oestereich, B. (2006). Analyse und Design mit UML 2.1, 8.
Auflage. Oldenbourg, 8. edition

[OMG, 2006] OMG (2006). Object Constraint Language, version 2.0. Technical
Report formal/06-05-01.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

[Schumann et al., 2008] Schumann, M., Steinke, J., Deck, A., and Westphal, B
(2008). Traceviewer technical documentation, version 1.0. Technical report, Carl
von Ossietzky Universitat Oldenburg und OFFIS

[ron

