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Last Lecture:
Hierarchical State Machines
Later: Remaining pseudo-states, such as shallow/deep history; active vs. passive;

behavioural feature.

This Lecture:

Educational Objectives: Capabilities for following tasks/questions.
What does this LSC mean?
Are this UML model’s state machines consistent with the interactions?
Please provide a UML model which is consistent with this LSC.

What is: activation, hot/cold condition, pre-chart, etc.?

Content:
Reflective description of behaviour.
LSC concrete and abstract syntax.
LSC intuitive semantics.

Symbolic Biichi Automata (TBA) and its (accepted) language.
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Motivation: Refledive, Dynamic Descriptions of Behaviour
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Reall: Constructive \s. Refledive Descriptions

[Harel, 1997] proposes to distinguish constructive and reflective descriptions:

“A language is constructive if it contributes to the dynamic semantics
of the model. That is, its constructs contain information needed in
executing the model or in translating it into executable code.”

A constructive description tells how things are computed (which can
then be desired or undesired).

“Other languages are reflective or assertive, and can be used by the
system modeler to capture parts of the thinking that go into building the
model — behavior included —, to derive and present views of the model,
statically or during execution, or to set constraints on behavior in
preparation for verification.”

A reflective description tells what shall or shall not be computed.

1-16 — Sbehav —

Note: No sharp boundaries!
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Reall: What isa Requirement?
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Recall:

o The semantics of the UML modelt M = (€2, S#,02) is the transition
system (.S, —, So) constructed according to discard/dispatch/commence-rules.

o The computations of M, denoted by [M], are the computations of (S, —, So).

Now:
A reflective description tells what shall or shall not be computed.

More formally: a requirement 1 is a property of computations, sth. which is
either satisfied or not satisfied by a computation

(comsg,Sndg)

consi,Snd
7 = (00, €0) (01,61) L2, e M,

denoted by 7 = ¢ and 7 [~ 0, resp.

OCL as Refledive Description o Certain Properties
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Lo -1 (a',g)-/h'/ -

e invariants:
MEV .« Vre[M]Vie N:7' =9,
e non-reachability of configurations:
IreM]PieN:zt =9
= Vre[M]VieN: 7' -
e reachability of configurations:
IJre[M]IieN: " =9
= ~(Vre[M]VieN: 7' )

where
o ¢ is an OCL expression or an object diagram and

e “E" is the corresponding OCL satisfaction
or the “is represented by object diagram” relation.
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In General Not OCL: Temporal Properties
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Dynamic (by example)
e reactive behaviour
e “for each C instance, each reception of F is finally answered by F”

Vre[M]:mlE=9

» non-reachability of system configuration sequences

e “there mustn’t be a system run where C first receives F and then sends F”

Ire[M]:mkE9

o reachability of system configuration sequences

e “there must be a system run where C first receives £ and then sends F”

dre[M]:mEY

But: what is “E" and what is “9"?

Interactions: Problem andPlan
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In general: V(3) w € [M] : 7 () 9
Problem: what is “=" and what is “9"?

Plan:
o Define the language L£(Z) of an interaction Z — via Biichi automata.

o Define the language £(M) of a model M — basically its computations.
Each computation 7 € [M] corresponds to a word w;.

o Then (conceptually) 7 = ¥ if and only if w, € L(Z).

CD, SM p e OCL CD, 8D
I‘Y/ \LL % D%
S = (97 €, V,atr), SM expr 7, 8D

>,

M= (Zy,Ay —sum) B = (Qsp,q0,As,—sp, Fsp)

&i»ﬁ %D
S (consg,Sndg)

(00,€0) —> (01,61) - <" wr = (04, cons;, Snd;)) ;e

T .
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Interactions; Plan
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o more precisely: Live Sequence Charts [Damm and Harel, 2001].
o We define the language £(Z) of an LSC — via Biichi automata.
Then (conceptually) 7 |= ¥ if and only if w, € L(Z).

Why LSC, relation LSCs/UML SDs, other kinds of interactions: later.

CD, SM @ € OCL CD, SD
;JJ ik % D%
7 =(T,6,V,atr), SM expr 7, SD
¢ &R
M= (%2, Ay, —rsm) B = (Qsp,q0,A»,—sp, Fsp)
H’Lfi %KD
m = (00,60) ———— ( consa, Sndo) s wr = ((04, consy, Snd;i)) ;e
0

““«L

NEf

Live Sequence Charts — Concrete Syntax

In the following, we consider Sequence Diagrams as interaction Z,
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Example
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AC: actcond
AM: invariant | strict
, - - - - - " \
,/ ’Environment‘ ’ : LightsCtrl ‘ ’: CrossingCtrI‘ ’ : BarrierCtrl ‘ AN
\
“ 7 sedreq Lé\ ! J/
\ T ) \
N 7 L t(10) | /
/ . |
; ! lights_on barrier dowp |
****** r ]
7 osetional
v {3 | @ -MvUp >
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«;\a::» CrossingCtrl
creq // 1\
1 1
& “0\*177 ‘ LightsCtrl ‘ ‘ BarrierCtrl
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Example: What |s Required?
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LSC: L CrossingCtrl
AC: actcond
AM: invariant I:  strict ) 1 1\1
;y - - - - \
/" [Environment | |- LightsCerl | [: CrossingCerl] [ : BarrierCerl N ‘ LightsCtr ‘ BarrierCtrl
N § Fg00
}
7z . |
; )‘_M barrier_ down !
PR P
; 7 Operational> |
7 N !
7 | ! [1,5] -MvUp >
7 lights_ok .
7 | parrier_ok
’ i |
7 ddne t !
7 ! ! |
2 | | |

Whenever the CrossingCtrl has consumed a ‘secreq’ event
then it shall finally send ‘lights_on’ and ‘barrier_down’ to LightsCtrl and BarrierCtrl,

if LightsCtrl is not ‘operational’ when receiving that event,
the rest of this scenario doesn’t apply; maybe there's another LSC for that case.

if LightsCtrl is ‘operational’ when receiving that event,
it shall reply with ‘lights_ok’ within 1-3 time units,

the BarrierCtrl shall reply with ‘barrier_ok’ within 1-5 time units, during this time
(dispatch time not included) it shall not be in state ‘MvUp’,

‘lights_ok’ and ‘barrier_ok’ may occur in any order.

After having consumed both, CrossingCtrl may reply with ‘done’ to the environment. 14,
— !



Building Blocks

CrossingCtrl

LsC: L

AC: actcond

AM: invariant I strict v/ 1\1

e N
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Instance Lines:

Environment ‘ ’
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I
! 15/74
Buil ding Blocks
L CrossingCtrl
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Building Blocks

LsC: L CrossingCtrl

AC: actcond

AM: invariant I strict v/ 1\1

e N
,/ ‘Environment‘ ‘ : LightsCtrl ‘ ‘: CvossingCtrl‘ ‘ : BarrierCtrl ‘ N ‘ LightsCtrl ‘ BarrierCtrl
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Conditions and Local Invariants: (expr,, expry, exprs € Expr, )

1774

| 4 1 || \
. cz s |
A Y
Intuitive Semantics: A Partial Order on Smclasses
(i) Strictly After:
/_(_"
(i) Simultaneously: (simultaneous region)
P
expry ‘ ‘
I I
(iii) Explicitly Unordered: (co-region)
5 Intuition: A computation path violates an LSC if the occurrence of some events

doesn't adhere to the partial order obtained as the transitive closure of (i) to (iii).
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Partial Order Requirements

3
\

LsC: L S
AC: actcond
AM: invariant |:  strict
y 7 - \
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® Whenever the CrossingCtrl has consumed a ‘s

o then it shall finally send ‘lights_on’ and ‘barrie

0
° ”f’h CrossingCtrl

1 1
1 1

‘ LightsCtrl ‘ BarrierCtrl

wedl

ecreq’ event

r_down’ to LightsCtrl and BarrierCtrl,

e if LightsCtrl is not ‘operational’ when receiving that event,

the rest of this scenario doesn’t apply; maybe

e if LightsCtrl is ‘operational’ when receiving that event,

there's another LSC for that case.

4l

hin 1-5 time units, during this time
state ‘MvUp’,

rder.

o After having consumed both, CrossingCtrl may reply with ‘done’ to the environment.

message condition/
local inv.
4b>
il
P
L b /\ﬁl\/
mustn't vs. necessary vs.

g it shall reply with ‘lights_ok’ jwithin—i—3-time—nich, SHC
é o the BarrierCtrl shall reply with ‘barrier_ok’ wit
§ (dispatch time not included) it shall not be in
% o ‘lights_ok’ and ‘barrier_ok’ may occur in any ol
LSC Spedalty: Modes
With LSCs,
o whole charts,
o locations, and
o elements
have a mode — one of hot or cold (graphically indicated by outline).
chart location
a ,‘"7 '
hot: b
m—m—n —a N
3 | T
2| cold I | ! b
L "
i always vs. at must vs. may

least once progress

may get lost legal exit

20
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Example: Modes

LSC: L { / CrossingCtrl
AC:  actcond hot ‘oc. (J’/ &
AM: invariant I: striet |, / v/ 1\1
7/ N
l‘}‘_w r ,/ ‘ Environment‘ ‘ : LightsCtrl ‘ ‘: Crossing%l‘ : BargefCtrl | | ‘ LightsCtrl ‘ BarrierCtrl
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© Whenever the CrossingCtrl has consumed a ‘secreq’ event
o then it shall finally send ‘lights_on" and 'barrier_.down’ to LightsCtrl and BarrierCtrl,

o if LightsCtrl is not ‘operational’ when receiving that event,
the rest of this scenario doesn't apply; maybe there's another LSC for that case.

o if LightsCtrl is 'operational’ when receiving that event,
it shall reply with ‘lights_ok’ within 1-3 time units,

e the BarrierCtrl shall reply with ‘barrier_ok’ within 1-5 time units, during this time
(dispatch time not included) it shall not be in state ‘MvUp’,

e ‘lights_ok’ and ‘barrier_ok’ may occur in any order.

e After having consumed both, CrossingCtrl may reply with ‘done’ to the environment.

LSC Speaalty: Activation
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2174

One major defect of MSCs and SDs:
they don’t say when the scenario has
to/may be observed.

T
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Intuition: (universal case)

LSCs: Activation condition (AC € Expr ),
activation mode (AM € {init, inv}),
and pre-chart.

LSC: L

AC: expr

AM:  invariant |:  strict
/ N
e I ™
, \
/ f I \
< [ /
\ }Xﬂ‘ /
\ /
\ /

\\po/{':

e given a computation 7, whenever expr holds in a configuration (o e4) of lfn'

e which is initial, i.e. Kk =0, or
o whose k is not further restricted,

(AM = initial)
(AM = invariant)

and if the pre-chart is observed from k to k + n,
then the main-chart has to follow from & +n + 1.
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Example: What Is Required?

LsC: L CrossingCtrl

AC:  actcond
AM: invariant_I:  strict % 1\1

/ \
,/ ‘ Environment‘ ‘ : LightsCtrl ‘ ‘: CrossingCtvl‘ ‘ : BarrierCtrl | ‘ LightsCtrl ‘ BarrierCtrl
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© Whenever the CrossingCtrl has consumed a ‘secreq’ event
e then it shall finally send ‘lights_on’ and ‘barrier_.down’ to LightsCtrl and BarrierCtrl,

e if LightsCtrl is not ‘operational’ when receiving that event,
the rest of this scenario doesn't apply; maybe there's another LSC for that case.

e if LightsCtrl is ‘operational’ when receiving that event,

_? it shall reply with ‘lights_ok’ within 1-3 time units,
é e the BarrierCtrl shall reply with ‘barrier_ok’ within 1-5 time units, during this time
§ (dispatch time not included) it shall not be in state ‘MvUp’,
% e '‘lights_ok’ and ‘barrier_ok’ may occur in any order.
T e After having consumed both, CrossingCtrl may reply with ‘done’ to the environment.
Course Map
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