— 17 — 2013-01-16 — main —

Sdtware Design, Modelling andAnalysisin UML
Ledure 17: Refledive Description o Behaviour,
Live Sequence Charts |

201301-16

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 17 — 2013-01-16 — Sprelim —

Last Lecture:
Hierarchical State Machines
Later: Remaining pseudo-states, such as shallow/deep history; active vs. passive;

behavioural feature.

This Lecture:

Educational Objectives: Capabilities for following tasks/questions.
What does this LSC mean?
Are this UML model’s state machines consistent with the interactions?
Please provide a UML model which is consistent with this LSC.

What is: activation, hot/cold condition, pre-chart, etc.?

Content:
Reflective description of behaviour.
LSC concrete and abstract syntax.
LSC intuitive semantics.

Symbolic Biichi Automata (TBA) and its (accepted) language.
2/74

— 17 - 2013-01-16 — main

Course Map

— 17 - 2013-01-16 — main

CD, SM

You ae here.

O

&

= (Qsp,q0, Av,—sp, Fsp)

= (9,%€,V, atr), expr
[(iLh
M:(E%HA.S”’%SM) |:|
()
0
(consg,Sndo)
= (00,80) ———> (01,€1) "+ <"\~
ug |:|

T

G=(N,E,[)

oD

[

wr = ((03, cons;, Snd;)); e
A e Pe T)ieN

374

474

Motivation: Refledive, Dynamic Descriptions of Behaviour

— 17 - 2013-01-16 — main —

5/7a

Reall: Constructive \s. Refledive Descriptions

[Harel, 1997] proposes to distinguish constructive and reflective descriptions:

“A language is constructive if it contributes to the dynamic semantics
of the model. That is, its constructs contain information needed in
executing the model or in translating it into executable code.”

A constructive description tells how things are computed (which can
then be desired or undesired).

“Other languages are reflective or assertive, and can be used by the
system modeler to capture parts of the thinking that go into building the
model — behavior included —, to derive and present views of the model,
statically or during execution, or to set constraints on behavior in
preparation for verification.”

A reflective description tells what shall or shall not be computed.

1-16 — Sbehav —

Note: No sharp boundaries!

— 17 - 2013-0

6,74

Reall: What isa Requirement?

— 17 — 2013-01-16 — Sreflective —

Recall:

o The semantics of the UML modelt M = (€2, S#,02) is the transition
system (.S, —, So) constructed according to discard/dispatch/commence-rules.

o The computations of M, denoted by [M], are the computations of (S, —, So).

Now:
A reflective description tells what shall or shall not be computed.

More formally: a requirement 1 is a property of computations, sth. which is
either satisfied or not satisfied by a computation

(comsg,Sndg)

consi,Snd
7 = (00, €0) (01,61) L2, e M,

denoted by 7 = ¢ and 7 [~ 0, resp.

OCL as Refledive Description o Certain Properties

— 17 — 2013-01-16 — Sreflective —

Lo -1 (a',g)-/h'/ -

e invariants:
MEV .« Vre[M]Vie N:7' =9,
e non-reachability of configurations:
IreM]PieN:zt =9
= Vre[M]VieN: 7' -
e reachability of configurations:
IJre[M]IieN: " =9
= ~(Vre[M]VieN: 7')

where
o ¢ is an OCL expression or an object diagram and

e “E" is the corresponding OCL satisfaction
or the “is represented by object diagram” relation.

T/74

8/74

In General Not OCL: Temporal Properties

— 17 — 2013-01-16 — Sreflective —

Dynamic (by example)
e reactive behaviour
e “for each C instance, each reception of F is finally answered by F”

Vre[M]:mlE=9

» non-reachability of system configuration sequences

e “there mustn’t be a system run where C first receives F and then sends F”

Ire[M]:mkE9

o reachability of system configuration sequences

e “there must be a system run where C first receives £ and then sends F”

dre[M]:mEY

But: what is “E" and what is “9"?

Interactions: Problem andPlan

— 17 — 2013-01-16 — Sreflective —

In general: V(3) w € [M] : 7 () 9
Problem: what is “=" and what is “9"?

Plan:
o Define the language L£(Z) of an interaction Z — via Biichi automata.

o Define the language £(M) of a model M — basically its computations.
Each computation 7 € [M] corresponds to a word w;.

o Then (conceptually) 7 = ¥ if and only if w, € L(Z).

CD, SM p e OCL CD, 8D
I‘Y/ \LL % D%
S = (97 €, V,atr), SM expr 7, 8D

>,

M= (Zy,Ay —sum) B = (Qsp,q0,As,—sp, Fsp)

&i»ﬁ %D
S (consg,Sndg)

(00,€0) —> (01,61) - <" wr = (04, cons;, Snd;)) ;e

T .

9/74

10/74

Interactions; Plan

— 17 — 2013-01-16 — Sreflective —

— 17 - 2013-01-16 — main

o more precisely: Live Sequence Charts [Damm and Harel, 2001].
o We define the language £(Z) of an LSC — via Biichi automata.
Then (conceptually) 7 |= ¥ if and only if w, € L(Z).

Why LSC, relation LSCs/UML SDs, other kinds of interactions: later.

CD, SM @ € OCL CD, SD
;JJ ik % D%
7 =(T,6,V,atr), SM expr 7, SD
¢ &R
M= (%2, Ay, —rsm) B = (Qsp,q0,A»,—sp, Fsp)
H’Lfi %KD
m = (00,60) ———— (consa, Sndo) s wr = ((04, consy, Snd;i)) ;e
0

““«L

NEf

Live Sequence Charts — Concrete Syntax

In the following, we consider Sequence Diagrams as interaction Z,

11/74

12/74

ADVER TISE prgg a7 i

Example

— 17 — 2013-01-16 — Slscsyn —

(2 e Real-Ting
;ﬁémé Sttt
2003

LSC: L
AC: actcond
AM: invariant | strict
, - - - - - " \
,/ ’Environment‘ ’ : LightsCtrl ‘ ’: CrossingCtrI‘ ’ : BarrierCtrl ‘ AN
\
“ 7 sedreq Lé\ ! J/
\ T) \
N 7 L t(10) | /
/ . |
; ! lights_on barrier dowp |
****** r]
7 osetional
v {3 | @ -MvUp >
/ i lights ok .
/ T\ barrier.ok |
7 i \
7 [‘ \
7 | | |

«;\a::» CrossingCtrl
creq // 1\
1 1
& “0*177 ‘ LightsCtrl ‘ ‘ BarrierCtrl

13/74

Example: What |s Required?

— 17 — 2013-01-16 — Slscsyn —

LSC: L CrossingCtrl
AC: actcond
AM: invariant I: strict) 1 1\1
;y - - - - \
/" [Environment | |- LightsCerl | [: CrossingCerl] [: BarrierCerl N ‘ LightsCtr ‘ BarrierCtrl
N § Fg00
}
7z . |
;)‘_M barrier_ down !
PR P
; 7 Operational> |
7 N !
7 | ! [1,5] -MvUp >
7 lights_ok .
7 | parrier_ok
’ i |
7 ddne t !
7 ! ! |
2 | | |

Whenever the CrossingCtrl has consumed a ‘secreq’ event
then it shall finally send ‘lights_on’ and ‘barrier_down’ to LightsCtrl and BarrierCtrl,

if LightsCtrl is not ‘operational’ when receiving that event,
the rest of this scenario doesn’t apply; maybe there's another LSC for that case.

if LightsCtrl is ‘operational’ when receiving that event,
it shall reply with ‘lights_ok’ within 1-3 time units,

the BarrierCtrl shall reply with ‘barrier_ok’ within 1-5 time units, during this time
(dispatch time not included) it shall not be in state ‘MvUp’,

‘lights_ok’ and ‘barrier_ok’ may occur in any order.

After having consumed both, CrossingCtrl may reply with ‘done’ to the environment. 14,
— !

Building Blocks

CrossingCtrl

LsC: L

AC: actcond

AM: invariant I strict v/ 1\1

e N
,/ ‘Environment‘ ‘ : LightsCtrl ‘ ‘: CrossingCtrl‘ ‘ : BarrierCtrl | ‘ LightsCtrl ‘ BarrierCtrl
A
5 —TT 1 /
. ; ! $—X t(10) L YV
7 P |
7 lights.on barrier down _!
-t M

/ < Operatr‘onal>
7 NI
/ [1.3) , ﬁM"@
; lights ok .
7 | =
7 |
{»//do,"e//‘?%(
7 |
/ I

Instance Lines:

Environment ‘ ’

I
ES /
g /
» /
| 7
< 1
g !
& !
S 1
I
! 15/74
Buil ding Blocks
L CrossingCtrl
Esfﬂc ;cth"dt o : rossmf\t{<
) : - . 1 1
,/ ‘ Environment‘ ‘ : LightsCtrl ‘ ‘: CrossingCtvl‘ ‘ : BarrierCtrl | ‘ LightsCtrl ‘ BarrierCtrl
‘ 7 sedreq | i ;
N s e T R
2 - L _ ﬁghts,on barrier_down 1
/ /\/Operatr'onal> !
Z P 5 MU
; (1.3 lights_ok } o V}
; ‘ H } _barrier-ok
é//ddne/a%t }
7 | ! i
Nfe : a«oé o/
. doped inessqges
Messages: (asynchronous or synchronous/instantaneous) NS kot releyant
| \ €
3 b a-d
: ;
% ase (7(4-\/4614'(
I
¥

16/74

Building Blocks

LsC: L CrossingCtrl

AC: actcond

AM: invariant I strict v/ 1\1

e N
,/ ‘Environment‘ ‘ : LightsCtrl ‘ ‘: CvossingCtrl‘ ‘ : BarrierCtrl ‘ N ‘ LightsCtrl ‘ BarrierCtrl
A
5 —TT 1 J
N / 1 $—X t(10) L ,
4 | . |
/ L b tBRION | barrier. down |
; <. Operational) |
7 N !
| .5 ~MvUj

/ ms | ‘ .5 W)
7 lights ok .
7 | parrier_ok
7 | HE
7/ w |
;/_Jwt |
7 ! ! I
g | | I

Conditions and Local Invariants: (expr,, expry, exprs € Expr,)

1774

| 4 1 || \
. cz s |
A Y
Intuitive Semantics: A Partial Order on Smclasses
(i) Strictly After:
/_(_"
(i) Simultaneously: (simultaneous region)
P
expry ‘ ‘
I I
(iii) Explicitly Unordered: (co-region)
5 Intuition: A computation path violates an LSC if the occurrence of some events

doesn't adhere to the partial order obtained as the transitive closure of (i) to (iii).

1874

Partial Order Requirements

3
\

LsC: L S
AC: actcond
AM: invariant |: strict
y 7 - \
,/ ‘Environment‘ ‘ : LightsCtrl ‘ ‘: CrossingCtrl‘ \/ﬁarrier(ﬁtrl ‘ AN
N e r
N 2 | 10) L Y
4 . |
Z i lights.on Jbam'er down |
,,,,,, p—2arrier.down
; (/ Operational S,
7 N ’
4

lights ok .

AN
[N
-
@

® Whenever the CrossingCtrl has consumed a ‘s

o then it shall finally send ‘lights_on’ and ‘barrie

0
° ”f’h CrossingCtrl

1 1
1 1

‘ LightsCtrl ‘ BarrierCtrl

wedl

ecreq’ event

r_down’ to LightsCtrl and BarrierCtrl,

e if LightsCtrl is not ‘operational’ when receiving that event,

the rest of this scenario doesn’t apply; maybe

e if LightsCtrl is ‘operational’ when receiving that event,

there's another LSC for that case.

4l

hin 1-5 time units, during this time
state ‘MvUp’,

rder.

o After having consumed both, CrossingCtrl may reply with ‘done’ to the environment.

message condition/
local inv.
4b>
il
P
L b /\ﬁl\/
mustn't vs. necessary vs.

g it shall reply with ‘lights_ok’ jwithin—i—3-time—nich, SHC
é o the BarrierCtrl shall reply with ‘barrier_ok’ wit
§ (dispatch time not included) it shall not be in
% o ‘lights_ok’ and ‘barrier_ok’ may occur in any ol
LSC Spedalty: Modes
With LSCs,
o whole charts,
o locations, and
o elements
have a mode — one of hot or cold (graphically indicated by outline).
chart location
a ,‘"7 '
hot: b
m—m—n —a N
3 | T
2| cold I | ! b
L "
i always vs. at must vs. may

least once progress

may get lost legal exit

20

19/74

74

Example: Modes

LSC: L { / CrossingCtrl
AC: actcond hot ‘oc. (J’/ &
AM: invariant I: striet |, / v/ 1\1
7/ N
l‘}‘_w r ,/ ‘ Environment‘ ‘ : LightsCtrl ‘ ‘: Crossing%l‘ : BargefCtrl | | ‘ LightsCtrl ‘ BarrierCtrl
w ‘ . fﬂj | /’\ ’ [
[e\A N 4 | t(l L / lec.
2 |, lights.on %} v,
; (/ Operational i > | ? [#
7 D B I 4
Z wa| ! s | (M)
7 lights ok . | .
([i “;} / ‘ i barrier-ok
7 : |
o A ‘
o cold 7 ; ! l
" i
vk

— 17 — 2013-01-16 — Slscsyn —

© Whenever the CrossingCtrl has consumed a ‘secreq’ event
o then it shall finally send ‘lights_on" and 'barrier_.down’ to LightsCtrl and BarrierCtrl,

o if LightsCtrl is not ‘operational’ when receiving that event,
the rest of this scenario doesn't apply; maybe there's another LSC for that case.

o if LightsCtrl is 'operational’ when receiving that event,
it shall reply with ‘lights_ok’ within 1-3 time units,

e the BarrierCtrl shall reply with ‘barrier_ok’ within 1-5 time units, during this time
(dispatch time not included) it shall not be in state ‘MvUp’,

e ‘lights_ok’ and ‘barrier_ok’ may occur in any order.

e After having consumed both, CrossingCtrl may reply with ‘done’ to the environment.

LSC Speaalty: Activation

- 17 - 2013-01-16 — Slscsyn —

2174

One major defect of MSCs and SDs:
they don’t say when the scenario has
to/may be observed.

T
6%
L

0,5

:C
[

Lo |
o 6, 27
‘e | i
b d
S
¢

Intuition: (universal case)

LSCs: Activation condition (AC € Expr),
activation mode (AM € {init, inv}),
and pre-chart.

LSC: L

AC: expr

AM: invariant |: strict
/ N
e I ™
, \
/ f I \
< [/
\ }Xﬂ‘ /
\ /
\ /

\\po/{':

e given a computation 7, whenever expr holds in a configuration (o e4) of lfn'

e which is initial, i.e. Kk =0, or
o whose k is not further restricted,

(AM = initial)
(AM = invariant)

and if the pre-chart is observed from k to k + n,
then the main-chart has to follow from & +n + 1.

22/74

Example: What Is Required?

LsC: L CrossingCtrl

AC: actcond
AM: invariant_I: strict % 1\1

/ \
,/ ‘ Environment‘ ‘ : LightsCtrl ‘ ‘: CrossingCtvl‘ ‘ : BarrierCtrl | ‘ LightsCtrl ‘ BarrierCtrl
< T A

$—X t(10)
lights_on

b BNMSON L barrier_down
s o—===7 L
< Operational >
N .

|
77777 |
w3 } .2l
lights ok .
}) barrier_ok

|
done
|
I

N\

T
segreq ,
/

|
|
I
|
|

—\Mv@

AN NN SN SNNSNNENN

|

NN

© Whenever the CrossingCtrl has consumed a ‘secreq’ event
e then it shall finally send ‘lights_on’ and ‘barrier_.down’ to LightsCtrl and BarrierCtrl,

e if LightsCtrl is not ‘operational’ when receiving that event,
the rest of this scenario doesn't apply; maybe there's another LSC for that case.

e if LightsCtrl is ‘operational’ when receiving that event,

_? it shall reply with ‘lights_ok’ within 1-3 time units,
é e the BarrierCtrl shall reply with ‘barrier_ok’ within 1-5 time units, during this time
§ (dispatch time not included) it shall not be in state ‘MvUp’,
% e '‘lights_ok’ and ‘barrier_ok’ may occur in any order.
T e After having consumed both, CrossingCtrl may reply with ‘done’ to the environment.
Course Map
N
w E
CD, SM p € OCL CD, SD s
S =(F,6,V,atr), SM expr .7, 8D
1%, g0 R
M = (2%, Az, —sm) B = (Qsp,q, Az, —sp, Fsp)
0 U
;“«fg\
7 = (00, €0) % (o1,€1) - <> wr = ((03, cons, Sndi))iE]N
% 0
- G=(N,E,f)
£
|
g oD

2374

2474

— 17 - 2013-01-16 — main —

— 17 - 2013-01-16 — main —

References

73/74

References

[Damm and Harel, 2001] Damm, W. and Harel, D. (2001). LSCs: Breathing life into
Message Sequence Charts. Formal Methods in System Design, 19(1):45-80.

[Harel, 1997] Harel, D. (1997). Some thoughts on statecharts, 13 years later. In Grumberg,
0., editor, CAV, volume 1254 of LNCS, pages 226—231. Springer-Verlag.

[Harel and Maoz, 2007] Harel, D. and Maoz, S. (2007). Assert and negate revisited: Modal
semantics for UML sequence diagrams. Software and System Modeling (SoSyM). To
appear. (Early version in SCESM'06, 2006, pp. 13-20).

[Harel and Marelly, 2003] Harel, D. and Marelly, R. (2003). Come, Let's Play:
Scenario-Based Programming Using LSCs and the Play-Engine. Springer-Verlag.

[Klose, 2003] Kilose, J. (2003). LSCs: A Graphical Formalism for the Specification of
Communication Behavior. PhD thesis, Carl von Ossietzky Universitat Oldenburg.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2.
Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2.
Technical Report formal/07-11-02.

[Storrle, 2003] Storrle, H. (2003). Assert, negate and refinement in UML-2 interactions. In
Jiirjens, J., Rumpe, B., France, R., and Fernandez, E. B., editors, CSDUML 2003, number

TUM-10323. Technische Universitat Miinchen.

T4/74

