Sdtware Design, Modelling andAnalysisin UML

Ledure 22: Meta-Modelli ng, Inheritancelll
201302-06

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Meta-Modelli ng: Why andWhat

one major prerequisite for
o the standard documents [OMG, 2007a, OMG, 2007b], and
« the MDA ideas of the OMG.

The idea is simple:

. ifa is about modelling things,
« and if UML models are and comprise things,
« then why not model those in a modelling language?

o In other words:
Why not have a model My such that

@ the set of legal instances of My

« the set of well-formed (!) UML models.

0130206

Contents & Goals

Last Lecture:

 Inheritance in UML: desired semantics

This Lecture:
« Educational Objectives: Capabilities for following tasks/questions.
» What's the Liskov Substitution Principle?
» What is late/early binding?
* What is the subset, what the uplink semantics of inheritance?
» What's the effect of inheritance on LSCs, State Machines, System States?
* What's the idea of Meta-Modelling?

« Content:

* Meta-Modelling
« Two approaches to obtain desired semantics

Meta-Modelli ng: Example

For example, let's consider a class.

A class has (on a superficial level)
« a name,

» any number of attributes,
» any number of behavioural features.

Each of the latter two has
» aname and
« a visibility.

Behavioural features in addition have E et
« a boolean attribute isQuery,
= any number of parameters,

o areturn type.

« Can we model this (in UML, for a sfart)?

Meta-Modelli ng: | dea andExample

363
UML Meta-Model: Extract
I i ]
Type TypedElement RedefElement W_ redefdElem
type.
Feature Namespace
Il Classifier 7 StructFeature 7 mm_,u,\mmunini
Operation 4———| Parameter
' 6/63.



Clas®s [oma, 2007h 32

SrucuralFeare]

Relatonshp.

Py s et o)

| o

sConposte Bovkan

Classfiers [omg, 20075 29

-
W -

Figure 7.9 - Classifiers diagram of the Kernel package

10763

Operations [omg, 2007h 31

20130206 - Su

poration
ey o

{subsets contexty
L ycon

{ubssts cwmectuis)|
leromscemes_rboconiion |

o o
e | Cimsannl
R

i tonn
0

Greoties rasegxceptiony

Figure 7.11 - Operations diagram of the Kernel package

Namespaces [ome, 2007h 26]

[ NamedEiement |

Namespace |

[ —

Figure 7.4 - Namespaces diagram of the Kernel package

5 Packane

116

Operations [omg, 2007h 30

ety i)

i,

Figure 7.10 - Features diagram of the Kernel package

Root Diagram [ome, 2007 25]

{subsats owner} {subssts ownedElement).

{readdoniy, urion).

rélsteciElaent)
g

treadOniy, urion,
SLBSO réistedElomenty

Figure 7.3 - Root diagram of the Kernel package

1276



Interesting: Dedaratiorn/Definition [omg, 2007h 424

b Classest
Kensi:Clasiir

Bohavior
et B
] 0
bR reckntencontar)
{absats orentort
raras leatrets resrecterers)
- pe—
anePamater H_
Cabsets uneaie, .
e

Figure 136 - Common Behavior

Meta-Modelling: Principle

13/6:

16/63

UML Architedure [oma, 2003 g

« Meta-modelling has already
been used for UML Lx.

For UML 2.0, the request
for proposals (RFP) asked
for a separation of concerns:
Infrastructure and
Superstructure. | 50 | e e
* One reason:

sharing with MOF (see
later) and, e.g., CWM.

Package, Srapshot

s, St
Transon,
Fow,

> Castor, Saet,

Tensiorte

> Nose Ecge.

Figueo-1 Overview of architedure.

Modelli ng vs. Meta-Modelli ng

UML Sugerstructure Packages [omg, 20073 15

\

o7 . I
| — - v

Depoymens

Figure 7.5 The top-level package structure of the UML 2.1.1 Superstructure

‘AlaryConstuces|

14763 ! 1563

Modelli ng vs. Meta-Modelli ng

Class Property Type
Meta- name : Str name - Str name : Str Meta-
Model [ ] ] Model [
(M2) T T (M2)
T T
| | |
I ! —
C | I | T 7 =({z},
Property {C} {o},
v Z viZ {Cu))
Model Model &\i 57
M) (M) e
motance 1 . . ; etance | So.if we have a meta model My of UML, then the set |7
instance-of ’
I f UML models is the set of inst f M.
MOy ! Je (M) o models is the set of instances of My Je
1 / /
:C !~ {, N —
— o={ur diagram (or system state) wrt. the meta-model My. |~ {ur

ﬁ + A UML model M can be represented as an object

« Other view: An object diagram wrt. meta-model My
can (alternatively) be rendered as the UML modal M

1763 ! 176



\\ell-Formednessas Constraints in the Meta-Model

« The set of well-formed UML models can be defined as the set of object
diagrams satisfying all constraints of the meta-model.

For example,

“[2]  Generalization hierarchies must be directed and acyclical. A classifier
cannot be both a transitively general and transitively specific classifier
of the same classifier.

not self . allParents() -> includes(self)" [OMG, 2007b, 53]

« The other way round:
Given a UML model M, unfold it into an object diagram Oy wrt. M.
If Oy is a valid object diagram of My . satisfies all invariants from Inv(My)),
then M is a well-formed UML model.

That is, if we have an object diagram validity checker for of the meta-modelling
language, then we have a well-formedness checker for UML models.

18/62

Reading the Sandad
L 140
s
5. symas
g
Hm;a.;i ncsonacion)
Part | - Structure 10. Deployments 193
7

R —— ] 196

Reading the Sandad

20130205 - Sreading

Table of Contents

1 scope 1
2 Conformance 1
21 Language Unis 2
22 Complance Levels 2
23 Meaning and Types of Compliance 6
24 Complanca Lovel Contnts o
3. Normative References 10
4. Terms and Definitions. 10
5. Symbols 10
6. Additional Information 10
51 Changes 1o Adopted OMG Specicatons 0
62 x

53 Onthe Run-Time Semantcs of UML

55 Howto Read s Speciicaion 15

6s 1
Part | - Structure 21
7. Classes s

Reading the Sandad Cont’d

g O S

+ o propent)

1963

20763

Reading the

Sandad

71 Overven

Table of Contents

59
s
H

24 Complance Lowi ¢{

72 Astract syt
2

ko e
i

Terms and Definitions|
symbols

‘Additional nformation
61 Changes to Adopee
62

53 Onthe Run-Tine Se|

66 Acknowedgements

Part | - Structure

7. Classes

[ ————

Reading the Sandad Cont’d

1962

20763



Readi ng the Sandzrd Cant’d

ETIRC™ i

tha 9

Bl e o]

- 2060
J————
[Er—— -
T
206

06 - Sreacing

2302

et semanis gt s s saon ot
9 Thegey
o
g 15 dasssnans, o oy W
o e gt
e
1 e qay
S 4
20/63

2163

[E—
= =
L 20763
Open Questiors...
+Qow you've been “tricked" agaip) Twice.
« We didn't tell what the modelling I for meta-mod

« We didn't tell what the is-instance-of relation of this language is.

Idea: have a minimal object-oriented core comprising the notions of

semantics.

class, association, inheritance, etc. with “self-explainin

This is Meta Object Facility (MOF),
which (more or less) coincides with UML Infrastructure [OMG,

2007a).

» So: things on meta level
+ MO are object diagrams/system states (dacts/insfmas of chis i ok.&eﬁ wodi)
e -

+ M1 are words of the language UML (jphfiopes of o 75 W2,
« M2 are words of the language MOF  (wstawcs o fuF woh-+er)
« M3 are words of the language M(F :

22/e3



MOF Semantics Benefits: Overview

» One approach: %
« We'll (superficially) look at three aspects: %%ﬁxy

« Treat it with our signature-based theory
« Benefits for Modelling Tools.

« This is (in effect) the right direction, but may require new (or extended) . . .
signatures for each level. Meta-Modelli ng: A>:: O__umﬁmhc Benefits « Benefits for Language Design. &
(For instance, MOF doesn't have a notion of Signal, our signature has.) ) J

« Benefits for Code Generation and MDA.

» Other approach: @@@

« Define a generic, graph based “is-instance-of" relation.
» Object diagrams (that are graphs) then are the system states —

not only graphical representations of system states.

« If this works out, good: We can easily experiment with different language 3
designs, e.g. different flavours of UML that immediately have a semantics.

» Most interesting: also do generic definition of behaviour within a closed g
modelling setting, but this is clearly still research, e.g. H

[Buscherméhle and Oelerink, 2008]
2300 e ' 25/63

Benefits for Modelling Tods Benefits for Modelli ng Todls Cont’d Benefits: Overview

y) look at three aspects:

And not only in memory, if we can represent MOF instances in files, we o We'll (supe

obtain a canonical representation of UML models in files, e.g. in XML. » Benefits for Modelling Tools. (1
XML Metadata Interch XMI

- etadata Interchange (XMI) « Benefits for Language De

.

The meta-model My of UML immediately provides a data-structure
representation for the abstract syntax (~ for our signatures).

If we have code generation for UML models, e.g. into Java,

then we can immediately represent UML models in memory for Java. Note: A priori, there is no graphical information in XMI (it is only « Benefits for Code Generation and MDA.

abstract syntax like our signatures) — OMG Diagram Interchange.

(Because each MOF model is in particular a UML model.)
Note: There are slight ambiguities in the XMI standard.

There exist tools and libraries called MOF-repositories, which can And different tools by different vendors often seem to lie at opposite ends on
generically represent instances of MOF instances (in particular UML the scale of interpretation. Which is surely a coincidence.

models). In some cases, it's possible to fix things with, e.g., XSLT scripts, but full
vendor independence is today not

And which can often generate specific code to manipulate instances of

: b Plus XMI compati

MOF instances in terms of the MOF instance. refer to Diagram Interchange.

ity doesn't necessari

g To re-iterate: this is generic for all MOF-based modelling languages
E & such as UML, CWM, etc.
And also for Domain Specific Languages which don't even exit yet.

2763 ! 28/63

' 26/53



Benefits for Languag Design

we said that code-generators are possible “readers” of stereotypes.

+ Recall

« For example, (heavily simplifying) we could

« introduce the stereotypes Button, Toolbar,

« for convenience, instruct the modelling tool to use special pictures for
stereotypes — in the meta-data (the abstract syntax), the stereotypes
are clearly present.

« instruct the code-generator to automatically add inheritance from
Gtk::Button, Gtk::Toolbar, etc. corresponding to the stereotype.

Et voila: we can model Gtk-GUIs and generate code for them.

= Another view:
. © UML with these pes is a new i : Gtk-UML.
= Which lives on the same meta-level as UML (M2).
. « It's a Domain Specific Modelling Language (DSL).

Benefits for Languag Design Cont’d

 For each DSL defined by a Profile, we immediately have

n memory representations,

» modelling tools,

« file representations.

Note: here, the semantics of the stereotypes (and thus the language of
Gtk-UML) lies in the code-generator.

That's the first “reader” that understands these special stereotypes.
(And that's what's meant in the standard when they're talking about giving
stereotypes semantics).

One can also impose ad nal well-formedness rules, for instance that
certain components shall all implement a certain interface (and thus have

Benefits for Languag Design Cont'd

« One step further:

» Nobody hinders us to obtain a model of UML (written in MOF),

« throw out parts unnecessary for our purposes,

+ add (= integrate into the existing hierarchy) more adequat new
constructs, for instance, contracts or something more close to
hardware as interrupt or sensor or driver,

« and maybe also stereotypes.

— a new language standing next to UML, CWM, etc.

Drawback: the resulting language is not necessarily UML any more,
so we can’t use proven UML modelling tools.

+ But we can use all tools for MOF (or MOF-like things).
For instance, Eclipse EMF/GMF/GEF.

certain methods available). (Cf. [Stahl and Vélter, 2005].) H

= One mechanism to define DSLs (based on UML, and “within” UML): Profiles.
30/63 3le

! 29/63

Benefits: Overview

« We'll (superficially) look at three aspects:
» Benefits for Modelling Tools. [1
» Benefits for Language Design. [

« Benefits for Code Generation and MDA.

Benefits for Model (to Model) Transformation

« There are manifold applications for model-to-model transformations:

» For instance, tool support for re-factorings, like moving common

attributes upwards the inheritance hierarchy.
This can now be defined as graph-rewriting rules on the level of

MOF.
The graph to be rewritten is the UML model

imilarly, one could transform a Gtk-UML model into a UML model
where the inheritance from classes like Gtk::Button is made explicit:

The transformation would add this class Gtk::Button and the
heritance relation and remove the stereotype.

o Similarly, one could have a GUI-UML model transformed into a
Gtk-UML model, or a Qt-UML model.

Spedal Case: Code Generation

» Recall that we said that, e.g. Java code, can also be seen as a model.
So code-generation is a special case of model-to-model transformatio
only the destination looks quite different.

» Note: Code generation needn't be as expensive as buying a modelling
tool with full fledged code generation.

o If we have the UML model (or the DSL model) given as an XML file,
code generation can be as simple as an XSLT script.

“Can be" in the sense of

“There may be situation where a graphical and abstract
representation of something is desired which has a clear and
direct mapping to some textual representation.”

The former a PIM (Platform Independent Model), the latter a PSM
: (Platform Specific Model) — cf. MDA. :
& ) 34,

' 32 3363



Example: Model and XMl

@:cevwmc_z ,ﬁa@q, %&iéﬁﬁ@
SensorA "1 | ControllerA | T|  UsbA

<7xml version = '1.0° encoding = 'UTF-8’ 7>
<KMT xmi.version = ’1.2’ xmlns:UML = ‘org.omg.xni.namespace.UNL’ timestamp = 'Mon Feb 02 18:23:12 CET 2009'>
<XHI.content>

<UML:Model xmi.id = 7...7>
<UML:Namespace . ounedElement>
<UML:Class xmi.id = ...’ name = 'Sensord’>

<UML:ModelElenent . stereotype>
<UML:Stereotype name = 'pti00’/>
</UML:Hode1Element . stereotype>
</UML:Class>
<UML:Class xmi.id = ’..." name = *Controllerh’>
<UML:ModelElenent . stereotype>
<UML:Stereotype name = ’65C02’/>
</UML:Hode1ELement . stereotype>
</UML:Class>
<UML:Class xmi.id = ...’ name = 'UsbA’>

<UML:Mode1Elenent . stereotype>
<UML:Stereotype name = "NET2270’/>
</UML:Hode1Eement . stereotype>

</UML: Association>
+</UML: Association>

</UML:Namespace . ounedELement>
</UML:Mode1>
</WI. content>
</xut>
3563

Domain Inclusion Sructure

Let ¥ = (7,%,V,atr,&, F, mth, ) be a signature.

Now a structure 2
« [as before] maps types, classes, associations to domains,
« [for completeness] methods to transformers,

« [as before] indentities of instances of classes not (transitively) related by
generalisation are disjoint,

+ [changed] the indentities of a super-class comprise all ident
sub-classes,

vCeew:2(0)2 |J 2(D).
c<ab

Note: the old setting coincides with the special case <1 = ().

38/,

Reaall

Towards System States

Wanted: a formal representation of “if C' < D then D ‘is a’ C", that is,
(i) D has the same attributes and behavioural features as C', and

(i) D objects (identities) can replace C' objects.

We'll discuss two approaches to semantics:

» Domain-inclusion Semantics (more theoretical)

HAREC] ) (v
a«:b.,?ilﬁ?& W\ @
@.J/

leg): g} 9Dt

OGN ]
:
(=7

L e = sweDaglade 0

[ more technical)

2736,

Domain Inclusion System Sates

Now: a system state of .7 wrt. 2 is a type-consistent mapping
7 D E) > (V + (2(T)UD(602) U ()
that is, for all u € dom(c) N 2(C),
o [as before] o(u)(v) € 2(r) ifv:7, 7€ T or 7 € {C.,Coy}.
« [changed] dom(o(u)) = Ug, <c atr(Co),

Example:

ved(D)
[7% (o)) = e B) v i (¢)
I =§Dux ey, dixf

= Note: the old setting still coincides with the special case <1 = ().

3963

Domain Inclusion Smartics

Preliminaries: Expresson Normalisation

Rec:

« we want to allow, e.g., “context D inv @A 0.

« we assume fully qu

Intuitively, Em:m__ denote the

“most special more general” C'

To keep this out of typing rules, we assume that the following normalisation

ied names, e.g. C'

according to <.

has been applied to all OCL expressions and all actions.

« Given expression v (or f) in context of class D, as determined by, e.g.

© by the (type of the) navigation expression prefix, or

« by the class, the state-machine where the action occcurs belongs to,

lar for method bodies,

« normalise v to (= replace by)

C:w,

» where C is the greatest class wrt. “<" such that
« C=DandC:ve atr(C).

If no (unique) such class exists, the model is considered not well-formed; the

expression is ambiguous. Then:

expl

itly provide the qual

37e

4073



OCL Syntax and Typing
» Recall (part of the) OCL syntax and typing: vreV,C,DeE
eapr = v(eapr) 10 — (), ifoired
| r(expry) :7¢ — 7D, if r: Doy

| r(eapry) i 7c — Set(rp), ifr:D.

The definition of the semantics remains (textually) the same.

41/es

Saisfying OCL Constraints (Domain Inclusion)

(RS mimh..m_x@\ 0)

o let M=(62,09,%4,5) be a UML model, and Z a structure.

« We (continue to) say M = expr for context C' inv : expry € Inv(M) iff
0

=eapr
V= (0ne)ien € IM] Vie N Vuedom(o;)n2(C):
I[expro] (o, {self — u}) =1.

« M is (still) consistent if and only if it satisfies all constraints in /nv(M).

A

« Example: K
TT 4 x>0 (535 e)
M:&:s»&».s.

T Doty Cx>00(eA)

D) el (b) it (D

Cemre (e €

More Interesting: Well-Typed-ness

2-m

» We want
context D inv:v <0

to be well-typed.

Currently it isn't because

o(eapry) : o — 7(v)
but A+ self : 7p.
(Because 7pp and 7¢: are still different types, although dom(rp) C dom(rc).)

« So, add a (first) new typing rule

Ab expr:
LPTITD e < p, (Inh)

AF eapr:Te
Which is correct in the sense that, if ‘ezpr’ is of type 7p, then we can use it
everywhere, where a 7¢ is allowed.

The system state is prepared for that.

42/63
Transformers (Domain Inclusion)
+ Transformers also remain the same, e.g. [VL 12, p. 18]
update(eapry, v, expry) : (0,€) > (o', <)
with
o = alu s o(w)[v s Ifeapr](
where u = ITeapr,](0).
¥ 45/63

W&l -Typed-nesswith Visibility Cont’d

A,DF erpr:ro

ADF Cauleapr) r” S (Pub)
A, D¢ expr: ¢
_— = = <
ADF Cov(empr) 70 1 ¢<D (Prot)
ADEeyrie g ©ri)

A, D+ Cuvoeapr) i 7
7.&,v9, P) € atr(C).

Example:
. context/ ()v2 <0 (n)us <0
3 inv
H C
2 D
2 B
! 4363
Semantics of Method Calls
« Non late-binding: clear, by normalisation
o Late-binding:
Construct a method call transformer, which is applied to all method calls.
i 46/63



Inheritanceand Sate Machines: Triggers # @hvhw Domain Inclusion andinteractions

« Wanted: triggers shall also be sensitive for inherited events, <shr

sub-class shall execute super-class’ state-machine (unless overridden). A
P ( ) - c D c E
£z

DISPATCH (0y6) LeomSnd) o1 i i le), wele :Dxu . .
u an A- it Uplink Semartics
+ Ju € dom(a) N Z(C) Jug e P(&) : ug € ready(e, u) - P c F
« uis stable and in state machine state s, i.e. o(u)(stable) Z 1 and o(u)(st) =
+ a transition is enabled,
3(s, F, expr, act, s') €— (SMc) : F = E A Ieapr](3) = 1
Y isfacti :
where & = ofu.params o ] 3€D(8) lar to satisfaction of OCL expressions above:
and €D(A) « An instance line stands for all instances of C' (exact or inheriting).
* (¢',¢/) results from applying tuc: to (,¢) and removing s from the ether, i.e. by i) « Satisfaction of event observation has to take inheritance
(0".€") = tace(5.6 S up). N Jeis allan into account, too, so we have to fix, e.g.
. o' = (o [u.st v &', w.stable r— b, u.params ;  B)) g e (g} dipetet, '
: 2 a, cons, Snd =4 E, ,
H where b depends H § H
3 « If u becomes stable in ', then b= 1. It does become stable if and only if there . if and only if :
g is no transition without triger enabled for u in (o, &' H
2 * Otherwise b= 0 H B(x) sends an F-event to By where E < F.
: + Consumption of u; and the side effects of the action are observed, i.. h
v § . . ;o
i o (o Bt S O e P « Note: C-instance line also binds to C’-objects. 48 100
Uplink Semartics Pre-Processng for the Uplink Semarntics Uplink Structure, System Sate, Typing
o ldea: « For each pair C' <1 D, extend D by a (fresh) association « De n of structure remains unchanged.
« Continue with the existing definition of structure, i.e. disjoint . .
domains for identities uplink¢ : C with pu = [1,1], € =+ = Definition of system state remains unchanged.
« Have an m-:u:n._a wmmonmwm.o: from the child to each parent part (Exercise: public necessary?) + Typing and transformers remain unchanged —
(similar to the implicit attribute for stability). the preprocessing has put everything in shape.
» Given expression v (or f) in the context of class D,
o let C' be the smallest class wrt. “<" such that
wplindy
> ‘ « then there exists (by definition) C < Cy <1... < C,, < D,
Ik + normalise v to (= replace by)
. + Apply (a different) pre-processing to make appropriate use of that . wplinkg,, ~> -+ => uplinke, Csiv .
3 association, e.g. rewrite (C++) -
§ 3 « Again: if no (unique) smallest class exists, g
Do g the model is considered not well-formed; the expression is ambiguous. E
i ' 526

51/6s

uplinky ->x = S0



Late Binding (Upli nk)

Saisfying OCL Constraints (Uplink) Transformers (Uplink)
« Let M= (89,09, %4, %) be a UML model, and 2 a structure. « What has to change is the create transformer: + Employ something similar to the “mostspec” trick (in a minute!). But the result
is typically far from concise.
« We (continue to) say create(C, expr,v) (Related to OCL's isKind0f() function, and RTTI in C++.)
M= eapr « Assume, C's inheritance relations are as follows.
for
context € inv : expro € Inv(M) i< 9 Cin <0,
o v e
=expr o
if and only if Cpi<...2Cmp, <C.
V= (0i)ien € [M] « Then, we have to
Vien « create one fresh object for each part, e.g.
Yu € dom(o;) N 2(C) : UL Ly ey Whnyseees Wm s e oo Umnyngy s
- I[exprol(os, {self — u}) =1. : « set up the uplinks recursively, e.g. H
s s u1.2) (uplinke, |) = uy1. :
~« Mis (still) consistent if and only fies all constraints in nv(M). g ) ) g
= H] » And, if we had constructors, be careful with their order. N
! 5363 ) 54/63 ! 55/63
Cast-Transformers Castsin Domain Inclusion andUplink Semantics
«Cc; Domain Inclusion Uplink
+Dd; Cx cp casy: immediately compatible | easy: By pre-processing,
R R . R . i . = &ad; (in underlying system state) be- | Cx cp = d.uplink;
Domain Inclusionvs. Uplink Semantics Identity upcast (C++) cause {d yields an identity from
o Cx cp = &d; // assign address of ‘d’ to pointer ‘cp’ (D) € 7(C).
D dp = easy: the value of cpisin Z(D)N
o Identity downcast (C++): (D*)cp; 7(C) because the pointed-to ob-
_ . . o . . ject is a D. noted by cp.
o D+ dp = (D¥)cp; |/ assign address of ‘d’ to pointer ‘dp Jectisa
Otherwise, error condition. (See next slide.)
+ Value upcast (C++): bit ult: set (for all C < D) | easy: By pre-processing,
o wp= dpj // copy attribute values of d’ into ', or, Mm% ) uw,x £ Slae) | o = *(duplinke);
// more precise, the values of the C-part of ‘d’ o ey .
Note: o' = ofuc — o(up)] is
. ! not type-compatible!
b 5763 ' 58/63

56/63



Identity Downcast with Uplink Semantics

Recall (C++): Dd; C# cp=&d; Dxdp = (D¥)c

One technical solution:
« Give up disjointness of domains for one additional type comprising a
identities, i.e. have

alle 7, ()= J 2(C)
cee

ions “mostspec’
ed slices, plus information of which type that slice is.

means, ing on the type (only
s), going down and then up as necessary, e.g.

switch(mostspec_type){
case C':

References

Domain Inclusion vs. Uplink Semantics: Differences

Problem: we need the identity of the D whose C-slice is denoted by cp.

dp = cp ->mostspec ->uplink,, ->...->uplink, ->uplinkp;

203

« Note: The uplink semantics views inheritance as an abbreviation:

» We only need to touch transformers (create) — and if we had constructors, we
idn't even needed that (we could encode the recursive construction of the upper
slices by a transformation of the existing constructors.)

« So:
o Inheritance doesn’t add expressive power.
« And it also doesn’t improve conciseness soo dramatically.

As long as we're “early binding", that is...

60/63

References

[Buscherméhle and Oelerink, 2008] Buscherméhle, R. and Oelerink, J. (2008). Rich meta object
facility. In Proc. 1st IEEE Int'| workshop UML and Formal Methods

[OMG, 2003] OMG (2003). Uml 2.0 proposal of the 2U group, version 0.2,
http://uwy. 2uworks . org/uml2submission.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2. Technical
Report formal /07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2. Technical
Report formal /07-11-02

[Stahl and V@lter, 2005] Stahl, T. and Vlter, M. (2005). Modellget:
dpunkt.verlag, Heidelberg,

bene Softwareentwicklun;

63/63

Domain Inclusion vs. Uplink Semantics. Motives

« Exercise:

What's the point of

« having the tedious adjustments of the theory
if it can be approached technically?

« having the tedious technical pre-processing
if it can be approached cleanly in the theory?

61/63



