Contents & Goals

Last Lecture:

» RTC-Rules: Discard,

Sdtware Design, Modelling andAnalysisin UML This Lecture: Sep andRun-to-completion Sep
» Educational Objectives: Capabilities for following tasks/questions.
« What does this State Machine mean? What happens if | inject this event?

Ledure 14: Hierarchical Sate Machines| c , " :)
= Can you please model the following behaviour.

patch, Commence.

« What does this hierarchical State Machine mean? What may happen if |
nject this event?

20121219
© What is: AND-State, OR-State, pseudo-state, entry/exit/do,
» Conten
Prof. Dr. Andreas Podelski, Dr. Bernd Westphal * Step. RTC, Divergence
« Putting It All Together

= Rhapsody Demo

Albert-Ludwigs-Universitit Freiburg, Germany

« Hierarchical State Machines Syntax

: 266 366
Notions of Steps: The Step Notions of Steps: The Run-to-Completion Sep Notions of Steps: The Run-to-Completion Sep Cont’d
. . (cons,Snd) ., What is a run-to-completion step...? Proposal: Let e capeod eed He Xphtace bl kk..d%@
Note: we call one evolution (0,¢) "%, (57, &) a step. popekes 24
b « Intuition: a maximal sequence of steps, where the first step is a (comsg,Sndy) (cons,—1.Snd,_1)
Thus in our setting, a step directly corresponds to dispatch step and all later steps are commence steps. (0,€0) - - (Onsen), n>0,
bject ly u) takes a single transition betw lar states. . : i)
one object (namely) takes a sing| m, ,qm-_m_ .o-q e ,mm: regular states. Note: one step corresponds to one transition in the state machine. be a finite (1), non-empty, masimal, consecutive sequence such that . y
(We have to extend the concept of “single transition” for hierarchical state machines.) A run-to-completion step is in general not syntacically definable — one + object « is alive in o, v/mﬂ.i o (i, G109 e © ,\ti..r
That is: We're going for an interleaving semantics without true parallelism. transition may be taken multiple times during an RTC-step. o o =u and (conso, Sndo) indicates dispatching to u, i.e. cons = {(u, 7 d)}, -
o there are no receptions by u in between,
Example: [x203/
NU ELo3/ o = consi N {u} x Bus(&6, %) =0,i > 1,
— w.I S \\ - _— * up—1 = u and u is stable only in oy and oy,
Py
. o(u)(stable) = o, (u)(stable) = 1 and o (u)(stable) = 0 for 0 < i < n,
C [B R
£ m a5 = .\ LetO =k < ky < --- < ky = n be the maximal sequence of indices such
. s &5, k8 © thatug, =ufor | i< N. Then we call the sequence
F N)) () B _ _
3 3 3 (o0(u) =) ok, (), 0k, (u) ., Ok () (= o1 (w))
H = SALl<0 © a(!) run-to-completion computation of u (from (local) configuration 0o ().
o

566

Divergence

We say, object u can diverge on reception cons from (local) configuration
oo(u) if and only if there is an infinite, consecutive sequence

(conso.Sndo) (cons1Sndy)
(00, 20) == (1,61) =

such that u doesn't become stable again.

« Note: disappearance of object not considered in the definitions.

By the current definitions, it's REEHer divergence @ an RTC-step.
' ’ [
e

3

The Missng Piece Initial Sates

Recall: a labelled transition system is (S, —, Sp). We have
 S: system configurations (o,)
« —: labelled transition relation (, &) ““=), (57 1)

Wanted: initial states Sy.

Proposal:

Require a (finite) set of object diagrams OD as part of a UML model
(69.54,069).

And set

So = {(0,2) | o € G~ (OD),0D € 69, empty}.

Other Approach: (used by Rhapsody tool) multiplicity of classes.
We can read that as an abbreviation for an object diagram

10766

Run-to-Completion Sep: Discusson.

What people may dislike on our definition of RTC-step is that it takes a global
and non-compositional view. That is:

« In the projection onto a single object we s
other objects.

Adding classes (or even objects) may change the divergence behaviour of
existing ones.

= Compositional would be: the behaviour of a set of objects is determined by the
behaviour of each object “in isolation”
Our semantics and notion of RTC-step doesn't have this (often desired) property.

Can we give (syntactical) criteria such that any global run-to-completion step
terleaving of local ones?

is an
Maybe: Strict interfaces. (Proof left as exercise....
 (A): Refer to private features only via “self".
(Recall that other objects of the same class can modify private attributes.)
« (B): Let objects only communicate by events
don't let them modify each other's local state via

e

nks at all.

866

Semantics of UML Model — SoFar

The semantics of the UML model
M=(€9,54,09)

where

« some classes in €7 are stereotyped as ‘signal’ (standard), some signals and
attributes are stereotyped as ‘external’ (non-standard),

o there is a 1-to-1 relation between classes and state machines,
« 0 s a set of object diagrams over €7,
is the transition m«mﬁmi\wm, -,

»)_constructed on the previous slide.
F— g by OD
L I ke, i by ks G- 0) &2 3K
The computations of M are the computations of (5, —, m::yiw 2 ace inntief

Gl cafopmin)

1166

Putting It All Together

966
OCL Constraints and Behaviour .m >0)
« Let M = (€2, %4, 6%) be a UML model il -
+ We call M consistent iff, for each OCL constraint capr € Inv(¢%), 5157
o = eapr for each “reasonable point” (7,) of computations of M. S*¥e’
|EE ; ol ceasonablEpoTES)] %
==
Ous clince: oy skg', cast el () i Coptiin, &/ 0wt
Note: we could define Inv(.##) similar to ?.\AM#@V. i, skes)
. e D o o
S By ey Hw&ruﬁ»%m o e el e
Pragmatics: G e it SE7S; el 523 5 A/MMNGA
4

o In UML-as-blueprint mode, if ./ doesn't exist yet, then M = (€%, 0, 6%)
is typically asking the developer to provide .%# such that
M = (€2, %M,0%) is consistent.

If the developer makes a mistake, then M’ consistent.

 Not common: if %4 is given, then constraints are also considered when choos-
ing transitions in the RTC-algorithm. In other words: even in presence of mis-
takes, the .7/ never move to inconsistent configurations.

12/

7
A

Contemporary UML Modelling Todls Hierarchical State Machines

_
b
L

£,
;ﬁ
@

g Sflovecr i
1366 1466 15/66
UML Sate-Machines: What do we haveto cover? The Full Sory Representing All Kinds of States
UML distinguishes the following kinds of states: « Until now:
example example (8,50,—), s0€8,— CSx(EU{}) x Eapry, x Acty x S
pseudo-state
initial
simple state (shallow) history
deep history
fork/join
final state
composite state junction, choice
. OR entry point .
H exit point
H & AND terminate H
i : submachine state
16/66 1766)

1865

Representing All Kinds of States

« Until now:

(S,80,—), $0€S8,— CSx(EU{})x Expry x Acty x S

« From now on: (hierarchical) state machines

(S, kind, region, —, v, annot)

1866

From UML to Hierarchical State Machines: By Example

DON'T! DON'T!
tr{gd]/act
—

5@

translates to (S, kind, region, —, 1, annot) =

(.

S kind

region

annot

20466

Representing All Kinds of States

« Until now:
(S,50.—), $0€8,— C8x(EU{}) x Eupry, x Acts x §
« From now on: (hierarchical) state machines

(S, kind, region, —, 1, annot)

e set of states (as before),
o kind : S — {st, init, fin, shist, dhist, fork, join, junc, choi, ent, exi, term}
is a function which labels states with their kind, (new)
o region : S — 2" is a function which characterises the regions of a state,
(new)
© — is a set of transitions, (changed)
o 1 : (=) — 2% x 25 is an incidence function, and (new)

o annot : (—) — (£ U{_}) x Expr., x Act., provides an annotation for
each transition. (new)

(so is then redundant — replaced by proper state (!) of kind ‘init'.)

1866
W&l -Formedness Regions (foll ows from diagram)
| €S kind | regionC25,8,CS childC S
simple state s st 0 0
inal state s fin 0 0
composite state s st {S1,...,Sn},n>1 SU---US,
pseudo-state s nit, ... 0 0
implicit top state | top st {51} S1
« Each state (except for top) lies in exactly one region,
o States s € S with kind(s) = st may comprise regions.
= No region: simple state.
: One region: OR-state.
« Two or more regions: ~ AND-state.
2 » Final and pseudo states don’t comprise regions.
L« The region function induces a child function
21766

From UML to Hierarchical State Machines: By Example

(S, kind, region, —, , annot)

example €S kind region
simple state s
final state ®

composite state

OR
~
region
i
AND
submachine state (later)
pseudo-state
—_—
(s,kind(s)) for short 1966

Well-Formedness | nitial Sate (requirement on dagram)

« Each non-empty region has a reasonable al state and at least one

tran: n from there, i.e.
o for each s € S with region(s) = {S1,..., 5.}, n > 1, foreach 1 <i <n,
o there exists exactly one initial pseudo-state (s}, init) € S; and

at least one transition ¢ €— with s} as source,

« and such transition’s target s} is in S;, and
(for simplicity!) kind(s3) = st, and
annot(t) = (, true, act)

« No ingoing transitions to initial states.

» No outgoing transitions from final states.

DON'T! _DON'T!

./ tr(gd]/act

t
[L)

2276

Initial Pseudostate

Plan cample [—

(shallow) history
o Jact;

deep history
annot.

forkjoin

Initial Pseudostates and Final Sates

final state

junction, choice

OR entry point .
Principle:
exit point
+ when entering a region without a specific destination state,
AND terminate
« then go to a state which is destination of an ation transition,

« execute the action of the chosen initiation transitions between exit and
entry actions.

« Initial pseudostate, final state.

« Composite states.
« Entry/do/exit ac
« History and other pseudostates, the rest.

ns, internal transitions.

23766 ; LI ; 25766
Initial Pseudcstate Towards Final States: Completion of States Towards Fina Sates: Completion o States
o Jacts o E/acty S Jacty H o E/acty el Jacty 5

annot |

« Transitions without trigger can conceptionally be viewed as being sensitive for

« Transitions without trigger can conceptionally be viewed as being sensitive for
the “completion event”.

the “completion event”.

Principle:
+ Dispatching (here: E) can then alternatively be viewed as

« when entering a region without a specific destination state,

+ Dispatching (here:) can then alternatively be viewed as

i) fetch event (here: E) from the ether,

» then go to a state which is destination of an initiation transition,
ons between exit and

o execute the action of the chosen
entry actions

Special case: the region of top
o If class C has a state-machine, then “create-C' transformer
concatenation of
« the transformer of the “constructor” of C' (here not introduced expl
fon transition of the top region

g 2665 26/6

itly) and

2

« a transformer corresponding to one initi

2566

Towards Final Sates: Completion o Sates

E/act,

) S Jacty %)

« Transitions without trigger can conceptionally be viewed as being sensitive for
the “completion event” .

+ Dispatching (here: E) can then alternatively be viewed as
(i) fetch event (here: E) from the ether,

(ii) take an enabled transition (here: to s2),

2666

Towards Fina Sates: Completion o States

o E/acty — Jacty 5

« Transitions without trigger can conceptionally be viewed as being sen
the “completion event”.

« Dispatching (here: E) can then alternatively be viewed as
(i) fetch event (here:) from the ether,

(ii) take an enabled transition (here: to s2),

) remove event from the ether,

— the state is

(iv) after having finished entry and do action of current state (here: s
then called completed —,

(v) raise a completion event — with strict priority over events from ether!

Towards Final States: Completion o Sates

E/act act;
T e i o AL o i

« Transitions without trigger can conceptionally be viewed as being sensitive for
the “completion event”.

+ Dispatching (here:) can then alternatively be viewed as
(i) fetch event (here: E) from the ether,
(ii) take an enabled transition (here: to s3),

(iii) remove event from the ether,

Towards Final States: Completion of States

o E/acty S Jacty

« Transitions without trigger can conceptionally be viewed as being sensitive for
the “completion event”.

+ Dispatching (here:) can then alternatively be viewed as

fetch event (here: E) from the ether,

take an enabled transition (here: to s2),

remove event from the ether,

(iv) after having finished entry and do action of current state (here: s,) — the state is
then called completed —,

(v) raise a completion event — with strict priority over events from ether!

Towards Final Sates: Completion o Sates

E/act,

5] s Jacty %)

« Transitions without trigger can conceptionally be viewed as being sensitive for
the “completion event”.

+ Dispatching (here: E) can then alternatively be viewed as
(i) fetch event (here: E) from the ether,

(ii) take an enabled transition (here: to sz

(iii) remove event from the ether,

(iv) after having finished entry and do action of current state (here: s;) — the state is
then called completed —,

26/66

Fina Sates
t
[" @
oI
« a step of object u moves u into a final state (s, fin), and
« all sibling regions are in a final state,

then (conceptionally) a completion event for the current composite state s is
raised

(vi) if there is a transition enabled which is sensitive for the completion event, 3
o then take it (here: (sz,s3)). g

: « otherwise become stable. B

26/66 2676 2760

Fina Sates

(s) @

o If
« a step of object u moves u into a final state (s, fin), and
« all sibling regions are in a final state,
then (conceptionally) a completion event for the current composite state s is
raised.

o If there n of a parent state verse of child) of s enabled
which is sensitive for the completion event,

« then take that transition,

« otherwise kill u

~ adjust (2.) and (3.) in the semantics accordingly

2766

Composite Sates

(formalisation foll ows [7])

2866

Fina States

sy @

3

« a step of object u moves u into a final state (s, fin), and

« all sibling regions are in a final state,

then (conceptionally) a completion event for the current composite state s i
raised.

e., inverse of child) of s enabled

If there is a transition of a parent state
which is sensitive for the completion event,

o then take that transition,

« otherwise kill u

~+ adjust (2.) and (3.) in the semantics accordingly

One consequence: u never survives reaching a state (s, fin) with s € child(top).

Composite Sates

« In a sense, composite states are about
abbreviation, structuring, and avoiding redundancy.

Idea: in Tron, for the Player’s Statemachine,
nstead of

2965

Fina Sates

(s) @

If
 a step of object u moves u into a final state (s, fin), and
« all sibling regions are in a final state,
ionally) a completion event for the current composite state s is

then (concepf
raised.
If there is a transition of a parent state (i.e.
which is sensitive for the completion event,
« then take that transition,
« otherwise kill u
~ adjust (2.) and (3.) in the semantics accordingly

nverse of child) of s enabled

One consequence: u never survives reaching a state (s, fin) with s € child(top).

Now: in Core State Machines, there is no parent state.

Later: in Hierarchical ones, there may be one.
276

Compasite Sates

 In a sense, composite states are about
abbreviation, structuring, and avoiding redundancy.

in Tron, for the Player's Statemachine,
nstead of

write

resigned

29766

Composite States

and instead of l
(JastN)
N\

7T

Syntax: Fork/Join

« For brevity, we always consider transitions with (possibly) mul
sources and targets, i.e.

U (=)=~ 25\ 0) x 25\ 0)

« For instance,

_ tr(gd]/act —

translates to
(. kind, region, {t1}, {t1 = ({s2, 53}, {55, s6})}, {t1 = (tr, gd, act)})

annot

v

© . Naming convention: () = (source(t), target(t)).

30766

32/

Composite States

and instead of (Jasin)
fastN
P

./

Composite Sates:

write

Blessng a Curse?

3076

what may happen on E7
what may happen on E, F'7
can E, G kill the object?

336

Reall: Syntax

translates to

({(top, st), (s, st). (s1. st)(s), st)(s2. 5t) (55, st)(s3. st) (s}, st) },

S, kind

{top — {s},s — {{s1, 51} {s2, 85}, {s3. 85} },s1 = 0,81 — 0,...},

region

—, 1), annot)

3166

Composite Sates: Blesing o Curse?

States:
« what are legal state

« what are legal
transitions? « what may happen on 7

« when is a transition « what may happen on E, F?

enabled? « can E, G kill the object?
« what effects do transi- .
tions have?

336

Sate Configuation A Partial Order on Sates

Sate Configuration

« The type of st is from now on a set of states, i.e. st : 25 « The type of st is from now on a set of states, i.e. st : 2% The substate- (or child-) relation induces a partial order on states:

+ Aset Sy C S'is called (legal) state configurations if and only if o top < s, forall s €5
© top € Sy, and

» with each state s € S; that has a non-empty region) # R € region(s),

exactly one (non pseudo-state) child of s is in 51,

[{s € R| kind(s) € {st, fin}} N 1| = 1

o s<s, forall s € child(s),

« transitive, reflexive, antisymmetric,

« Aset S C S is called (legal) state configurations if and only if
o top € S1, and

© with each state s € S; that has a non-empty region () # R € region(s),

exactly one (non pseudo-state) child of s is in S,

[{s € R | kind(s) € {st, fin}} N S| = 1.

" J

o s’ < sands” <simplies s’ <s" ors” <s

« Examples:

34766 346 35766
A Partial Order on Sates Least Comnon Ancestor and Ting Least Comnon Ancestor and Ting
The substate- (or child-) relation induces a partial order on states: « The least common ancestor is the function lca : 2% — S such that « The least common ancestor is the function lca : 25 — S such that
o The states in S are (transitive) children of lca(Sy), i.e. « The states in S are (transitive) children of lca(S)), i.e.
o top <s, forallses,
o s<s, forall s € child(s), lea(S)) < s, for alls € 5; C 5, lca(Sy) < s, foralls € S, C 5,
o transitive, reflexive, antisymmetric, o lca(Sy) is minimal, i.e. if § < s for all s € Sy, then § < lca(S)) lca(Sy) is minimal, i.e. if § < s for all s € Sy, then § < lca(S))
o s’ <sands” < simplies s’ < 5" ors” <s'. « Note: lca(Sy) exists for all §; C S (last candidate: top). « Note: lca(S)) exists for all S; C S (last candidate: top).
s
i
I T
| I
I
2 I H 2
H H £ |
i I H H
: ! E E |
v 36756 b 36/65

3566

Least Comnon Ancestor and Ting Least Comnon Ancestor and Ting

Least Comnon Ancestor and Ting

» Two states 51,5, € S are called orthogonal, denoted s, L s, if and only if « Two states 51,55 € S are called orthogonal, denoted s, L sy, if and only if » A set of states S; C S is called consistent, denoted by | S,

« they are unordered, i.e. s; £ s and sy £ 51, and

« they are unordered, i.e. s, % s and s, £ 51, and

if and only if for each s, s’ € S,

« they live in different regions of an AND-state, i.e. « they live in different regions of an AND-state, i.e. e s<s,
.
35, region(s) = {S1,...,Su} 1 Si#j <n:si € child(S:) A sz € child(S;), Is,region(s) = {S1,....Su}, 1 Si#j <n:si € child(S;) A sz € child(S;), os's w or
o s ls’.

3768 37 38es
Least Comnon Ancestor and Ting Legal Transitions Lega Transitions
o A set of states S; C S is called consistent, denoted by | S, . . .) B
N . 1= A v LSt A hiearchical state-machine (S, kind, region, —, 1, annot) is called well- A hiearchical state-machine (S, kind, region, —, 1, annot) is called well-
if and only if for each s, 5" € 51, . . L . . .
< formed if and only if for all transitions ¢ €—, formed if and only if for all transitions t €—,
e s<s, - . - N
\\A « source and destination are consistent, i.e. | source(t) and | target(t), « source and destination are consistent, i.e. | source(t) and | target(t),
e 8 = s, 0r
sLs « source (and destination) states are pairwise unordered, i « source (and destination) states are pairwise unordered, i
° . o forall s,s" € source(t) (€ target(t)), s L &', o forall s,s" € source(t) (€ target(t)), s L s,
o the top state is neither « the top state is neither
source nor destination, i.e. source nor destination,
s o top ¢ source(t) U source(t). o top ¢ source(t) U source(t).
! © Recall: final states are © Recall: final states are
| not sources of transitions. not sources of transitions.
I
I
! Example:
£ I
B R 39 B

3866

The Depth of States

o depth(top) =0,
o depth(s') = depth(s) + 1, for all ' € child(s)

Enablednessin Hierarchical Sate-Machines

» The scope (“set of possibly affected states”) of a transition ¢ is the least
common region of
source(t) U target(t).
« Two transitions t,t, are called consistent if and only if their scopes are
orthogonal (i.e. states in scopes pairwise orthogonal).

40766

416

The Depth of States

o depth(top) = 0,
o depth(s') = depth(s) + 1, for all s' € child(s)

406

Enabednessin Hierarchical State-Machines

- 20121219 - Shierstm

« The scope (“set of possibly affected states’
common region of

) of a transition t is the least

source(t) U target (t).

« Two transitions t,t, are called consistent if and only if their scopes are
orthogonal (i.e. states in scopes pairwise orthogonal).

« The priority of transition ¢ is the depth of its innermost source state,

prio(t) := max{depth(s) | s € source(t)}

416

EnaHbednessin Hierarchical Sate-Machines

« The scope (“set of possibly affected states”) of a transition ¢ is the least
common region of
source(t) U target(t).

4166

Enabednessin Hierarchical Sate-Machines

The scope (“set of possibly affected states”) of a transition ¢ is the least
common region of

source(t) U target(t).
« Two transitions t1,t, are called consistent if and only if their scopes are
orthogonal (i.e. states in scopes pairwise orthogonal)

is the depth of its innermost source state,

.

The priority of transition

prio(t) := max{depth(s) | s € source(t)}

A set of transitions 7" C— is enabled in an object u if and only if
o T
o T is maximal wrt. priority,

.

consistent,

« all transitions in 7' share the same trigger,
« all guards are satisfied by o(u), and
« forall t € T, the source states are active,

e.

source(t) C o(u)(st) (C S).
4160

Transitionsin Hierarchical State-Machines

« Let T be a set of transitions enabled in w.
o Then (0,¢) L2250, (o1 oty i

« o' (u)(st) consists of the target states of ¢,

.e. for simple states the simple states themselves, for composite
states the initial states,

s o, &, cons, and Snd are the effect of firing each transition t € T'
one by one, in any order, i.e. for each t € T,
« the exit transformer of all affected states, highest depth first,
o the transformer of ¢,
« the entry transformer of all affected states, lowest depth first.

~ adjust (2.), (3.), (5.) accordingly.

4266
Entry/Do/Exit Actions
(=
i
« In general, with each state Q:Q\NM: 5
s € S there is associated dofactf® trlgd]/act [ontryTacis™
exit/actst
« an entry, a do, and an exit o /act dofactg
action (default: skip) 1/acts, exit/actt
* a possibly empty set of m,.. Jacts,

trigger/action pairs called
internal transitions,
(default: empty). Ei,

B, € &, ‘entry’, 'do’, ‘exit’ are reserved names!

+ Reca et actss

each action’s supposed to have a transformer. Here: t,

Taking the transition above then amounts to applying

Facrzr © bact © Lacrse

instead of only
tact
~ adjust (2.), (3.) accordingly.

e

Entry/Do/Exit Actions, Internal Transitions

Internal Transitions

entry/ acty"™)
do 52
defact{ trlgd)/act [on Tacrg ™
do/act§®
exit/ act§

exit] act
By /actp,

Ep/actp,

« For internal transitions, taking the one for Fy, for instance, sti
amounts to taking only factp, -

o Intuition: The state is neither left nor entered, so: no exit, no entry.

~ adjust (2.) accordingly.

« Note: internal transitions also start a run-to-completion step.

4565

Entry/Do/Exit Actions

(s
entry/act"™™ J
5
dof act§®
/ actf tr(gd)/act entry/acts"™

do/act§®
et

« In general, with each state
5 € S there is associated

exit/ actP™
Fy/actp,

= an entry, a do, and an exi
action (default: skip)

exit/ac

 a possibly empty set of
trigger/action pairs called
internal transitions,
(default: empty). Ei,

Eu/act,

LE, € &, ‘entry’, 'do’, 'exit’ are reserved names!

44766
Internal Transitions

S1
entry/acty™)

do 52
dof act{® trlgdl/act [antryTacte™
exit/ act§™ o
B act do act:

A exit/ act§t

E,/actp,

For internal transitions, taking the one for E}, for instance, still
amounts to taking only t,ctp, -

« Intuition: The state is neither left nor entered, so: no exit, no entry.

~~ adjust (2.) accordingly,

: internal transitions also start a run-to-completion step.

the standard seems not to clarify whether internal transitions have
priority over regular transitions with the same trigger at the same state.

.

Some code generators assume that internal transitions have priority!

45/

Alternative View: Entry/Exit/Internal as Abbrevations Alternative View: Entry/Exit/Internal as Abbreviations Do Actions

entry/act"™™ J
$2
N do/act§®
" 1 tr(gd)/act [“ntrylacts™
trolgdol/acto | entry/acts™™ 3.;3;?5! trolgdo)/acto | entry/act=™ :_Ga__\Ai_H exit/ actgt w\“:
T | it/ ace entry/ acts"™ e ! entry]acty™ o dofactge
exit/acty tralgda)/actz | g/ qorgic tralgdyl/acts | gyip) qopgie Vet exit/actg™
Eyfactp, .
Ea/act,

. as abbrevation for ... © ... as abbrevation for ... « Intuition: after entering a state, start its do-action.

« If the do-action terminates,
 then the state is considered completed,
 otherwise,
« if the state is left before termination, the do-action is stopped.

1 « That is: Entry/Internal /Exit don’t add expressive power to Core State Machines. &
> If internal actions should have priority, s1 can be embedded into an OR-state]
(see later)

= Abbreviation may avoid confusion in context of hierarchical states (see later)

46/66 466 ; 4766
Do Actions History and Deep History: By Example
5
entry/act§™ - What happens on.
do/act§®) trigd)/act [onery Tacte™
exit/act9 o °
do/ act$.

By/acts, m“.\“wmw; The Concept of History, and Other Pseudo-States .

. o Ra?
En/act,

« Intuition: after entering a state, start its do-action. « A,B,C,S,R,?
« If the do-action terminates,

« then the state is considered completed, * A, B,S Rq?

o otherwise,

« if the state is left before termination, the do-action is stopped. « A,B,C,D,E,R,?

* A,B,C,D,Ra?

» Recall the overall UML State Machine philosophy: ;
An object is either idle or doing a run-to-completion step

47/ 4865 49/

« Now, what is it exactly while the do action is executing...?

Junction andChoice

« Junction (“static conditional branch”):

» Choice: (“dynamic conditional branch”) -

Note: not so sure about naming and symbols, e.g.,
I'd guessed it was just the other way round...

Entry and Exit Point, Submachine State, Terminate

« Hierarchical states can be “folded"” for readability.
(but: this can also hinder readability.)

= Can even be taken from a different state-machine for re-use.

S:s

5066

516

Junction andChoice

o
e
) . o
+ Junction (“static conditional branch”): 2!
&,
+ good: abbreviation Ve,

» unfolds to so many similar transitions with different guards,
the unfolded transitions are then checked for enabledness
o at best, start

ith trigger, branch into conditions, then apply actions

Choice: (“dynamic conditional branch”) —O

Note: not so sure about naming and symbols, e.g.,
I’d guessed it was just the other way round...

Entry and Exit Point, Submachine Sate, Terminate

« Hierarchical states can be “folded” for readability.
(but: this can also hinder readability.)

» Can even be taken from a different state-machine for re-use.

« Entry/exit points o®
« Provide connection points for finer integration into the current level,
than just via initial state.

» Semantically a bit tricky:

« First the exit action of the e

g state,

o then the actions of the transition,
o then the entry actions of the entered state,

« then action of the transition from
the entry point to an internal state,

« and then that internal state's entry action.

51/

Junction andChoice

« Junction (“static con:

log,
+ good: abbreviation M\\fu
« unfolds to so many similar transitions with different guards,
the unfolded transitions are then checked for enabledness
 at best, start with trigger, branch into conditions, then apply actions

« Choice: (“dynamic conditional branch”) —O

o evil: may get stuck

enters the transition without knowing whether there's an enabled path
 at best, use “else” and convince yourself that it cannot get stuck
maybe even better: avoid

= Note: not so sure about naming and symbols, e.g.,
I'd guessed it was just the other way round

50766

Entry and Exit Point, Submachine State, Terminate

« Hierarchical states can be “folded” for readability.
(but: this can also hinder readability.)

« Can even be taken from a different state-machine for re-use.

« Entry/exit points o®
« Provide connection points for finer integration into the current level,

than just via initial state.

Semantically a bit tricky:

o First the exit action of the exiting state,

o then the actions of the transition,
o then the entry actions of the entered state,

« then action of the transition from
the entry point to an internal state,

- © and then that internal state’s entry action.

.« Terminate Pseudo-State %
P « When a terminate pseudo-state is reached,

the object taking the tran:

n is immediately killed. 5165

Deferred Eventsin Sate-Machines

5266

What abou nonActive Objeds?

Recal

« We're still working under the assumption that all classes in the class
diagram (and thus all objects) are active.

« That is, each object has its own thread of control and is (if stable)
at any time ready to process an event from the ether.

But the world doesn't consist of only active objects.
For instance, in the crossing controller from the exercises we could wish to have
the whole system live in one thread of control.

So we have to address questions like:
» Can we send events to a non-active object?
» And if so, when are these events processed?
o etc

54/65

ActiveandPassve Objeds[?]

Active and Passve Objeds: Nomenclature

[?] propose the following (orthogonal!) notions:

+ A class (and thus the instances of this class) is either active or passive
as declared in the class diagram.

« An active object has (in the operating system sense) an own thread:

an own program counter, an own stack, etc.
« A passive object doesn’t.

55/65

What abou non-Active Objeds?

Recal

« We're still working under the assumption that all classes in the class
diagram (and thus all objects) are active.

« That is, each object has its own thread of control and is (if stable)
at any time ready to process an event from the ether.

546
Activeand Passve Objeds: Nomenclature
[?] propose the following (orthogonal!) notions:
« Aclass (and thus the instances of this class) is either active or passive
as declared in the class diagram.
« An active object has (in the operating system sense) an own thread:
an own program counter, an own stack, etc.
« A passive object doesn't.
© A class is either reactive or non-reactive.
« A reactive class has a (non-trivial) state machine.
« A non-reactive one hasn’t.
B 55/

ActiveandPassve Objeds. Nomenclature Passve and Reactive

7] propose the following (orthogonal!) notions: « So why don't we understand passivereactive?

» A class (and thus the instances of this class) is either active or passive
as declared in the class diagram.
« An active object has (in the operating system sense) an own thread: Which of them (can) start a run-to-completion step...?
an own program counter, an own stack, etc Do run-to-completion steps still interleave...?

« Assume passive objects u; and us, and active object u,
and that there are events in the ether for all three.

« A passive object doesn't.

A class is either reactive or non-reactive.
= A reactive class has a (non-trivial) state machine.

« A non-reactive one hasn't.

Which combinations do we understand?
| active | passive

reactive

non-reactive

Passve Reactive Classes

Passve Reactive Classes

« Firstly, establish that each object u knows, via (implicit) link itsAct,

« Firstly, establish that each object u knows, via (implicit) link itsAct,
the active object ., which is responsible for dispatching events to u the active object u,.; which is responsible for dispatching events to u
o If u is an instance of an active class, then u, = u. o If u is an instance of an active class, then w, = w.

itsAct itsAct
r

.
e we " we b wo o
— S— itsAct —

Act

Sending an even
« Establish that of each signal we
have a version Ec with an
association dest : Co,1, C € €.

© Then n!E in uy : C1 becomes:

Create an instance . of Ec, and
set u.'s dest to ug == o(uy)(n)
Send to uq = o (0 (u1)(n))(itsAct),
L&' =@ (ua,uc).

5766 576

Pasdve and Reactive

« So why don’t we understand passive/reactive?

« Assume passive objects u; and us, and active object u,
and that there are events in the ether for all three.

Which of them (can) start a run-to-completion step...?
Do run-to-completion steps still interleave...?

Reasonable Approaches:
« Avoid — for instance, b
« require that reactive implies active for model well-formedness.

2

« requiring for model well-formedness that events are never sent to
instances of non-reactive classes.

Explain — here: (following [?])
« Delegate all dispatching of events to the active objects.

56/66

Passve Reactive Classes

o Firstly, establish that each object u knows, via (implicit) link itsAct,
the active object w,.; which is responsible for dispatching events to u.

o If wis an instance of an active class, then u, =

itsAct
n
n
wic i : b
_— e itsAct
Sending an event: Dispatching an event:

« Establish that of each signal we « Observation: the ether only has
have a version Ec with an events for active objects.
association dest : Co1, C €6 Say u, is ready in the ether for u,.

« Then n!E in uy : C1 becomes: + Then uy asks o(ue)(dest) = ua to

« Create an instance u. of Ec, and process . — and waits unti
set u.'s dest to ug := o(u)(n). completion of corresponding RTC.

« Send to uq == o(a(u1)(n))(itsAct), o ug may in particular discard event
& (Uas tte).

576

And What About Methods?

Behavioural Features

& flria,...,m
&2 Fma,. . Tong) i T2 Py
{(signal)) E

Semantics:
» The implementation of a behavioural feature can be provided by:

« An operation.

« The class' state-machine (“triggered operation’

58,66

6075

And What About Methods? And What Abou Methods?

« In the current setting, the (local) state of objects is only modified by
actions of transitions, which we abstract to transformers.

.

In the current setting, the (local) state of objects is only modified by
actions of transitions, which we abstract to transformers.

« In general, there are also methods. « In general, there are also methods.
» UML follows an approach to separate « UML follows an approach to separate

o the interface declaration from o the interface declaration from

« the implementation. « the implementation.

In C4+ lingo: distinguish declaration and definition of method. In C++ lingo: distinguish declaration and definition of method.

« In UML, the former is c
called behavioural feature
and can (roughly) be & f(Tinnee i) i1 Py
i i o acallinterface f(r1,,....7):m1 |2 F(20 . Pong) i P
H ((signal)) E

« a signal name E

Note: The signal list is redundant as it can be looked up in the state machine
- of the class. But: certainly useful for documentation

5966

Behavioural Features Behavioural Features c

Fras i) im Py & f(namim)in Py
o Tam) T2 o & F(maa,

(signal) B

Tang) 172 Py

(signal)) E

Semantics: Semantics:

« The implementation of a behavioural feature can be provided by: « The implementation of a behavioural feature can be provided by:

« An operation. « An operation.

In our setting, we simply assume a transformer like 7y In our setting, we simply assume a transformer like 7;

then, e.g. clear how to admit method calls as actions on transitions:
n of transformers (clear but tedious: non-termination).

It is then, e.g. clear how to admit method calls as actions on transitions:
function composition of transformers (clear but tedious: non-termination).

In a setting with Java as action language: operation is a method body. In a setting with Java as action language: operati

n is a method body.

« The class' state-machine (“triggered operation”). « The class' state-machine (“triggered operation”).

o Calling F with > parameters for a stable instance of ('

ary event I and dispatches it (bypassing the ether)

« Transition actions may fill in the return value.

T « On completion of the RTC step, the call returns.

g « For a non-stable instance, the caller blocks until stability is reached again.

60/65 6076

Behavioural Features: Visibility and Properties

y:
« Extend typing rules to sequences of actions such that
a well-typed action sequence only calls visible methods.

You are here.

Behavioural Features: Visibility and Properties

« Extend typing rules to sequences of a
a well-typed action sequence only calls

» Useful properties:
» concurrency
concurrent — is thread safe
« guarded — some mechanism ensures/should ensure mutual exclusion
« sequential — is not thread safe, users have to ensure mutual exclusion

.

o isQuery — doesn't modify the state space (thus thread safe)

« For simplicity, we leave the notion of steps untouched, we construct our
] semantics around state machines.
B Yet we could explain pre/post in OCL (if we wanted to)

61766

Course Map

\m§. SM e 0oCL CcD, Mf@

A s i
s atr), SM expr . mmﬂ
o, o \(1\ \w\\rr

4

6366

61/6

64765

Discusson.

References

62766

65/6

- 1622012219 - main -

/99

