
Software Design, Modelling and Analysis in UML

Lecture 17: Reflective Description of Behaviour,
Live Sequence Charts I

2013-01-16

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany–
1
7
–
2
0
1
3
-0
1
-1
6
–
m
a
in

–

Contents & Goals

Last Lecture:

• Hierarchical State Machines

• Later: Remaining pseudo-states, such as shallow/deep history; active vs. passive;

behavioural feature.

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What does this LSC mean?

• Are this UML model’s state machines consistent with the interactions?

• Please provide a UML model which is consistent with this LSC.

• What is: activation, hot/cold condition, pre-chart, etc.?

• Content:

• Reflective description of behaviour.

• LSC concrete and abstract syntax.

• LSC intuitive semantics.

• Symbolic Büchi Automata (TBA) and its (accepted) language.

–
1
7
–
2
0
1
3
-0
1
-1
6
–
S
p
re
li
m

–

2/74

You are here.

–
1
7
–
2
0
1
3
-0
1
-1
6
–
m
a
in

–

3/74

Course Map

UML
M
o
d
e
l

In
s
t
a
n
c
e
s

N

S

W E

CD, SM

S = (T,C, V, atr), SM

M = (ΣD
S
, AS ,→SM)

ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, consi, Snd i))i∈N

G = (N,E, f) Mathematics

OD UML

✔ ✔

✔ ✔

✔

✘

✘

✘

✘✔

✔

✔

✔

✔

–
1
7
–
2
0
1
3
-0
1
-1
6
–
m
a
in

–

4/74

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Motivation: Reflective, Dynamic Descriptions of Behaviour

–
1
7
–
2
0
1
3
-0
1
-1
6
–
m
a
in

–

5/74

Recall: Constructive vs. Reflective Descriptions

[Harel, 1997] proposes to distinguish constructive and reflective descriptions:

• “A language is constructive if it contributes to the dynamic semantics

of the model. That is, its constructs contain information needed in

executing the model or in translating it into executable code.”

A constructive description tells how things are computed (which can
then be desired or undesired).

• “Other languages are reflective or assertive, and can be used by the

system modeler to capture parts of the thinking that go into building the

model – behavior included –, to derive and present views of the model,

statically or during execution, or to set constraints on behavior in

preparation for verification.”

A reflective description tells what shall or shall not be computed.

Note: No sharp boundaries!

–
1
7
–
2
0
1
3
-0
1
-1
6
–
S
b
eh

a
v
–

6/74

Recall: What is a Requirement?

Recall:

• The semantics of the UML model M = (CD ,SM ,OD) is the transition
system (S,−→, S0) constructed according to discard/dispatch/commence-rules.

• The computations of M, denoted by JMK, are the computations of (S,−→, S0).

Now:

A reflective description tells what shall or shall not be computed.

More formally: a requirement ϑ is a property of computations, sth. which is
either satisfied or not satisfied by a computation

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→ (σ1, ε1)

(cons1,Snd1)
−−−−−−−−→ · · · ∈ JMK,

denoted by π |= ϑ and π 6|= ϑ, resp.

–
1
7
–
2
0
1
3
-0
1
-1
6
–
S
re
fl
ec
ti
ve

–

7/74

westphal
Bleistift

westphal
Bleistift

OCL as Reflective Description of Certain Properties

• invariants:

∀π ∈ JMK ∀ i ∈ N : πi |= ϑ,

• non-reachability of configurations:

∄π ∈ JMK ∄ i ∈ N : πi |= ϑ

⇐⇒ ∀π ∈ JMK ∀ i ∈ N : πi |= ¬ϑ

• reachability of configurations:

∃π ∈ JMK ∃ i ∈ N : πi |= ϑ

⇐⇒ ¬(∀π ∈ JMK ∀ i ∈ N : πi |= ¬ϑ)

where

• ϑ is an OCL expression or an object diagram and

• “|=” is the corresponding OCL satisfaction
or the “is represented by object diagram” relation.

–
1
7
–
2
0
1
3
-0
1
-1
6
–
S
re
fl
ec
ti
ve

–

8/74

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

In General Not OCL: Temporal Properties

Dynamic (by example)

• reactive behaviour

• “for each C instance, each reception of E is finally answered by F”

∀π ∈ JMK : π |= ϑ

• non-reachability of system configuration sequences

• “there mustn’t be a system run where C first receives E and then sends F”

∄π ∈ JMK : π |= ϑ

• reachability of system configuration sequences

• “there must be a system run where C first receives E and then sends F”

∃π ∈ JMK : π |= ϑ

But: what is “|=” and what is “ϑ”?

–
1
7
–
2
0
1
3
-0
1
-1
6
–
S
re
fl
ec
ti
ve

–

9/74

Interactions: Problem and Plan

In general: ∀(∃) π ∈ JMK : π |=(6|=) ϑ
Problem: what is “|=” and what is “ϑ”?

Plan:

• Define the language L(I) of an interaction I — via Büchi automata.

• Define the language L(M) of a model M — basically its computations.
Each computation π ∈ JMK corresponds to a word wπ.

• Then (conceptually) π |= ϑ if and only if wπ ∈ L(I).

M
o
d
e
l

In
s
t
a
n
c
e
s

CD, SM

S = (T,C, V, atr), SM

M = (ΣD
S
, AS ,→SM)

ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, cons i, Snd i))i∈N

G = (N,E, f) Mathematics

✘

✘

✘

✘

–
1
7
–
2
0
1
3
-0
1
-1
6
–
S
re
fl
ec
ti
ve

–

10/74

Interactions: Plan

• In the following, we consider Sequence Diagrams as interaction I,

• more precisely: Live Sequence Charts [Damm and Harel, 2001].

• We define the language L(I) of an LSC — via Büchi automata.

• Then (conceptually) π |= ϑ if and only if wπ ∈ L(I).

Why LSC, relation LSCs/UML SDs, other kinds of interactions: later.

M
o
d
e
l

In
s
t
a
n
c
e
s

CD, SM

S = (T,C, V, atr), SM

M = (ΣD
S
, AS ,→SM)

ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, cons i, Snd i))i∈N

G = (N,E, f) Mathematics

✘

✘

✘

✘

–
1
7
–
2
0
1
3
-0
1
-1
6
–
S
re
fl
ec
ti
ve

–

11/74

Live Sequence Charts — Concrete Syntax

–
1
7
–
2
0
1
3
-0
1
-1
6
–
m
a
in

–

12/74

Example

LSC: L
AC: actcond

AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1

–
1
7
–
2
0
1
3
-0
1
-1
6
–
S
ls
cs
yn

–

13/74

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Example: What Is Required?

LSC: L
AC: actcond

AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1

• Whenever the CrossingCtrl has consumed a ‘secreq’ event

• then it shall finally send ‘lights on’ and ‘barrier down’ to LightsCtrl and BarrierCtrl,

• if LightsCtrl is not ‘operational’ when receiving that event,
the rest of this scenario doesn’t apply; maybe there’s another LSC for that case.

• if LightsCtrl is ‘operational’ when receiving that event,
it shall reply with ‘lights ok’ within 1–3 time units,

• the BarrierCtrl shall reply with ‘barrier ok’ within 1–5 time units, during this time
(dispatch time not included) it shall not be in state ‘MvUp’,

• ‘lights ok’ and ‘barrier ok’ may occur in any order.

• After having consumed both, CrossingCtrl may reply with ‘done’ to the environment.–
1
7
–
2
0
1
3
-0
1
-1
6
–
S
ls
cs
yn

–

14/74

westphal
Bleistift

Building Blocks

LSC: L
AC: actcond

AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1

• Instance Lines:

Environment : C

–
1
7
–
2
0
1
3
-0
1
-1
6
–
S
ls
cs
yn

–

15/74

westphal
Bleistift

westphal
Bleistift

Building Blocks

LSC: L
AC: actcond

AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1

• Messages: (asynchronous or synchronous/instantaneous)

a b

–
1
7
–
2
0
1
3
-0
1
-1
6
–
S
ls
cs
yn

–

16/74

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Building Blocks

LSC: L
AC: actcond

AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1

• Conditions and Local Invariants: (expr1, expr2, expr3 ∈ ExprS)

expr1 expr2
expr3

–
1
7
–
2
0
1
3
-0
1
-1
6
–
S
ls
cs
yn

–

17/74

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Intuitive Semantics: A Partial Order on Simclasses

(i) Strictly After:

a

b
a

(ii) Simultaneously: (simultaneous region)

a

expr1

b c

(iii) Explicitly Unordered: (co-region)

a

b

Intuition: A computation path violates an LSC if the occurrence of some events
doesn’t adhere to the partial order obtained as the transitive closure of (i) to (iii).

–
1
7
–
2
0
1
3
-0
1
-1
6
–
S
ls
cs
yn

–

18/74

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Partial Order Requirements

LSC: L
AC: actcond

AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1

• Whenever the CrossingCtrl has consumed a ‘secreq’ event

• then it shall finally send ‘lights on’ and ‘barrier down’ to LightsCtrl and BarrierCtrl,

• if LightsCtrl is not ‘operational’ when receiving that event,
the rest of this scenario doesn’t apply; maybe there’s another LSC for that case.

• if LightsCtrl is ‘operational’ when receiving that event,
it shall reply with ‘lights ok’ within 1–3 time units,

• the BarrierCtrl shall reply with ‘barrier ok’ within 1–5 time units, during this time
(dispatch time not included) it shall not be in state ‘MvUp’,

• ‘lights ok’ and ‘barrier ok’ may occur in any order.

• After having consumed both, CrossingCtrl may reply with ‘done’ to the environment.–
1
7
–
2
0
1
3
-0
1
-1
6
–
S
ls
cs
yn

–

19/74

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

LSC Specialty: Modes

With LSCs,

• whole charts,

• locations, and

• elements

have a mode — one of hot or cold (graphically indicated by outline).

chart location message condition/

local inv.

hot:

a

b

b p

cold:

a

b

b p

always vs. at
least once

must vs. may
progress

mustn’t vs.
may get lost

necessary vs.
legal exit–

1
7
–
2
0
1
3
-0
1
-1
6
–
S
ls
cs
yn

–

20/74

Example: Modes

LSC: L
AC: actcond

AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1

• Whenever the CrossingCtrl has consumed a ‘secreq’ event

• then it shall finally send ‘lights on’ and ‘barrier down’ to LightsCtrl and BarrierCtrl,

• if LightsCtrl is not ‘operational’ when receiving that event,
the rest of this scenario doesn’t apply; maybe there’s another LSC for that case.

• if LightsCtrl is ‘operational’ when receiving that event,
it shall reply with ‘lights ok’ within 1–3 time units,

• the BarrierCtrl shall reply with ‘barrier ok’ within 1–5 time units, during this time
(dispatch time not included) it shall not be in state ‘MvUp’,

• ‘lights ok’ and ‘barrier ok’ may occur in any order.

• After having consumed both, CrossingCtrl may reply with ‘done’ to the environment.–
1
7
–
2
0
1
3
-0
1
-1
6
–
S
ls
cs
yn

–

21/74

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

LSC Specialty: Activation

One major defect of MSCs and SDs:
they don’t say when the scenario has
to/may be observed.

LSCs: Activation condition (AC ∈ ExprS),
activation mode (AM ∈ {init , inv}),
and pre-chart.

: C : D

a

b

LSC: L
AC: expr

AM: invariant I: strict

: C : D

a

b

Intuition: (universal case)

• given a computation π, whenever expr holds in a configuration (σi, εi) of ξ

• which is initial, i.e. k = 0, or (AM = initial)

• whose k is not further restricted, (AM = invariant)

and if the pre-chart is observed from k to k + n,

then the main-chart has to follow from k + n+ 1.–
1
7
–
2
0
1
3
-0
1
-1
6
–
S
ls
cs
yn

–

22/74

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Example: What Is Required?

LSC: L
AC: actcond

AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1

• Whenever the CrossingCtrl has consumed a ‘secreq’ event

• then it shall finally send ‘lights on’ and ‘barrier down’ to LightsCtrl and BarrierCtrl,

• if LightsCtrl is not ‘operational’ when receiving that event,
the rest of this scenario doesn’t apply; maybe there’s another LSC for that case.

• if LightsCtrl is ‘operational’ when receiving that event,
it shall reply with ‘lights ok’ within 1–3 time units,

• the BarrierCtrl shall reply with ‘barrier ok’ within 1–5 time units, during this time
(dispatch time not included) it shall not be in state ‘MvUp’,

• ‘lights ok’ and ‘barrier ok’ may occur in any order.

• After having consumed both, CrossingCtrl may reply with ‘done’ to the environment.–
1
7
–
2
0
1
3
-0
1
-1
6
–
S
ls
cs
yn

–

23/74

westphal
Bleistift

westphal
Bleistift

Course Map

UML
M
o
d
e
l

In
s
t
a
n
c
e
s

N

S

W E

CD, SM

S = (T,C, V, atr), SM

M = (ΣD
S
, AS ,→SM)

ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, consi, Snd i))i∈N

G = (N,E, f) Mathematics

OD UML

✔ ✔

✔ ✔

✔

✘

✘

✘

✘✔

✔

✔

✔

✔

–
1
7
–
2
0
1
3
-0
1
-1
6
–
m
a
in

–

24/74

References

–
1
7
–
2
0
1
3
-0
1
-1
6
–
m
a
in

–

73/74

References

[Damm and Harel, 2001] Damm, W. and Harel, D. (2001). LSCs: Breathing life into
Message Sequence Charts. Formal Methods in System Design, 19(1):45–80.

[Harel, 1997] Harel, D. (1997). Some thoughts on statecharts, 13 years later. In Grumberg,
O., editor, CAV, volume 1254 of LNCS, pages 226–231. Springer-Verlag.

[Harel and Maoz, 2007] Harel, D. and Maoz, S. (2007). Assert and negate revisited: Modal
semantics for UML sequence diagrams. Software and System Modeling (SoSyM). To
appear. (Early version in SCESM’06, 2006, pp. 13-20).

[Harel and Marelly, 2003] Harel, D. and Marelly, R. (2003). Come, Let’s Play:
Scenario-Based Programming Using LSCs and the Play-Engine. Springer-Verlag.

[Klose, 2003] Klose, J. (2003). LSCs: A Graphical Formalism for the Specification of
Communication Behavior. PhD thesis, Carl von Ossietzky Universität Oldenburg.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2.
Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2.
Technical Report formal/07-11-02.

[Störrle, 2003] Störrle, H. (2003). Assert, negate and refinement in UML-2 interactions. In
Jürjens, J., Rumpe, B., France, R., and Fernandez, E. B., editors, CSDUML 2003, number
TUM-I0323. Technische Universität München.

–
1
7
–
2
0
1
3
-0
1
-1
6
–
m
a
in

–

74/74

	Contents & Goals
	You are here.
	Course Map
	Motivation: Reflective, Dynamic Descriptions of Behaviour
	Recall: Constructive vs. Reflective Descriptions
	Recall: What is a Requirement?
	OCL as Reflective Description of Certain Properties
	In General Not OCL: Temporal Properties
	In General Not OCL: Temporal Properties
	In General Not OCL: Temporal Properties
	In General Not OCL: Temporal Properties

	Interactions: Problem and Plan
	Interactions: Plan
	Live Sequence Charts --- Concrete Syntax
	Example
	Example: What Is Required?
	Example: What Is Required?
	Example: What Is Required?
	Example: What Is Required?
	Example: What Is Required?
	Example: What Is Required?
	Example: What Is Required?
	Example: What Is Required?

	Building Blocks
	Building Blocks
	Building Blocks
	Intuitive Semantics: A Partial Order on Simclasses
	Partial Order Requirements
	LSC Specialty: Modes
	Example: Modes
	LSC Specialty: Activation
	LSC Specialty: Activation

	Example: What Is Required?
	Course Map
	Excursus: Symbolic B"uchi Automata (over Signature)
	Symbolic B"uchi Automata
	TBA Example
	Word
	Word Example
	Run of TBA over Word
	Run Example
	The Language of a TBA
	Language of the Example TBA
	Course Map
	Back to Main Track: Language of a Model
	Words over Signature
	The Language of a Model
	The Language of a Model

	Example: The Language of a Model
	Signal and Attribute Expressions
	Satisfaction of Signal and Attribute Expressions
	Satisfaction of Signal and Attribute Expressions

	TBA over Signature
	TBA over Signature Example
	TBA over Signature Example
	Course Map
	Live Sequence Charts Abstract Syntax
	LSC Body: Abstract Syntax
	Example
	Well-Formedness
	Course Map
	Live Sequence Charts Semantics
	TBA-based Semantics of LSCs
	Formal LSC Semantics: It's in the Cuts
	Formal LSC Semantics: It's in the Cuts

	Examples: Cut or Not Cut? Hot/Cold?
	A Successor Relation on Cuts
	Successor Cut Examples
	Idea: Accepting Timed Words by Advancing the Cut
	Language of LSC Body
	Language of LSC Body: Intuition
	Some Helper Functions
	Loops
	Loops
	Loops

	Some More Helper Functions
	Progress
	Progress
	Progress

	Even More Helper Functions
	Legal Exits
	Legal Exits
	Legal Exits

	Example
	Finally: The LSC Semantics
	Finally: The LSC Semantics

	Back to UML: Interactions
	Model Consistency wresp {} Interaction
	Interactions as Reflective Description
	Interactions as Reflective Description
	Interactions as Reflective Description
	Interactions as Reflective Description

	Why Sequence Diagrams?
	Why Sequence Diagrams?

	Thus: Live Sequence Charts
	Side Note: Protocol Statemachines
	References
	

