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Contents & Goals

Last Lecture:

• Hierarchical State Machines

• Later: Remaining pseudo-states, such as shallow/deep history; active vs. passive;

behavioural feature.

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What does this LSC mean?

• Are this UML model’s state machines consistent with the interactions?

• Please provide a UML model which is consistent with this LSC.

• What is: activation, hot/cold condition, pre-chart, etc.?

• Content:

• Reflective description of behaviour.

• LSC concrete and abstract syntax.

• LSC intuitive semantics.

• Symbolic Büchi Automata (TBA) and its (accepted) language.
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You are here.
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Course Map

UML
M
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d
e
l
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N

S

W E

CD, SM

S = (T,C, V, atr ), SM

M = (ΣD
S
, AS ,→SM )

ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, consi, Snd i))i∈N

G = (N,E, f) Mathematics

OD UML

✔ ✔

✔ ✔

✔

✘

✘

✘

✘✔

✔

✔

✔

✔
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Motivation: Reflective, Dynamic Descriptions of Behaviour
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Recall: Constructive vs. Reflective Descriptions

[Harel, 1997] proposes to distinguish constructive and reflective descriptions:

• “A language is constructive if it contributes to the dynamic semantics

of the model. That is, its constructs contain information needed in

executing the model or in translating it into executable code.”

A constructive description tells how things are computed (which can
then be desired or undesired).

• “Other languages are reflective or assertive, and can be used by the

system modeler to capture parts of the thinking that go into building the

model – behavior included –, to derive and present views of the model,

statically or during execution, or to set constraints on behavior in

preparation for verification.”

A reflective description tells what shall or shall not be computed.

Note: No sharp boundaries!
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Recall: What is a Requirement?

Recall:

• The semantics of the UML model M = (CD ,SM ,OD) is the transition
system (S,−→, S0) constructed according to discard/dispatch/commence-rules.

• The computations of M, denoted by JMK, are the computations of (S,−→, S0).

Now:

A reflective description tells what shall or shall not be computed.

More formally: a requirement ϑ is a property of computations, sth. which is
either satisfied or not satisfied by a computation

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→ (σ1, ε1)

(cons1,Snd1)
−−−−−−−−→ · · · ∈ JMK,

denoted by π |= ϑ and π 6|= ϑ, resp.
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OCL as Reflective Description of Certain Properties

• invariants:

∀π ∈ JMK ∀ i ∈ N : πi |= ϑ,

• non-reachability of configurations:

∄π ∈ JMK ∄ i ∈ N : πi |= ϑ

⇐⇒ ∀π ∈ JMK ∀ i ∈ N : πi |= ¬ϑ

• reachability of configurations:

∃π ∈ JMK ∃ i ∈ N : πi |= ϑ

⇐⇒ ¬(∀π ∈ JMK ∀ i ∈ N : πi |= ¬ϑ)

where

• ϑ is an OCL expression or an object diagram and

• “|=” is the corresponding OCL satisfaction
or the “is represented by object diagram” relation.
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In General Not OCL: Temporal Properties

Dynamic (by example)

• reactive behaviour

• “for each C instance, each reception of E is finally answered by F”

∀π ∈ JMK : π |= ϑ

• non-reachability of system configuration sequences

• “there mustn’t be a system run where C first receives E and then sends F”

∄π ∈ JMK : π |= ϑ

• reachability of system configuration sequences

• “there must be a system run where C first receives E and then sends F”

∃π ∈ JMK : π |= ϑ

But: what is “|=” and what is “ϑ”?
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Interactions: Problem and Plan

In general: ∀(∃) π ∈ JMK : π |=( 6|=) ϑ
Problem: what is “|=” and what is “ϑ”?

Plan:

• Define the language L(I) of an interaction I — via Büchi automata.

• Define the language L(M) of a model M — basically its computations.
Each computation π ∈ JMK corresponds to a word wπ.

• Then (conceptually) π |= ϑ if and only if wπ ∈ L(I).
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S = (T,C, V, atr ), SM

M = (ΣD
S
, AS ,→SM )

ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, cons i, Snd i))i∈N

G = (N,E, f) Mathematics

✘

✘

✘

✘
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Interactions: Plan

• In the following, we consider Sequence Diagrams as interaction I,

• more precisely: Live Sequence Charts [Damm and Harel, 2001].

• We define the language L(I) of an LSC — via Büchi automata.

• Then (conceptually) π |= ϑ if and only if wπ ∈ L(I).

Why LSC, relation LSCs/UML SDs, other kinds of interactions: later.
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Live Sequence Charts — Concrete Syntax
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Example

LSC: L
AC: actcond

AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1
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Example: What Is Required?

LSC: L
AC: actcond

AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1

• Whenever the CrossingCtrl has consumed a ‘secreq’ event

• then it shall finally send ‘lights on’ and ‘barrier down’ to LightsCtrl and BarrierCtrl,

• if LightsCtrl is not ‘operational’ when receiving that event,
the rest of this scenario doesn’t apply; maybe there’s another LSC for that case.

• if LightsCtrl is ‘operational’ when receiving that event,
it shall reply with ‘lights ok’ within 1–3 time units,

• the BarrierCtrl shall reply with ‘barrier ok’ within 1–5 time units, during this time
(dispatch time not included) it shall not be in state ‘MvUp’,

• ‘lights ok’ and ‘barrier ok’ may occur in any order.

• After having consumed both, CrossingCtrl may reply with ‘done’ to the environment.–
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Building Blocks

LSC: L
AC: actcond

AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1

• Instance Lines:

Environment : C
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Building Blocks

LSC: L
AC: actcond

AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1

• Messages: (asynchronous or synchronous/instantaneous)

a b
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Building Blocks

LSC: L
AC: actcond

AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1

• Conditions and Local Invariants: (expr1, expr2, expr3 ∈ ExprS )

expr1 expr2
expr3
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Intuitive Semantics: A Partial Order on Simclasses

(i) Strictly After:

a

b
a

(ii) Simultaneously: (simultaneous region)

a

expr1

b c

(iii) Explicitly Unordered: (co-region)

a

b

Intuition: A computation path violates an LSC if the occurrence of some events
doesn’t adhere to the partial order obtained as the transitive closure of (i) to (iii).
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Partial Order Requirements

LSC: L
AC: actcond

AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1

• Whenever the CrossingCtrl has consumed a ‘secreq’ event

• then it shall finally send ‘lights on’ and ‘barrier down’ to LightsCtrl and BarrierCtrl,

• if LightsCtrl is not ‘operational’ when receiving that event,
the rest of this scenario doesn’t apply; maybe there’s another LSC for that case.

• if LightsCtrl is ‘operational’ when receiving that event,
it shall reply with ‘lights ok’ within 1–3 time units,

• the BarrierCtrl shall reply with ‘barrier ok’ within 1–5 time units, during this time
(dispatch time not included) it shall not be in state ‘MvUp’,

• ‘lights ok’ and ‘barrier ok’ may occur in any order.

• After having consumed both, CrossingCtrl may reply with ‘done’ to the environment.–
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LSC Specialty: Modes

With LSCs,

• whole charts,

• locations, and

• elements

have a mode — one of hot or cold (graphically indicated by outline).

chart location message condition/

local inv.

hot:

a

b

b p

cold:

a

b

b p

always vs. at
least once

must vs. may
progress

mustn’t vs.
may get lost

necessary vs.
legal exit–
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Example: Modes

LSC: L
AC: actcond

AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1

• Whenever the CrossingCtrl has consumed a ‘secreq’ event

• then it shall finally send ‘lights on’ and ‘barrier down’ to LightsCtrl and BarrierCtrl,

• if LightsCtrl is not ‘operational’ when receiving that event,
the rest of this scenario doesn’t apply; maybe there’s another LSC for that case.

• if LightsCtrl is ‘operational’ when receiving that event,
it shall reply with ‘lights ok’ within 1–3 time units,

• the BarrierCtrl shall reply with ‘barrier ok’ within 1–5 time units, during this time
(dispatch time not included) it shall not be in state ‘MvUp’,

• ‘lights ok’ and ‘barrier ok’ may occur in any order.

• After having consumed both, CrossingCtrl may reply with ‘done’ to the environment.–
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LSC Specialty: Activation

One major defect of MSCs and SDs:
they don’t say when the scenario has
to/may be observed.

LSCs: Activation condition (AC ∈ ExprS ),
activation mode (AM ∈ {init , inv}),
and pre-chart.

: C : D

a

b

LSC: L
AC: expr

AM: invariant I: strict

: C : D

a

b

Intuition: (universal case)

• given a computation π, whenever expr holds in a configuration (σi, εi) of ξ

• which is initial, i.e. k = 0, or (AM = initial)

• whose k is not further restricted, (AM = invariant)

and if the pre-chart is observed from k to k + n,

then the main-chart has to follow from k + n+ 1.–
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Example: What Is Required?

LSC: L
AC: actcond

AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1

• Whenever the CrossingCtrl has consumed a ‘secreq’ event

• then it shall finally send ‘lights on’ and ‘barrier down’ to LightsCtrl and BarrierCtrl,

• if LightsCtrl is not ‘operational’ when receiving that event,
the rest of this scenario doesn’t apply; maybe there’s another LSC for that case.

• if LightsCtrl is ‘operational’ when receiving that event,
it shall reply with ‘lights ok’ within 1–3 time units,

• the BarrierCtrl shall reply with ‘barrier ok’ within 1–5 time units, during this time
(dispatch time not included) it shall not be in state ‘MvUp’,

• ‘lights ok’ and ‘barrier ok’ may occur in any order.

• After having consumed both, CrossingCtrl may reply with ‘done’ to the environment.–
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ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, consi, Snd i))i∈N
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✔ ✔
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References
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