
Software Design, Modelling and Analysis in UML

Lecture 14: Hierarchical State Machines I

2012-12-19

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

–
1
4

–
2
0
1
2
-1

2
-1

9
–

m
a
in

–

Contents & Goals

Last Lecture:

• RTC-Rules: Discard, Dispatch, Commence.

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What does this State Machine mean? What happens if I inject this event?

• Can you please model the following behaviour.

• What is: initial state.

• What does this hierarchical State Machine mean? What may happen if I
inject this event?

• What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, . . .

• Content:

• Step, RTC, Divergence

• Putting It All Together

• Rhapsody Demo

• Hierarchical State Machines Syntax

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
p
re

li
m

–

2/66

Step and Run-to-completion Step

–
1
4

–
2
0
1
2
-1

2
-1

9
–

m
a
in

–

3/66

Notions of Steps: The Step

Note: we call one evolution (σ, ε)
(cons,Snd)
−−−−−−−→

u
(σ′, ε′) a step.

Thus in our setting, a step directly corresponds to

one object (namely u) takes a single transition between regular states.

(We have to extend the concept of “single transition” for hierarchical state machines.)

That is: We’re going for an interleaving semantics without true parallelism.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
st

m
rt

c
–

4/66

Notions of Steps: The Run-to-Completion Step

What is a run-to-completion step...?

• Intuition: a maximal sequence of steps, where the first step is a
dispatch step and all later steps are commence steps.

• Note: one step corresponds to one transition in the state machine.

A run-to-completion step is in general not syntacically definable — one
transition may be taken multiple times during an RTC-step.

Example:

s1 s2

E[x > 0]/

/x := x− 1

σ:
: C

x = 2

ε:

E for u

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
st

m
rt

c
–

5/66

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Notions of Steps: The Run-to-Completion Step Cont’d

Proposal: Let

(σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

. . .
(consn−1,Sndn−1)
−−−−−−−−−−−−→

un−1

(σn, εn), n > 0,

be a finite (!), non-empty, maximal, consecutive sequence such that

• object u is alive in σ0,

• u0 = u and (cons0, Snd0) indicates dispatching to u, i.e. cons = {(u,~v 7→ ~d)},

• there are no receptions by u in between, i.e.

cons i ∩ {u} × Evs(E ,D) = ∅, i > 1,

• un−1 = u and u is stable only in σ0 and σn, i.e.

σ0(u)(stable) = σn(u)(stable) = 1 and σi(u)(stable) = 0 for 0 < i < n,

Let 0 = k1 < k2 < · · · < kN = n be the maximal sequence of indices such
that uki

= u for 1 ≤ i ≤ N . Then we call the sequence

(σ0(u) =) σk1(u), σk2(u) . . . , σkN
(u) (= σn−1(u))

a (!) run-to-completion computation of u (from (local) configuration σ0(u)).–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
st

m
rt

c
–

6/66

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Divergence

We say, object u can diverge on reception cons from (local) configuration
σ0(u) if and only if there is an infinite, consecutive sequence

(σ0, ε0)
(cons0,Snd0)
−−−−−−−−→ (σ1, ε1)

(cons1,Snd1)
−−−−−−−−→ . . .

such that u doesn’t become stable again.

• Note: disappearance of object not considered in the definitions.
By the current definitions, it’s neither divergence nor an RTC-step.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
st

m
rt

c
–

7/66

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Run-to-Completion Step: Discussion.

What people may dislike on our definition of RTC-step is that it takes a global
and non-compositional view. That is:

• In the projection onto a single object we still see the effect of interaction with
other objects.

• Adding classes (or even objects) may change the divergence behaviour of
existing ones.

• Compositional would be: the behaviour of a set of objects is determined by the
behaviour of each object “in isolation”.

Our semantics and notion of RTC-step doesn’t have this (often desired) property.

Can we give (syntactical) criteria such that any global run-to-completion step
is an interleaving of local ones?

Maybe: Strict interfaces. (Proof left as exercise...)

• (A): Refer to private features only via “self”.

(Recall that other objects of the same class can modify private attributes.)

• (B): Let objects only communicate by events, i.e.

don’t let them modify each other’s local state via links at all.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
st

m
rt

c
–

8/66

Putting It All Together

–
1
4

–
2
0
1
2
-1

2
-1

9
–

m
a
in

–

9/66

The Missing Piece: Initial States

Recall: a labelled transition system is (S,−→, S0). We have

• S: system configurations (σ, ε)

• −→: labelled transition relation (σ, ε)
(cons,Snd)
−−−−−−−→

u
(σ′, ε′).

Wanted: initial states S0.

Proposal:
Require a (finite) set of object diagrams OD as part of a UML model

(CD ,SM ,OD).

And set

S0 = {(σ, ε) | σ ∈ G−1(OD),OD ∈ OD , ε empty}.

Other Approach: (used by Rhapsody tool) multiplicity of classes.
We can read that as an abbreviation for an object diagram.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
to

g
et

h
er

–

10/66

Semantics of UML Model — So Far

The semantics of the UML model

M = (CD ,SM ,OD)

where

• some classes in CD are stereotyped as ‘signal’ (standard), some signals and
attributes are stereotyped as ‘external’ (non-standard),

• there is a 1-to-1 relation between classes and state machines,

• OD is a set of object diagrams over CD ,

is the transition system (S,−→, S0) constructed on the previous slide.

The computations of M are the computations of (S,−→, S0).

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
to

g
et

h
er

–

11/66

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

OCL Constraints and Behaviour

• Let M = (CD ,SM ,OD) be a UML model.

• We call M consistent iff, for each OCL constraint expr ∈ Inv(CD),

σ |= expr for each “reasonable point” (σ, ε) of computations of M.

(Cf. exercises and tutorial for discussion of “reasonable point”.)

Note: we could define Inv(SM) similar to Inv(CD).

Pragmatics:

• In UML-as-blueprint mode, if SM doesn’t exist yet, then M = (CD , ∅,OD)
is typically asking the developer to provide SM such that
M′ = (CD ,SM ,OD) is consistent.

If the developer makes a mistake, then M′ is inconsistent.

• Not common: if SM is given, then constraints are also considered when choos-

ing transitions in the RTC-algorithm. In other words: even in presence of mis-

takes, the SM never move to inconsistent configurations.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
to

g
et

h
er

–

12/66

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Contemporary UML Modelling Tools

–
1
4

–
2
0
1
2
-1

2
-1

9
–

m
a
in

–

13/66

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
b
la

n
k

–

14/66

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Hierarchical State Machines

–
1
4

–
2
0
1
2
-1

2
-1

9
–

m
a
in

–

15/66

UML State-Machines: What do we have to cover?

[ausstehendeAufrufe>1]
empfangeErgebnisse(nr, parameter) /
[ausstehendeAufrufe = ausstehendeAufrufe @pre - 1]

[true]
/
[ausstehendeAufrufe = ausstehendeAufrufe @pre + 1]

anmelden()/

abmelden()/
angemeldetabgemeldet

PA Client

Die Zustandsübergänge von
Protokoll-Zustandsautomaten
verfügen über eine
Vorbedingung , einen
Auslöser und eine
Nachbedingung (alle
optional) – jedoch nicht über
einen Effekt.

Wenn der Endzustand eines
Zustandsautomaten erreicht
wird, wird die Region beendet,
in der der Endzustand liegt.

ZA Boardingautomat (HW)ZA

when(k=0)/when(k=1)/
“Karte liegt an”

“Karte auswerfen”
/ setze(f,1)

“Karte laden” /
setze(f,1)

“Karte zurückweisen”
/ setze(f,-1)

“Karte auslesen” /
 inhalt = i

leer

bereit

belegt
when(k=0) / setze(f,0)

Kartenleser
Auch Zeit- und Änderungs-
ereignisse können Zustands-
übergänge auslösen:

- after definiert das
Verstreichen eines Intervalls;

- when definiert einen
Zustandswechsel.

Zustände und zeitlicher
Bezugsrahmen werden über
den umgebenden Classifier
definiert, hier die Werte der
Ports, siehe das Montage-
diagramm „Abfertigung“ links
oben.

drehkreuz

“Drehkreuz
 freigeben”
/ setze(s,0)

“Drehkreuz
 blockieren”
/ setze(s,1)

freigegeben

gesperrt

when(d>0) /
“Kreuz dreht sich”

aus/

an/

Ein verfeinerter Zustand
verweist auf einen Zustands-
automaten (angedeutet von
dem Symbol unten links), der
das Verhalten des Zustandes
definiert.

Ein Zustand kann eine oder
mehrere Regionen enthalten,
die wiederum Zustands-
automaten enthalten können.
Wenn ein Zustand mehrere
Regionen enthält, werden
diese in verschiedenen
Abteilen angezeigt, die durch
gestrichelte Linien
voneinander getrennt sind.
Regionen können benannt
werden. Alle Regionen
werden parallel zueinander
abgearbeitet.

Kartenleser

Wenn ein Regionsend-
zustand erreicht wird, wird der
gesamte komplexe Zustand
beendet, also auch alle
parallelen Regionen.

Ereignisse können innerhalb eines Zustands
Aktionen auslösen.

ZA
Bordkarte einlesen

entry/Karte auswerfen
do/Drehkreuz freigeben

Bordkarte akzeptieren

[Passagier
 nicht
 angemeldet]

when(Drehkreuzsensor=”drehen”)
 / Drehkreuz blockieren

entry/Suchanfrage starten
do/Anzeigelämpchen blinkt

Passagier überprüfen

Bordkarte
zurückweisen

Ergebnis der Such-
anfrage liegt vor

[Passagier
 angemeldet]

after(10s)
 / Drehkreuz blockieren

Protokollzustandsautomaten beschreiben
das Verhalten von Softwaresystemen,
Nutzfällen oder technischen Geräten.

aussetzen

wieder
aufnehmen

Passagier
identifizieren

after(10s)
/timeout

H

Passagier-ID
auslesen

Ein Zustand löst von sich aus
bestimmte Ereignisse aus:

- entry beim Betreten;
- do während des

Aufenthaltes;
- completion beim Erreichen

des Endzustandes einer
Unter-Zustandsmaschine

- exit beim Verlassen.

Diese und andere Ereignisse
können als Auslöser für
Aktivitäten herangezogen
werden.

[valide]

Validität
überprüfen

warten

Reguläre Beendigung löst ein
completion -Ereignis aus.

Das Zeitereignis after(10s) löst
einen Abbruch von „Bordkarte
einlesen“ aus.

Der Gedächtniszustand sorgt
dafür, dass nach dem Wieder-
aufnehmen der gleiche Zustand
wie vor dem Aussetzen einge-
nommen wird.

Der Austrittspunkt erlaubt es, von
einem definierten inneren Zustand
aus den Oberzustand zu verlassen.

Der Anfangszustand markiert
den voreingestellten Startpunkt
von „Boarding“ bzw. „Bordkarte
einlesen“.

Ein Eintrittspunkt definiert, dass ein komplexer
Zustand an einer anderen Stelle betreten wird, als
durch den Anfangszustand definiert ist.

tim
eo

ut

BoardingEin komplexer Zustand mit
einer Region.

[?]

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
yn

–

16/66

The Full Story

UML distinguishes the following kinds of states:

example

simple state

s1

entry/actentry
1

do/actdo
1

exit/act exit
1

E1/actE1

. . .

En/actEn

final state

composite state

OR

s

s1

s2

s3

AND

s

s1 s2 s3

s′1 s′2 s′3

example

pseudo-state

initial •

(shallow) history H

deep history H∗

fork/join ,

junction, choice • ,

entry point

exit point

terminate

submachine state S : s

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
yn

–

17/66

Representing All Kinds of States

• Until now:

(S, s0,→), s0 ∈ S,→ ⊆ S × (E ∪ { }) × ExprS × ActS × S

E S S

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
yn

–

18/66

Representing All Kinds of States

• Until now:

(S, s0,→), s0 ∈ S,→ ⊆ S × (E ∪ { }) × ExprS × ActS × S

• From now on: (hierarchical) state machines

(S, kind , region,→, ψ, annot)

E S S

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
yn

–

18/66

Representing All Kinds of States

• Until now:

(S, s0,→), s0 ∈ S,→ ⊆ S × (E ∪ { }) × ExprS × ActS × S

• From now on: (hierarchical) state machines

(S, kind , region,→, ψ, annot)

where

• S ⊇ {top} is a finite set of states (as before),

• kind : S → {st, init, fin, shist, dhist, fork, join, junc, choi, ent, exi, term}
is a function which labels states with their kind, (new)

• region : S → 22
S

is a function which characterises the regions of a state,
(new)

• → is a set of transitions, (changed)

• ψ : (→) → 2S × 2S is an incidence function, and (new)

• annot : (→) → (E ∪ { }) × ExprS × ActS provides an annotation for

each transition. (new)

(s0 is then redundant — replaced by proper state (!) of kind ‘init’.)

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
yn

–

18/66

From UML to Hierarchical State Machines: By Example

(S, kind , region,→, ψ, annot)

example ∈ S kind region

simple state s s st ∅

final state q fin ∅

composite state

OR

s

s1

s2

s3

, s st {{s1, s2, s3}}

AND

s

s1 s2 s3

s′1 s′2 s′3

s st

region

{{s1, s
′

1}, {s2, s
′

2},
{s3, s

′

3}}

submachine state (later) - - -

pseudo-state •, . . . q init, . . . ∅
︸ ︷︷ ︸

(s,kind(s)) for short–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
yn

–

19/66

From UML to Hierarchical State Machines: By Example

•

s

tr

DON’T!

[gd]

DON’T!

/act

annot

... translates to (S, kind , region,→, ψ, annot) =

({(top, st), (s1, init), (s, st), (s2, fin)}
︸ ︷︷ ︸

S,kind

,

{top 7→ {{s1, s, s2}}, s1 7→ ∅, s 7→ ∅, s2 7→ ∅}
︸ ︷︷ ︸

region

,

{t1, t2}
︸ ︷︷ ︸

→

, {t1 7→ ({s1}, {s}), t2 7→ ({s}, {s2})}
︸ ︷︷ ︸

ψ

,

{t1 7→ (tr , gd , act), t2 7→ annot}
︸ ︷︷ ︸

annot

)

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
yn

–

20/66

Well-Formedness: Regions (follows from diagram)

∈ S kind region ⊆ 2S , Si ⊆ S child ⊆ S

simple state s st ∅ ∅

final state s fin ∅ ∅

composite state s st {S1, . . . , Sn}, n ≥ 1 S1 ∪ · · · ∪ Sn

pseudo-state s init, . . . ∅ ∅

implicit top state top st {S1} S1

• Each state (except for top) lies in exactly one region,

• States s ∈ S with kind(s) = st may comprise regions.

• No region: simple state.

• One region: OR-state.

• Two or more regions: AND-state.

• Final and pseudo states don’t comprise regions.

• The region function induces a child function.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
yn

–

21/66

Well-Formedness: Initial State (requirement on diagram)

• Each non-empty region has a reasonable initial state and at least one
transition from there, i.e.

• for each s ∈ S with region(s) = {S1, . . . , Sn}, n ≥ 1, for each 1 ≤ i ≤ n,

• there exists exactly one initial pseudo-state (si1, init) ∈ Si and

at least one transition t ∈→ with si1 as source,

• and such transition’s target si2 is in Si, and
(for simplicity!) kind(si2) = st, and

annot(t) = (, true, act).

• No ingoing transitions to initial states.

• No outgoing transitions from final states.

• Recall:

•

s

tr

DON’T!

[gd]

DON’T!

/act

annot

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
yn

–

22/66

Plan example

simple state

s1

entry/act entry
1

do/actdo
1

exit/actexit
1

E1/actE1

. . .

En/actEn

final state

composite state

OR

s

s1

s2

s3

AND

s

s1 s2 s3

s′1 s′2 s′3

example

pseudo-state

initial •

(shallow) history H

deep history H∗

fork/join ,

junction, choice • ,

entry point

exit point

terminate

submachine state S : s

• Initial pseudostate, final state.

• Composite states.

• Entry/do/exit actions, internal transitions.

• History and other pseudostates, the rest.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
yn

–

23/66

Initial Pseudostates and Final States

–
1
4

–
2
0
1
2
-1

2
-1

9
–

m
a
in

–

24/66

Initial Pseudostate

•

s0

s

s1

s2

s3

/act1

annot
•
/act2

Principle:

• when entering a region without a specific destination state,

• then go to a state which is destination of an initiation transition,

• execute the action of the chosen initiation transitions between exit and
entry actions.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
in

it
fi
n

–

25/66

Initial Pseudostate

•

s0

s

s1

s2

s3

/act1

annot
•
/act2

Principle:

• when entering a region without a specific destination state,

• then go to a state which is destination of an initiation transition,

• execute the action of the chosen initiation transitions between exit and
entry actions.

Special case: the region of top.

• If class C has a state-machine, then “create-C transformer” is the
concatenation of

• the transformer of the “constructor” of C (here not introduced explicitly) and

• a transformer corresponding to one initiation transition of the top region.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
in

it
fi
n

–

25/66

Towards Final States: Completion of States

s1 s2 s3
E/act1 /act2

• Transitions without trigger can conceptionally be viewed as being sensitive for
the “completion event”.

• Dispatching (here: E) can then alternatively be viewed as

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
in

it
fi
n

–

26/66

Towards Final States: Completion of States

s1 s2 s3
E/act1 /act2

• Transitions without trigger can conceptionally be viewed as being sensitive for
the “completion event”.

• Dispatching (here: E) can then alternatively be viewed as

(i) fetch event (here: E) from the ether,

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
in

it
fi
n

–

26/66

Towards Final States: Completion of States

s1 s2 s3
E/act1 /act2

• Transitions without trigger can conceptionally be viewed as being sensitive for
the “completion event”.

• Dispatching (here: E) can then alternatively be viewed as

(i) fetch event (here: E) from the ether,

(ii) take an enabled transition (here: to s2),

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
in

it
fi
n

–

26/66

Towards Final States: Completion of States

s1 s2 s3
E/act1 /act2

• Transitions without trigger can conceptionally be viewed as being sensitive for
the “completion event”.

• Dispatching (here: E) can then alternatively be viewed as

(i) fetch event (here: E) from the ether,

(ii) take an enabled transition (here: to s2),

(iii) remove event from the ether,

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
in

it
fi
n

–

26/66

Towards Final States: Completion of States

s1 s2 s3
E/act1 /act2

• Transitions without trigger can conceptionally be viewed as being sensitive for
the “completion event”.

• Dispatching (here: E) can then alternatively be viewed as

(i) fetch event (here: E) from the ether,

(ii) take an enabled transition (here: to s2),

(iii) remove event from the ether,

(iv) after having finished entry and do action of current state (here: s2) — the state is
then called completed —,

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
in

it
fi
n

–

26/66

Towards Final States: Completion of States

s1 s2 s3
E/act1 /act2

• Transitions without trigger can conceptionally be viewed as being sensitive for
the “completion event”.

• Dispatching (here: E) can then alternatively be viewed as

(i) fetch event (here: E) from the ether,

(ii) take an enabled transition (here: to s2),

(iii) remove event from the ether,

(iv) after having finished entry and do action of current state (here: s2) — the state is
then called completed —,

(v) raise a completion event — with strict priority over events from ether!

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
in

it
fi
n

–

26/66

Towards Final States: Completion of States

s1 s2 s3
E/act1 /act2

• Transitions without trigger can conceptionally be viewed as being sensitive for
the “completion event”.

• Dispatching (here: E) can then alternatively be viewed as

(i) fetch event (here: E) from the ether,

(ii) take an enabled transition (here: to s2),

(iii) remove event from the ether,

(iv) after having finished entry and do action of current state (here: s2) — the state is
then called completed —,

(v) raise a completion event — with strict priority over events from ether!

(vi) if there is a transition enabled which is sensitive for the completion event,
• then take it (here: (s2, s3)).
• otherwise become stable.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
in

it
fi
n

–

26/66

Final States

s annot

• If

• a step of object u moves u into a final state (s, fin), and

• all sibling regions are in a final state,

then (conceptionally) a completion event for the current composite state s is
raised.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
in

it
fi
n

–

27/66

Final States

s annot

• If

• a step of object u moves u into a final state (s, fin), and

• all sibling regions are in a final state,

then (conceptionally) a completion event for the current composite state s is
raised.

• If there is a transition of a parent state (i.e., inverse of child) of s enabled
which is sensitive for the completion event,

• then take that transition,

• otherwise kill u

 adjust (2.) and (3.) in the semantics accordingly

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
in

it
fi
n

–

27/66

Final States

s annot

• If

• a step of object u moves u into a final state (s, fin), and

• all sibling regions are in a final state,

then (conceptionally) a completion event for the current composite state s is
raised.

• If there is a transition of a parent state (i.e., inverse of child) of s enabled
which is sensitive for the completion event,

• then take that transition,

• otherwise kill u

 adjust (2.) and (3.) in the semantics accordingly

• One consequence: u never survives reaching a state (s, fin) with s ∈ child(top).

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
in

it
fi
n

–

27/66

Final States

s annot

• If

• a step of object u moves u into a final state (s, fin), and

• all sibling regions are in a final state,

then (conceptionally) a completion event for the current composite state s is
raised.

• If there is a transition of a parent state (i.e., inverse of child) of s enabled
which is sensitive for the completion event,

• then take that transition,

• otherwise kill u

 adjust (2.) and (3.) in the semantics accordingly

• One consequence: u never survives reaching a state (s, fin) with s ∈ child(top).

• Now: in Core State Machines, there is no parent state.

• Later: in Hierarchical ones, there may be one.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
in

it
fi
n

–

27/66

Composite States
(formalisation follows[?])

–
1
4

–
2
0
1
2
-1

2
-1

9
–

m
a
in

–

28/66

Composite States

• In a sense, composite states are about
abbreviation, structuring, and avoiding redundancy.

• Idea: in Tron, for the Player’s Statemachine,
instead of

n

•
w e

s

resigned

X/
X/

X/

X/

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
tm

–

29/66

Composite States

• In a sense, composite states are about
abbreviation, structuring, and avoiding redundancy.

• Idea: in Tron, for the Player’s Statemachine,
instead of

n

•
w e

s

resigned

X/
X/

X/

X/

write

•

n

•
w e

s

resigned

X/

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
tm

–

29/66

Composite States

and instead of

n

fastN

•

wfW e

fE

s

fS

F/

F/

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
tm

–

30/66

Composite States

and instead of

n

fastN

•

wfW e

fE

s

fS

F/

F/

write

•

n

•
w e

s

•
slow

fast

F/F/

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
tm

–

30/66

Recall: Syntax

s

s1 s2 s3

s′1 s′2 s′3

translates to

({(top, st), (s, st), (s1, st)(s
′

1, st)(s2, st)(s
′

2, st)(s3, st)(s
′

3, st)}
︸ ︷︷ ︸

S,kind

,

{top 7→ {s}, s 7→ {{s1, s
′

1}, {s2, s
′

2}, {s3, s
′

3}}, s1 7→ ∅, s′1 7→ ∅, . . . }
︸ ︷︷ ︸

region

,

→, ψ, annot)

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
tm

–

31/66

Syntax: Fork/Join

• For brevity, we always consider transitions with (possibly) multiple
sources and targets, i.e.

ψ : (→) → (2S \ ∅) × (2S \ ∅)

• For instance,

s1

s2

s3

s4

s5

s6

tr [gd]/act

translates to

(S, kind , region, {t1}
︸︷︷︸

→

, {t1 7→ ({s2, s3}, {s5, s6})}
︸ ︷︷ ︸

ψ

, {t1 7→ (tr , gd , act)}
︸ ︷︷ ︸

annot

)

• Naming convention: ψ(t) = (source(t), target(t)).

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
tm

–

32/66

Composite States: Blessing or Curse?

•

•

s1

s2

•

s3

s8s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/
• what may happen on E?

• what may happen on E, F?

• can E, G kill the object?

• ...

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
tm

–

33/66

Composite States: Blessing or Curse?

•

•

s1

s2

•

s3

s8s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/
• what may happen on E?

• what may happen on E, F?

• can E, G kill the object?

• ...

States:

• what are legal state
configurations?

• what is the type of the
implicit st attribute?

Transitions:

• what are legal
transitions?

• when is a transition
enabled?

• what effects do transi-
tions have?

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
tm

–

33/66

State Configuration

• The type of st is from now on a set of states, i.e. st : 2S

• A set S1 ⊆ S is called (legal) state configurations if and only if

• top ∈ S1, and

• with each state s ∈ S1 that has a non-empty region ∅ 6= R ∈ region(s),
exactly one (non pseudo-state) child of s is in S1, i.e.

|{s ∈ R | kind(s) ∈ {st, fin}} ∩ S1| = 1.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
tm

–

34/66

State Configuration

• The type of st is from now on a set of states, i.e. st : 2S

• A set S1 ⊆ S is called (legal) state configurations if and only if

• top ∈ S1, and

• with each state s ∈ S1 that has a non-empty region ∅ 6= R ∈ region(s),
exactly one (non pseudo-state) child of s is in S1, i.e.

|{s ∈ R | kind(s) ∈ {st, fin}} ∩ S1| = 1.

• Examples:
s

s1

s2

s3

s

s1 s2 s3

s′1 s′2 s′3

s

s1

s2

s3

s

s1 s2 s3

s′1 s′2 s′3

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
tm

–

34/66

A Partial Order on States

The substate- (or child-) relation induces a partial order on states:

• top ≤ s, for all s ∈ S,

• s ≤ s′, for all s′ ∈ child(s),

• transitive, reflexive, antisymmetric,

• s′ ≤ s and s′′ ≤ s implies s′ ≤ s′′ or s′′ ≤ s′.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
tm

–

35/66

A Partial Order on States

The substate- (or child-) relation induces a partial order on states:

• top ≤ s, for all s ∈ S,

• s ≤ s′, for all s′ ∈ child(s),

• transitive, reflexive, antisymmetric,

• s′ ≤ s and s′′ ≤ s implies s′ ≤ s′′ or s′′ ≤ s′.

s

s1

s2

s3

s′

s′1 s′2 s′3

s′′1 s′′2 s′′3

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
tm

–

35/66

Least Common Ancestor and Ting

• The least common ancestor is the function lca : 2S → S such that

• The states in S1 are (transitive) children of lca(S1), i.e.

lca(S1) ≤ s, for alls ∈ S1 ⊆ S,

• lca(S1) is minimal, i.e. if ŝ ≤ s for all s ∈ S1, then ŝ ≤ lca(S1)

• Note: lca(S1) exists for all S1 ⊆ S (last candidate: top).

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
tm

–

36/66

Least Common Ancestor and Ting

• The least common ancestor is the function lca : 2S → S such that

• The states in S1 are (transitive) children of lca(S1), i.e.

lca(S1) ≤ s, for alls ∈ S1 ⊆ S,

• lca(S1) is minimal, i.e. if ŝ ≤ s for all s ∈ S1, then ŝ ≤ lca(S1)

• Note: lca(S1) exists for all S1 ⊆ S (last candidate: top).

s

s1

s2

s3

s′

s′1 s′2 s′3

s′′1 s′′2 s′′3

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
tm

–

36/66

Least Common Ancestor and Ting

• Two states s1, s2 ∈ S are called orthogonal, denoted s1 ⊥ s2, if and only if

• they are unordered, i.e. s1 6≤ s2 and s2 6≤ s1, and

• they live in different regions of an AND-state, i.e.

∃ s, region(s) = {S1, . . . , Sn}, 1 ≤ i 6= j ≤ n : s1 ∈ child(Si) ∧ s2 ∈ child(Sj),

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
tm

–

37/66

Least Common Ancestor and Ting

• Two states s1, s2 ∈ S are called orthogonal, denoted s1 ⊥ s2, if and only if

• they are unordered, i.e. s1 6≤ s2 and s2 6≤ s1, and

• they live in different regions of an AND-state, i.e.

∃ s, region(s) = {S1, . . . , Sn}, 1 ≤ i 6= j ≤ n : s1 ∈ child(Si) ∧ s2 ∈ child(Sj),

s

s1

s2

s3

s′

s′1 s′2 s′3

s′′1 s′′2 s′′3

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
tm

–

37/66

Least Common Ancestor and Ting

• A set of states S1 ⊆ S is called consistent, denoted by ↓ S1,
if and only if for each s, s′ ∈ S1,

• s ≤ s′,

• s′ ≤ s, or

• s ⊥ s′.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
tm

–

38/66

Least Common Ancestor and Ting

• A set of states S1 ⊆ S is called consistent, denoted by ↓ S1,
if and only if for each s, s′ ∈ S1,

• s ≤ s′,

• s′ ≤ s, or

• s ⊥ s′.

s

s1

s2

s3

s′

s′1 s′2 s′3

s′′1 s′′2 s′′3

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
tm

–

38/66

Legal Transitions

A hiearchical state-machine (S, kind , region,→, ψ, annot) is called well-
formed if and only if for all transitions t ∈→,

• source and destination are consistent, i.e. ↓ source(t) and ↓ target(t),

• source (and destination) states are pairwise unordered, i.e.

• forall s, s′ ∈ source(t) (∈ target(t)), s ⊥ s′,

• the top state is neither
source nor destination, i.e.

• top /∈ source(t) ∪ source(t).

• Recall: final states are

not sources of transitions.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
tm

–

39/66

Legal Transitions

A hiearchical state-machine (S, kind , region,→, ψ, annot) is called well-
formed if and only if for all transitions t ∈→,

• source and destination are consistent, i.e. ↓ source(t) and ↓ target(t),

• source (and destination) states are pairwise unordered, i.e.

• forall s, s′ ∈ source(t) (∈ target(t)), s ⊥ s′,

• the top state is neither
source nor destination, i.e.

• top /∈ source(t) ∪ source(t).

• Recall: final states are

not sources of transitions.

Example:

•

•

s1

s2

•

s3

s8s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
tm

–

39/66

The Depth of States

• depth(top) = 0,

• depth(s′) = depth(s) + 1, for all s′ ∈ child(s)

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
tm

–

40/66

The Depth of States

• depth(top) = 0,

• depth(s′) = depth(s) + 1, for all s′ ∈ child(s)

Example:

•

•

s1

s2

•

s3

s8s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
tm

–

40/66

Enabledness in Hierarchical State-Machines

• The scope (“set of possibly affected states”) of a transition t is the least
common region of

source(t) ∪ target(t).

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
tm

–

41/66

Enabledness in Hierarchical State-Machines

• The scope (“set of possibly affected states”) of a transition t is the least
common region of

source(t) ∪ target(t).

• Two transitions t1, t2 are called consistent if and only if their scopes are
orthogonal (i.e. states in scopes pairwise orthogonal).

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
tm

–

41/66

Enabledness in Hierarchical State-Machines

• The scope (“set of possibly affected states”) of a transition t is the least
common region of

source(t) ∪ target(t).

• Two transitions t1, t2 are called consistent if and only if their scopes are
orthogonal (i.e. states in scopes pairwise orthogonal).

• The priority of transition t is the depth of its innermost source state, i.e.

prio(t) := max{depth(s) | s ∈ source(t)}

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
tm

–

41/66

Enabledness in Hierarchical State-Machines

• The scope (“set of possibly affected states”) of a transition t is the least
common region of

source(t) ∪ target(t).

• Two transitions t1, t2 are called consistent if and only if their scopes are
orthogonal (i.e. states in scopes pairwise orthogonal).

• The priority of transition t is the depth of its innermost source state, i.e.

prio(t) := max{depth(s) | s ∈ source(t)}

• A set of transitions T ⊆→ is enabled in an object u if and only if

• T is consistent,

• T is maximal wrt. priority,

• all transitions in T share the same trigger,

• all guards are satisfied by σ(u), and

• for all t ∈ T , the source states are active, i.e.

source(t) ⊆ σ(u)(st) (⊆ S).

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
tm

–

41/66

Transitions in Hierarchical State-Machines

• Let T be a set of transitions enabled in u.

• Then (σ, ε)
(cons,Snd)
−−−−−−−→ (σ′, ε′) if

• σ′(u)(st) consists of the target states of t,

i.e. for simple states the simple states themselves, for composite
states the initial states,

• σ′, ε′, cons , and Snd are the effect of firing each transition t ∈ T
one by one, in any order, i.e. for each t ∈ T ,

• the exit transformer of all affected states, highest depth first,
• the transformer of t,
• the entry transformer of all affected states, lowest depth first.

 adjust (2.), (3.), (5.) accordingly.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
ie

rs
tm

–

42/66

Entry/Do/Exit Actions, Internal Transitions

–
1
4

–
2
0
1
2
-1

2
-1

9
–

m
a
in

–

43/66

Entry/Do/Exit Actions
s1

entry/actentry
1

do/actdo
1

exit/actexit
1

E1/actE1

. . .

En/actEn

s2

entry/actentry
2

do/actdo
2

exit/actexit
2

tr [gd]/act

• In general, with each state
s ∈ S there is associated

• an entry, a do, and an exit
action (default: skip)

• a possibly empty set of
trigger/action pairs called
internal transitions,

(default: empty). E1, . . . , En ∈ E , ‘entry’, ‘do’, ‘exit’ are reserved names!

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
en

tr
ye

xi
t

–

44/66

Entry/Do/Exit Actions
s1

entry/actentry
1

do/actdo
1

exit/actexit
1

E1/actE1

. . .

En/actEn

s2

entry/actentry
2

do/actdo
2

exit/actexit
2

tr [gd]/act

• In general, with each state
s ∈ S there is associated

• an entry, a do, and an exit
action (default: skip)

• a possibly empty set of
trigger/action pairs called
internal transitions,

(default: empty). E1, . . . , En ∈ E , ‘entry’, ‘do’, ‘exit’ are reserved names!

• Recall: each action’s supposed to have a transformer. Here: tactentry
1

, tactexit
1

, . . .

• Taking the transition above then amounts to applying

tactentry
s2

◦ tact ◦ tactexit
s1

instead of only

tact

 adjust (2.), (3.) accordingly.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
en

tr
ye

xi
t

–

44/66

Internal Transitions
s1

entry/actentry
1

do/actdo
1

exit/actexit
1

E1/actE1

. . .

En/actEn

s2

entry/actentry
2

do/actdo
2

exit/actexit
2

tr [gd]/act

• For internal transitions, taking the one for E1, for instance, still
amounts to taking only tactE1

.

• Intuition: The state is neither left nor entered, so: no exit, no entry.

 adjust (2.) accordingly.

• Note: internal transitions also start a run-to-completion step.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
en

tr
ye

xi
t

–

45/66

Internal Transitions
s1

entry/actentry
1

do/actdo
1

exit/actexit
1

E1/actE1

. . .

En/actEn

s2

entry/actentry
2

do/actdo
2

exit/actexit
2

tr [gd]/act

• For internal transitions, taking the one for E1, for instance, still
amounts to taking only tactE1

.

• Intuition: The state is neither left nor entered, so: no exit, no entry.

 adjust (2.) accordingly.

• Note: internal transitions also start a run-to-completion step.

• Note: the standard seems not to clarify whether internal transitions have
priority over regular transitions with the same trigger at the same state.

Some code generators assume that internal transitions have priority!

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
en

tr
ye

xi
t

–

45/66

Alternative View: Entry/Exit/Internal as Abbreviations

s0

s1

entry/actentry
1

exit/actexit
1

E1/actE1

s2

entry/actentry
2

exit/actexit
2

tr0[gd0]/act0 tr1[gd1]/act1

tr2[gd2]/act2

• ... as abbrevation for ...

s0 s1 s2

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
en

tr
ye

xi
t

–

46/66

Alternative View: Entry/Exit/Internal as Abbreviations

s0

s1

entry/actentry
1

exit/actexit
1

E1/actE1

s2

entry/actentry
2

exit/actexit
2

tr0[gd0]/act0 tr1[gd1]/act1

tr2[gd2]/act2

• ... as abbrevation for ...

s0 s1 s2

• That is: Entry/Internal/Exit don’t add expressive power to Core State Machines.
If internal actions should have priority, s1 can be embedded into an OR-state
(see later).

• Abbreviation may avoid confusion in context of hierarchical states (see later).

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
en

tr
ye

xi
t

–

46/66

Do Actions
s1

entry/actentry
1

do/actdo
1

exit/actexit
1

E1/actE1

. . .

En/actEn

s2

entry/actentry
2

do/actdo
2

exit/actexit
2

tr [gd]/act

• Intuition: after entering a state, start its do-action.

• If the do-action terminates,

• then the state is considered completed,

• otherwise,

• if the state is left before termination, the do-action is stopped.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
en

tr
ye

xi
t

–

47/66

Do Actions
s1

entry/actentry
1

do/actdo
1

exit/actexit
1

E1/actE1

. . .

En/actEn

s2

entry/actentry
2

do/actdo
2

exit/actexit
2

tr [gd]/act

• Intuition: after entering a state, start its do-action.

• If the do-action terminates,

• then the state is considered completed,

• otherwise,

• if the state is left before termination, the do-action is stopped.

• Recall the overall UML State Machine philosophy:

“An object is either idle or doing a run-to-completion step.”

• Now, what is it exactly while the do action is executing...?

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
en

tr
ye

xi
t

–

47/66

The Concept of History, and Other Pseudo-States

–
1
4

–
2
0
1
2
-1

2
-1

9
–

m
a
in

–

48/66

History and Deep History: By Example

susp

•

s0

act

H H∗

•

s1 s2

s3
sb

•

s4

s5

E/

B/

C/

D/

F/

Rs/

Rd/
A/

S/

Rs/
Rd/

What happens on...

• Rs?
s0, s2

• Rd?
s0, s2

• A,B,C, S,Rs?
s0, s1, s2, s3, susp, s3

• A,B, S,Rd?
s0, s1, s2, s3, susp, s3

• A,B,C,D,E,Rs?
s0, s1, s2, s3, s4, s5, susp, s3

• A,B,C,D,Rd?
s0, s1, s2, s3, s4, s5, susp, s5

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
is
t

–

49/66

Junction and Choice

• Junction (“static conditional branch”): •
[gd

1
]/a

ct 1

[gd
2]/act

2

• Choice: (“dynamic conditional branch”)

Note: not so sure about naming and symbols, e.g.,
I’d guessed it was just the other way round...

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
is
t

–

50/66

Junction and Choice

• Junction (“static conditional branch”): •
[gd

1
]/a

ct 1

[gd
2]/act

2
• good: abbreviation

• unfolds to so many similar transitions with different guards,
the unfolded transitions are then checked for enabledness

• at best, start with trigger, branch into conditions, then apply actions

• Choice: (“dynamic conditional branch”)

Note: not so sure about naming and symbols, e.g.,
I’d guessed it was just the other way round...

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
is
t

–

50/66

Junction and Choice

• Junction (“static conditional branch”): •
[gd

1
]/a

ct 1

[gd
2]/act

2
• good: abbreviation

• unfolds to so many similar transitions with different guards,
the unfolded transitions are then checked for enabledness

• at best, start with trigger, branch into conditions, then apply actions

• Choice: (“dynamic conditional branch”)

• evil: may get stuck

• enters the transition without knowing whether there’s an enabled path

• at best, use “else” and convince yourself that it cannot get stuck

• maybe even better: avoid

Note: not so sure about naming and symbols, e.g.,
I’d guessed it was just the other way round...

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
is
t

–

50/66

Entry and Exit Point, Submachine State, Terminate

• Hierarchical states can be “folded” for readability.
(but: this can also hinder readability.)

• Can even be taken from a different state-machine for re-use. S : s

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
is
t

–

51/66

Entry and Exit Point, Submachine State, Terminate

• Hierarchical states can be “folded” for readability.
(but: this can also hinder readability.)

• Can even be taken from a different state-machine for re-use. S : s

• Entry/exit points ,

• Provide connection points for finer integration into the current level,
than just via initial state.

• Semantically a bit tricky:

• First the exit action of the exiting state,

• then the actions of the transition,

• then the entry actions of the entered state,

• then action of the transition from
the entry point to an internal state,

• and then that internal state’s entry action.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
is
t

–

51/66

Entry and Exit Point, Submachine State, Terminate

• Hierarchical states can be “folded” for readability.
(but: this can also hinder readability.)

• Can even be taken from a different state-machine for re-use. S : s

• Entry/exit points ,

• Provide connection points for finer integration into the current level,
than just via initial state.

• Semantically a bit tricky:

• First the exit action of the exiting state,

• then the actions of the transition,

• then the entry actions of the entered state,

• then action of the transition from
the entry point to an internal state,

• and then that internal state’s entry action.

• Terminate Pseudo-State

• When a terminate pseudo-state is reached,
the object taking the transition is immediately killed.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
h
is
t

–

51/66

Deferred Events in State-Machines

–
1
4

–
2
0
1
2
-1

2
-1

9
–

m
a
in

–

52/66

Active and Passive Objects[?]

–
1
4

–
2
0
1
2
-1

2
-1

9
–

m
a
in

–

53/66

What about non-Active Objects?

Recall:

• We’re still working under the assumption that all classes in the class
diagram (and thus all objects) are active.

• That is, each object has its own thread of control and is (if stable)
at any time ready to process an event from the ether.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
a
ct

p
a
ss

–

54/66

What about non-Active Objects?

Recall:

• We’re still working under the assumption that all classes in the class
diagram (and thus all objects) are active.

• That is, each object has its own thread of control and is (if stable)
at any time ready to process an event from the ether.

But the world doesn’t consist of only active objects.

For instance, in the crossing controller from the exercises we could wish to have
the whole system live in one thread of control.

So we have to address questions like:

• Can we send events to a non-active object?

• And if so, when are these events processed?

• etc.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
a
ct

p
a
ss

–

54/66

Active and Passive Objects: Nomenclature

[?] propose the following (orthogonal!) notions:

• A class (and thus the instances of this class) is either active or passive
as declared in the class diagram.

• An active object has (in the operating system sense) an own thread:
an own program counter, an own stack, etc.

• A passive object doesn’t.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
a
ct

p
a
ss

–

55/66

Active and Passive Objects: Nomenclature

[?] propose the following (orthogonal!) notions:

• A class (and thus the instances of this class) is either active or passive
as declared in the class diagram.

• An active object has (in the operating system sense) an own thread:
an own program counter, an own stack, etc.

• A passive object doesn’t.

• A class is either reactive or non-reactive.

• A reactive class has a (non-trivial) state machine.

• A non-reactive one hasn’t.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
a
ct

p
a
ss

–

55/66

Active and Passive Objects: Nomenclature

[?] propose the following (orthogonal!) notions:

• A class (and thus the instances of this class) is either active or passive
as declared in the class diagram.

• An active object has (in the operating system sense) an own thread:
an own program counter, an own stack, etc.

• A passive object doesn’t.

• A class is either reactive or non-reactive.

• A reactive class has a (non-trivial) state machine.

• A non-reactive one hasn’t.

Which combinations do we understand?

active passive

reactive ✔ (∗)

non-reactive (✔) (✔)

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
a
ct

p
a
ss

–

55/66

Passive and Reactive

• So why don’t we understand passive/reactive?

• Assume passive objects u1 and u2, and active object u,
and that there are events in the ether for all three.

Which of them (can) start a run-to-completion step...?
Do run-to-completion steps still interleave...?

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
a
ct

p
a
ss

–

56/66

Passive and Reactive

• So why don’t we understand passive/reactive?

• Assume passive objects u1 and u2, and active object u,
and that there are events in the ether for all three.

Which of them (can) start a run-to-completion step...?
Do run-to-completion steps still interleave...?

Reasonable Approaches:

• Avoid — for instance, by

• require that reactive implies active for model well-formedness.

• requiring for model well-formedness that events are never sent to
instances of non-reactive classes.

• Explain — here: (following [?])

• Delegate all dispatching of events to the active objects.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
a
ct

p
a
ss

–

56/66

Passive Reactive Classes

• Firstly, establish that each object u knows, via (implicit) link itsAct ,
the active object uact which is responsible for dispatching events to u.

• If u is an instance of an active class, then ua = u.

C1 C2 D
n

0..1 itsAct

1
itsAct

1

itsAct

1

〈〈signal〉〉

EC1

〈〈signal〉〉

EC2

〈〈signal〉〉

ED

dest
1

dest
1

dest
1

C

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
a
ct

p
a
ss

–

57/66

Passive Reactive Classes

• Firstly, establish that each object u knows, via (implicit) link itsAct ,
the active object uact which is responsible for dispatching events to u.

• If u is an instance of an active class, then ua = u.

u1 : C1 ud : C2 ua : D
n

itsAct
itsAct

itsAct

Sending an event:

• Establish that of each signal we
have a version EC with an
association dest : C0,1, C ∈ C .

• Then n!E in u1 : C1 becomes:

• Create an instance ue of EC2
and

set ue’s dest to ud := σ(u1)(n).

• Send to ua := σ(σ(u1)(n))(itsAct),

i.e., ε′ = ε⊕ (ua, ue).

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
a
ct

p
a
ss

–

57/66

Passive Reactive Classes

• Firstly, establish that each object u knows, via (implicit) link itsAct ,
the active object uact which is responsible for dispatching events to u.

• If u is an instance of an active class, then ua = u.

u1 : C1 ud : C2 ua : D
n

itsAct
itsAct

itsAct

Sending an event:

• Establish that of each signal we
have a version EC with an
association dest : C0,1, C ∈ C .

• Then n!E in u1 : C1 becomes:

• Create an instance ue of EC2
and

set ue’s dest to ud := σ(u1)(n).

• Send to ua := σ(σ(u1)(n))(itsAct),

i.e., ε′ = ε⊕ (ua, ue).

Dispatching an event:

• Observation: the ether only has
events for active objects.

• Say ue is ready in the ether for ua.

• Then ua asks σ(ue)(dest) = ud to
process ue — and waits until
completion of corresponding RTC.

• ud may in particular discard event.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
a
ct

p
a
ss

–

57/66

And What About Methods?

–
1
4

–
2
0
1
2
-1

2
-1

9
–

m
a
in

–

58/66

And What About Methods?

• In the current setting, the (local) state of objects is only modified by
actions of transitions, which we abstract to transformers.

• In general, there are also methods.

• UML follows an approach to separate

• the interface declaration from

• the implementation.

In C++ lingo: distinguish declaration and definition of method.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
m

et
h
o
d
s

–

59/66

And What About Methods?

• In the current setting, the (local) state of objects is only modified by
actions of transitions, which we abstract to transformers.

• In general, there are also methods.

• UML follows an approach to separate

• the interface declaration from

• the implementation.

In C++ lingo: distinguish declaration and definition of method.

• In UML, the former is
called behavioural feature
and can (roughly) be

C

ξ1 f(τ1,1, . . . , τ1,n1
) : τ1 P1

ξ2 F (τ2,1, . . . , τ2,n2
) : τ2 P2

〈〈signal〉〉 E
• a call interface f(τ11

, . . . , τn1
) : τ1

• a signal name E

Note: The signal list is redundant as it can be looked up in the state machine

of the class. But: certainly useful for documentation.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
m

et
h
o
d
s

–

59/66

Behavioural Features C

ξ1 f(τ1,1, . . . , τ1,n1
) : τ1 P1

ξ2 F (τ2,1, . . . , τ2,n2
) : τ2 P2

〈〈signal〉〉 E

Semantics:

• The implementation of a behavioural feature can be provided by:

• An operation.

• The class’ state-machine (“triggered operation”).

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
m

et
h
o
d
s

–

60/66

Behavioural Features C

ξ1 f(τ1,1, . . . , τ1,n1
) : τ1 P1

ξ2 F (τ2,1, . . . , τ2,n2
) : τ2 P2

〈〈signal〉〉 E

Semantics:

• The implementation of a behavioural feature can be provided by:

• An operation.

In our setting, we simply assume a transformer like Tf .

It is then, e.g. clear how to admit method calls as actions on transitions:
function composition of transformers (clear but tedious: non-termination).

In a setting with Java as action language: operation is a method body.

• The class’ state-machine (“triggered operation”).

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
m

et
h
o
d
s

–

60/66

Behavioural Features C

ξ1 f(τ1,1, . . . , τ1,n1
) : τ1 P1

ξ2 F (τ2,1, . . . , τ2,n2
) : τ2 P2

〈〈signal〉〉 E

Semantics:

• The implementation of a behavioural feature can be provided by:

• An operation.

In our setting, we simply assume a transformer like Tf .

It is then, e.g. clear how to admit method calls as actions on transitions:
function composition of transformers (clear but tedious: non-termination).

In a setting with Java as action language: operation is a method body.

• The class’ state-machine (“triggered operation”).

• Calling F with n2 parameters for a stable instance of C
creates an auxiliary event F and dispatches it (bypassing the ether).

• Transition actions may fill in the return value.
• On completion of the RTC step, the call returns.

• For a non-stable instance, the caller blocks until stability is reached again.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
m

et
h
o
d
s

–

60/66

Behavioural Features: Visibility and Properties

C

ξ1 f(τ1,1, . . . , τ1,n1
) : τ1 P1

ξ2 F (τ2,1, . . . , τ2,n2
) : τ2 P2

〈〈signal〉〉 E

• Visibility:

• Extend typing rules to sequences of actions such that
a well-typed action sequence only calls visible methods.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
m

et
h
o
d
s

–

61/66

Behavioural Features: Visibility and Properties

C

ξ1 f(τ1,1, . . . , τ1,n1
) : τ1 P1

ξ2 F (τ2,1, . . . , τ2,n2
) : τ2 P2

〈〈signal〉〉 E

• Visibility:

• Extend typing rules to sequences of actions such that
a well-typed action sequence only calls visible methods.

• Useful properties:

• concurrency
• concurrent — is thread safe
• guarded — some mechanism ensures/should ensure mutual exclusion

• sequential — is not thread safe, users have to ensure mutual exclusion

• isQuery — doesn’t modify the state space (thus thread safe)

• For simplicity, we leave the notion of steps untouched, we construct our
semantics around state machines.

Yet we could explain pre/post in OCL (if we wanted to).

–
1
4

–
2
0
1
2
-1

2
-1

9
–

S
m

et
h
o
d
s

–

61/66

Discussion.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

m
a
in

–

62/66

You are here.

–
1
4

–
2
0
1
2
-1

2
-1

9
–

m
a
in

–

63/66

Course Map

UML
M

o
d
e
l

In
s
t
a
n
c
e
s

N

S

W E

CD, SM

S = (T,C, V, atr), SM

M = (ΣDS , AS ,→SM)

ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, consi, Snd i))i∈N

G = (N,E, f) Mathematics

OD UML

✔ ✔

✔ ✔

✔
✔

✔

✔

✔

✔

–
1
4

–
2
0
1
2
-1

2
-1

9
–

m
a
in

–

64/66

References

–
1
4

–
2
0
1
2
-1

2
-1

9
–

m
a
in

–

65/66

–
1
4

–
2
0
1
2
-1

2
-1

9
–

m
a
in

–

66/66

	Contents & Goals
	Step and Run-to-completion Step
	Notions of Steps: The Step
	Notions of Steps: The Run-to-Completion Step
	Notions of Steps: The Run-to-Completion Step Cont'd
	Divergence
	Run-to-Completion Step: Discussion.
	Putting It All Together
	The Missing Piece: Initial States
	Semantics of UML Model --- So Far
	OCL Constraints and Behaviour
	Contemporary UML Modelling Tools
	ifdefined SblankTitle SblankTitle �i
	Hierarchical State Machines
	UML State-Machines: What do we have to cover?
	The Full Story
	Representing All Kinds of States
	Representing All Kinds of States
	Representing All Kinds of States

	From UML to Hierarchical State Machines: By Example
	From UML to Hierarchical State Machines: By Example
	Well-Formedness: Regions (follows from diagram)
	Well-Formedness: Initial State (requirement on diagram)
	Plan
	Initial Pseudostates and Final States
	Initial Pseudostate
	Initial Pseudostate

	Towards Final States: Completion of States
	Towards Final States: Completion of States
	Towards Final States: Completion of States
	Towards Final States: Completion of States
	Towards Final States: Completion of States
	Towards Final States: Completion of States
	Towards Final States: Completion of States

	Final States
	Final States
	Final States
	Final States

	Composite States \[smallskipamount] small (formalisation follows~cite {DammJoskoVotintsevaPnueli2003})
	Composite States
	Composite States

	Composite States
	Composite States

	Recall: Syntax
	Syntax: Fork/Join
	Composite States: Blessing or Curse?
	Composite States: Blessing or Curse?

	State Configuration
	State Configuration

	A Partial Order on States
	A Partial Order on States

	Least Common Ancestor and Ting
	Least Common Ancestor and Ting

	Least Common Ancestor and Ting
	Least Common Ancestor and Ting

	Least Common Ancestor and Ting
	Least Common Ancestor and Ting

	Legal Transitions
	Legal Transitions

	The Depth of States
	The Depth of States

	Enabledness in Hierarchical State-Machines
	Enabledness in Hierarchical State-Machines
	Enabledness in Hierarchical State-Machines
	Enabledness in Hierarchical State-Machines

	Transitions in Hierarchical State-Machines
	Entry/Do/Exit Actions, Internal Transitions
	Entry/Do/Exit Actions
	Entry/Do/Exit Actions

	Internal Transitions
	Internal Transitions

	Alternative View: Entry/Exit/Internal as Abbreviations
	Alternative View: Entry/Exit/Internal as Abbreviations

	Do Actions
	Do Actions

	The Concept of History, and Other Pseudo-States
	History and Deep History: By Example
	Junction and Choice
	Junction and Choice
	Junction and Choice

	Entry and Exit Point, Submachine State, Terminate
	Entry and Exit Point, Submachine State, Terminate
	Entry and Exit Point, Submachine State, Terminate

	Deferred Events in State-Machines
	Active and Passive Objects~cite {HarelGery1997}
	What about non-Active Objects?
	What about non-Active Objects?

	Active and Passive Objects: Nomenclature
	Active and Passive Objects: Nomenclature
	Active and Passive Objects: Nomenclature

	Passive and Reactive
	Passive and Reactive

	Passive Reactive Classes
	Passive Reactive Classes
	Passive Reactive Classes

	And What About Methods?
	And What About Methods?
	And What About Methods?

	Behavioural Features
	Behavioural Features
	Behavioural Features

	Behavioural Features: Visibility and Properties
	Behavioural Features: Visibility and Properties

	Discussion.
	You are here.
	Course Map
	References
	

