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Propositional Logic This week’s exercises will be on propositional logic. We will do proofs
both using Isabelle and using paper and pencil as we have learned in the lecture.

Isabelle Isabelle is an interactive theorem prover. During an Isabelle session, you will con-
struct proofs of theorems. A proof consists of a number of proof steps, and the Isabelle system
will ensure that each step is correct, and thus ultimately that the entire proof is correct. Various
degrees of automation can be realized in Isabelle: you can write each step of a proof yourself,
or you can let the system do big subproofs or even the entire proof automatically. In the be-
ginning, we will do the former, because we want to understand in detail what a proof looks
like.

Isabelle is implemented in the functional programming language (Standard) ML. If you want
to get to know (S)ML, consult [1, Appendix 2] for a short overview. See also the explanations
at the end of this exercise sheet. Knowledge about (S)ML is not necessary for this course.

Isabelle can be used with different interfaces:

1. directly from a shell;

2. using an editor, e.g. emacs; this allows you to have better control of the files that are
involved in an Isabelle session;

3. using a sophisticated specialized interface built on an editor; e.g., the Isabelle integration
into jEdit.

In these exercises, we will opt for (3) and use the Isabelle/ISAR syntax.
Thus you should be aware of three layers when you are working with Isabelle: there is the

programming language ML, then there is the system Isabelle built on top of it, and finally there
is the interface for using Isabelle, which might be jEdit.

Configuring your system for Isabelle Create a working directory, move to it, and type
isabelle jedit. jedit will start with the empty theory file Scratch.thy. Save this file as
sheet01.thy which will be your first file containing Isabelle proofs.

Next we configure the Isabelle integration intojedit.

• Make sure the “Auto update” check-box is checked. Otherwise you have to use the
“Update” button to see changes reported by Isabelle.

• Choosing the logic: We will use the logic FOL. Go to “Plugins → Plugin Options”. This
will open a new dialog. In this dialog, select “Isabelle → General”. In the spin-box
labeled with “Logic” select “FOL”. Unfortunately the “Apply” button does not work as
expected. So you have to restart jedit.

Files and Directories On the computers you are using, Isabelle version 2013 is installed
under /opt/Isabelle2013/. You can find the sources for the different logics in the directory
/opt/Isabelle2013/src/. For now, the folder FOL is the most interesting one. You can find
the sources online at the http://isabelle.in.tum.de/library/.

Whenever we prove something in Isabelle (or in a paper and pencil fashion), we do so in the
context of a theory. The essential parts of a theory are (1) the definition of some syntax and
(2) judgements that are postulated to be true. Point (2) will be clarified below. In Isabelle,
this theory is contained in a file whose name ends in .thy.

http://isabelle.in.tum.de/library/


There is no special theory file for propositional logic in our distribution, but rather we use
the theory files of first-order logic, which is a superset of propositional logic. We have already
taken care of that above by choosing the logic. The files are named IFOL.thy (for intuitionistic
first-order logic) and FOL.thy (for classical first-order logic).

Syntax and Proofs in Isabelle Understanding the correspondence between a paper and
pencil proof and a proof in Isabelle is difficult in the beginning and will take some time.

First, to start a proof script, we need to write an own theory file sheet01.thy. This proof
script consists of a header, a set of theorems, lemmas, or corollaries with proofs, and an ending.
The proof script generally looks like

theory sheet01

imports IFOL

begin

...

end

The name after the keyword theory has to be the same as the file name (without extension)
of the proof script file. After the keyword imports we can list a number of theories we want to
import. For the first sheet we will use IFOL. Later we will use different theories and (possibly)
some theories created in previous exercises. The entries in the import list are separated by
spaces. A theory file is terminated by the end keyword. Every other command has to be put
between the keywords begin and end.

Next consider the syntax of formulae in Isabelle. The logical connectives are typed as -->,
\/ (or |), /\ (or &), and ~. Note that jedit can display those as the connectives used in paper
and pencil proofs. Just type some formulae in sheet01.thy to see this (but then erase them
again). Note that you have to use the tabulator key to get the symbol currently selected in the
popup menu.

Now consider the inference rules. These are listed in IFOL.thy beneath the comment
(* Propositional logic *). E.g.

conjunct1: "P&Q ==> P"

is the Isabelle FOL encoding of ∧-EL. We want to understand the correspondence between the
notation above and the Isabelle encoding of the rules, first by looking at the mere syntactic
forms.

Try to suggest how the rule conjunct1 corresponds to ∧-EL. Do the same for some of:
conjunct2 vs. ∧-ER, disjI1 vs. ∨-IL, disjI2 vs. ∨-IR, FalseE vs. ⊥-E.

Now suggest how the rule conjI corresponds to ∧-I, and how mp corresponds to →-E.
Finally, suggest how disjE corresponds to ∨-E, and how impI corresponds to →-I.
The inference rules conjI, conjunct1 etc. are examples of ‘judgements that are postulated

to be true’ (see above). Technically, each such rule is an expression of type thm (‘theorem’).
Simply type, e.g., thm conjI; in the file sheet01.thy. In the output buffer you will see
?P =⇒?Q =⇒?P∧?Q, which gives the value of the expression conjI.

Theorems and Proofs A proof in Isabelle is started by stating the formula as a theorem or
lemma, e.g.,

theorem conjSymm: "A /\ B --> B /\ A"

This starts a new theorem that will have the name conjSymm, when it is proved. The name is
optional but is needed if the theorem should be referenced later. The formula has to be put
in quotes. The theorem must be followed by a proof, otherwise Isabelle will complain. Thus
Isabelle only allows us to write down theorems that are correct.

The proof starts with the keyword proof which is followed by a proof step. In the first sheets
we will always use an application of a rule as the proof step. The rule is applied bottom-up,
i.e., the conclusion of the rule is unified with the current goal, in this case the theorem. In our
example we want to apply the rule →-I, which corresponds to the theorem impI in Isabelle.
The proof method rule applies a rule (which is a theorem in Isabelle) to the current goal.
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proof (rule impI)

If you position the cursor after this line in the jedit window, you can see in the output
window the result of the application of the proof rule. In this case we get the subgoal

1.A ∧ B =⇒ B ∧ A

You may have to select the Output tab and check Auto update. The double arrow separates
the assumptions from the conclusion. In this case the goal indicates that we have to show B ∧ A
from the assumption A ∧B.

An assumption is introduced by the keyword assume and can be named with the same
syntax used for theorems. The assumption obviously does not need a proof. Then we use the
keyword show to indicate the goal we have to prove next. Since we never reference it again we
do not name the formula we show.

assume ab: "A /\ B"

show "B /\ A"

sorry

qed

Similarly to the keyword theorem the keyword show indicates a statement that needs a
proof. Instead of giving the proof, we cheat here by writing sorry. In jedit the keyword is
highlighted to remind us that we have cheated. However using sorry is useful to quickly check
if the remainder of the proof is okay. With qed we can end the proof of the theorem conjSymm.

To fix the proof we now have to replace sorry by a valid proof for B ∧ A. The next proof
step is to apply the rule ∧-I, which is named conjI in Isabelle. So we replace sorry by

proof (rule conjI)

qed

This is not accepted by Isabelle, because the proof is not yet complete. If you place the
cursor between proof and qed, the output window shows the current goals 1.B and 2.A. We
can proof B as follows using the rule conjunct2 which corresponds to ∧-ER:

show "B"

proof (rule conjunct2)

qed

If you now place the cursor again between proof and qed, you can see the next goal ?P ∧ B.
The variable ?P indicates a so called metavariable, which can stand for an arbitrary formula.
This metavariable comes from the proof rule conjunct2 : ?P∧?Q =⇒?Q. When applying the
rule bottom to top the metavariable ?Q is unified with the goal B, but the variable ?P does not
occur in the conclusion of the rule. Thus we are still allowed to substitute it by any formula we
like. In our case we want to show A ∧ B as this was the assumption introduced by the first proof
step. We can use the keyword from to reference a fact (theorem, assumption, intermediate
proof step) that was introduced before and then show A ∧ B by the proof method assumption.

from ab show "A /\ B" by assumption

The syntax by ... is an abbreviation for proof ... qed and can be used if no more proof
steps are necessary. This finishes the proof of B, however we have a second goal in the outer
proof, namely A. This is indicated in jedit by the error symbols before the second qed. We use
the keyword next to indicate that we need to proof another goal:

next

After this keyword we can insert a similar proof for A. One can shorten the proof considerably
to

from ab show "A" by (rule conjunct1)

In this case we add the fact ab as an assumption for the goal A. Applying the rule conjunct1 :
?P∧?Q =⇒?P will now instantiate ?P with A and ?P∧?Q with the assumption ab : A ∧ B. The
instantiation succeeds and since there is no other assumption the proof is discharged immedi-
ately.
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Top-Down Proofs There are many ways to prove theorems in Isabelle. Another way to prove
B ∧ A from A ∧ B starts by first proving A and B using the rules conjunct1 and conjunct2. The
keyword have is used to state intermediate facts. So another possible proof of conjSymm goes
as follows.

theorem conjSymm: "A /\ B --> B /\ A"

proof (rule impI)

assume ab: "A /\ B"

from ab have a: "A" by (rule conjunct1)

from ab have b: "B" by (rule conjunct2)

from b a show "B /\ A" by (rule conjI)

qed

Shortcuts You can refer to the last fact (assumption or proven subgoal) using the special
name this. Furthermore, instead of from this you can write then. If you want to conclude a
fact from the last fact you can write hence instead of then have and thus instead of then show.

Exercise 1 (12 points)
Prove the following theorems using paper and pencil and using Isabelle.

For all theorems you prove (also in later exercises), use the number of the exercise as name,
e.g. ex1_1 for A ∧ B → B ∧ A. Then, if needed in the proofs of later exercises, you can use
the theorem using its fully qualified named, e. g., if you want to use ex1_1 from theory file
Ex01.thy you can reference it as Ex01.ex1_1 after importing the theory Ex01.thy.

1. A ∧B → B ∧A

2. A ∧B → B ∨A

3. A ∨B → B ∨A

4. (A ∧B) ∧ C → A ∧ (B ∧ C)

5. (A→ B → C)→ (A→ B)→ (A→ C)

6. (A ∨B) ∧ (B ∨ C)→ B ∨ (A ∧ C)

Exercise 2 (6 points)
Prove the following theorems involving negation with paper and pencil and in Isabelle. Look
out in IFOL.thy for not_def. Typing

by (unfold not_def)

and

by (fold not_def)

replaces each ¬ψ by ψ −→ ⊥ or vice versa. You can also unfold the definition at the beginning
of the proof using the proof prefix unfolding, i. e., you can start a proof with

lemma "...."

unfolding not_def proof ....

qed

1. P ∧ ¬P → R

2. A ∧ (¬A ∨B)→ B

3. (A ∨ ¬A)→ ((A→ B)→ A)→ A

4



Exercise 3 (2 points)
Explain why the following theorem is valid using natural language

(P → A)→ (¬P → A)→ A

Now try to prove it in Isabelle. Why is this not working? What kind of rule is missing?
To close your proof use the Isar command oops. This command ends a proof attempt with

a failure. Hence, no theorem is produced.

The Bluffer’s guide to ML One clarification of [1, Appendix 2]: On top of page 281, it
says:

Patterns are expressions which contain only variables and constructors.

In Section A.2.5 it is explained what a constructor is. Constants are a special case of construc-
tors, namely constructors with 0 arguments. Thus examples of constructors are the integer
constants 0,1,2,. . . , and the list constructors [] and ::. Those happen to be predefined in ML.
Other constructors may be defined by the user. Note also that a constructor is not the same
thing as a type constructor. Sometimes one speaks of a term constructor to emphasize that one
does not mean a type constructor.

References

[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.
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When you do Isabelle proofs, one question is which subgoal should be selected first. In
general, you should select the subgoal first whose conclusion is most instantiated. The reason
is that the more it is instantiated, the smaller the chance is that it gets wrongly instantiated
by unification. You may think: but if it is more instantiated it might be harder to prove. But
the point is: each subgoal must be solved eventually anyway.

Classical reasoning So far we have been working in intuitionistic propositional logic. We
will now add one further rule

[¬A]
....
A

A
classical

to obtain classical propositional logic. The characteristic of classical logic is that the principle
of the excluded middle holds: P ∨ ¬P .

Initial proof step In the proofs done so far we always used an initial proof rule. In some
cases it is easier to omit an initial proof step. Isabelle supports this by supplying the initial proof
method -. Typically such cases are used when we already have a lemma that almost matches our
current lemma but needs some reformulation. Assume you have a lemma lemma nnp or p imp r

that states ¬¬P ∨ (P → R) and you want to prove ¬¬P ∨ ¬P . You cannot use the lemma
as initial proof step since ¬P does not match with P → R. Furthermore, if we use the proof
prefix unfolding not_def we have to show ((P → False)→ False) ∨ (P → False). This time
we cannot use the lemma as initial proof step since the left argument of the disjunction does
not match with ¬¬P (the left disjunct of the lemma). One solution is to not apply an initial
proof step and start the proof with

proof -

have "~~P\/(P-->False)" by (rule lemma_nnp_or_p_imp_r)

Finishing this proof simply is a matter of folding not_def.

Files used for this sheet Since on this sheet we will use intuitionistic and classical logic,
we will split the proofs in different files. Create a file sheet02intuitionistic.thy that later
contains all proofs in intuitionistic logic. In this file, import the theory file IFOL.thy using the
imports keyword in the header.

Do the classical proofs in the file sheet02classical.thy in which you import the theory
FOL.thy. Note that the theory FOL is a superset of the theory IFOL and, among others,
contains the rule classical.

If you want to use lemmas and theorems proved in a different theory file you can simply
add the name of the theory file to the import list. Hence, if you want to use sheet01.thy in
the file sheet02intuitionistic.thy use the import statement

imports IFOL sheet01

You can reference lemmas and theorems from a theory file by its name. If multiple lemmas have
the same name but stem from different theory files, you have to explicitly qualify the theory.
Hence, if you want to use theorem ex01 from theory sheet01, but you already have a theorem
ex01 in you current theory, you have to refer to the first one as sheet01.ex01.

Exercise 1 (2 points)
We show that classical is equivalent to the principle of the excluded middle.



1. Prove P ∨¬P (hint: you only need the assumptions ¬(P ∨¬P ) and P ) in classical logic.

2. Prove P ∨ ¬P → ((¬P → P )→ P ) intuitionistically.

(Hint: Consider Exercise 2 on Sheet 1.)

Exercise 2 (2 points)
Prove the following classical theorem called Peirce’s law, both using paper and pencil and in
Isabelle:

((A→ B)→ A)→ A

(Hint: use Exercise 1.1 and another previously proven exercise.)

From now on, all exercises will be Isabelle exercises unless it is clear from the context that
they must be paper-and-pencil exercises or this is explicitly said. But keep in mind that the
proofs done in Isabelle correspond to paper-and-pencil proofs. Hence, if you have problems
solving an exercise, it might be helpful to draw a proof tree on paper.

Applying rules as introduction Let us consider what happens when applying a rule to a
goal. We simplify matters by ignoring the issue of instantiation of rules, which was treated on
Sheet 1. Suppose one of our current subgoals is φ which reads: if we are able to proof φ from
the assumptions made before, we are done. We want to use a rule Jφ1; . . . ;φmK =⇒ φ, which
reads: if we have proofs of φ1, . . . , φm, we have a proof of φ. Now rule replaces the subgoal
with new subgoals

φ1
. . .
φm

(1)

Think about why this is correct: If we are able to prove all φ1, . . . , φm from the previous
assumptions, then, by the rule we have shown φ. Thus it is correct to say: If we have shown
(1), we are done.

Assumption lists If you look for the rule mp in the file IFOL.thy you will find the rule
[|P−− > Q; P|] ==> Q. Now use the command thm to display the rule mp in Isabelle. You get
?P→?Q =⇒?P =⇒?Q. Note that the format of the premises was changed from a list (indicated
by [|...|]) to a sequence (indicated by =⇒). In fact, Isabelle makes no distinction between
the two forms. Semantically, this corresponds to the equivalence of A1 ∧ . . . ∧ An → B and
A1 → . . .→ An → B.

Hypothetical derivations A rule containing a hypothetical derivation, where assumptions
are discharged, e. g.,

[P ]
....
⊥
¬P ¬-I

is represented in Isabelle as (P =⇒ False) =⇒ ¬P. So the assumption is written as P =⇒ False.
You can intuitively read the =⇒ symbol as “the right hand side is derivable from the left hand
side”. In this example, if you can derive False from P , then from that fact you can derive ¬P
(without the assumption P ). In principle, the =⇒ in Isabelle can be arbitrarily nested, but
there is no corresponding natural deduction rule for ((A =⇒ B) =⇒ C) =⇒ D.

Derived Rules On Sheet 1, it was explained that (1) the inference rules like conjI, conjunct1
etc., (2) proven formulae like A→ A, (3) definitions of syntactic conversions like not_def, are
expressions of type thm. We will now see that it also possible to derive rules in Isabelle.

A rule is a lemma that contains premises. If a lemma in Isabelle contains the meta-level
implication sign ==> it is a rule. As example, lets derive the rule conjSymmRule:

B ∧A
A ∧B

∧ − symm

To formulate this rule in Isabelle, we write
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lemma conjSymmRule: "A/\B==>B/\A"

We can reuse most parts of the proof from Sheet 1:

proof (rule conjI)

assume ab: "A/\B"

from ab show "A" by (rule conjunct1)

from ab show "B" by (rule conjunct2)

qed

Compared to the proof of A∧B → B ∧A we don’t need the rule →-I. If you compare the rule
conjSymmRule to the lemma conjSymm from Sheet 1 you see that there is only one difference:
the implication symbol --> is turned into the meta-level implication ==>. Isabelle can do that
conversion for you as well. With the command lemmas we can define lemmas that are slightly
modified version of other lemmas. In our case we would like to convert the lemma conjSymm

into a rule. We can use the attribute rule_format to accomplish this task, e. g.,

lemmas conjSymmRule = conjSymm[rule_format]

If we print this rule with thm we get ?A∧?B =⇒?B∧?A which is indeed the rule we wanted.
There is one additional remark about derived rules. If we want to derive a rule containing

a hypothetic derivation, e. g., (P =⇒ False) =⇒ P, you can assume P =⇒ False in Isabelle and
give it a name, say pfalse. This can be used as a rule that reads: if we have a proof of P, we
have a proof of False. Thus, if our current subgoal is False and we apply (rule pfalse) we
get the new subgoal P.

Some common derived rules of propositional logic

P ∧Q

[P,Q]
....
R

R
∧-E

P → Q P

[Q]
....
R

R
→-E′

[P ]
....
⊥
¬P ¬-I

¬P P
R

¬-E

For ∧-E, note that the notation means: discharge zero or more occurrences of P , and discharge
zero or more occurrences of Q.

Exercise 3 (1 point)
The Isabelle encoding of →-E′ is

[| P-->Q; P; Q ==> R |] ==> R

Derive this rule intuitionistically in Isabelle.

Actually, it already existed before. It is contained in IFOL.thy and called impE. In IFOL.thy,
you will also find conjE (∧-E), notI (¬-I), and notE (¬-E). Note that these lemmas are proven
using an older syntax.

Exercise 4 (4 points)

1. Derive the rule
[A]
....

A→ B

A→ B

using paper and pencil, as well as in Isabelle. Do it intuitionistically! (Hint: besides the
premise it requires only two rule applications.)

2. Derive the rule
[A]
....
¬A
¬A classical dual

using paper and pencil, as well as in Isabelle. Again, do it intuitionistically! (Hint: the
previous exercise might be useful.)
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The first part shows an interesting technique that may sometimes be useful for doing Isabelle
proofs: Whenever you want to prove A→ B, you may use A as an additional assumption.

Concerning the second part, compare the derived rule to the rule classical (you do not need
to comment on it, just compare for yourself)!

Elimination tactic Elimination rules such as conjE, impE, disjE and FalseE are designed
to be used in combination with elimination resolution. In the Isabelle proofs we mostly applied
the proof rules “backwards”: To get rid of a connective in the conclusion we want to prove, we
used an introduction rule, and to obtain a connective in the conclusion, we used an elimination
rule. Elimination resolution allows to use eliminate a connective in the premises. We will now
explain this.

The pragmatics of elimination rules and elimination resolution are that they allow you to
manipulate premises, or more precisely, break a premise into pieces. For example, when you
have the premise A∧B, you may want to replace this premise with the two premises A and B.
A simple example is the following proof excerpt:

assume "A/\B" then have "A" by (rule conjE)

But this looks exactly like what we have done until now. So when is the application of a rule
an elimination?

Whenever you have assumption like A ∧ B in the example above and a conclusion, Is-
abelle will unify the assumptions with the premises of the rule and the conclusion of the
rule with the subgoal. Consider the example above. We want to apply the rule conjE, i. e.,
[|P ∧ Q; P =⇒ Q =⇒ R|] =⇒ R to the premise A ∧ B and the conclusion A. Hence, Isabelle matches
P ∧ Q with A ∧ B and, hence, instantiates P with A and Q with B. Furthermore she matches R with
A. Since the first premise is an assumption, Isabelle closes this branch by assumption because
we have a proof for A ∧ B, i. e., the assumption proof. The second assumption gets instantiated
to A =⇒ B =⇒ A. If we replaced the command by in the example proof above by the command
proof we would have to prove this fact. But since the proof is trivially done by assumption,
we leave it to the qed command of Isabelle.

We now exemplify what elimination resolution does in the general case. Consider a rule
Jφ1; . . . ;φmK =⇒ φ. If we apply this rule to the goal φ without premises, each premise of the
rule gives rise to a new subgoal (explained above in the paragraph on introduction rules).

Now assume we have premises ψ1; . . . ;ψn (where n ≤ m). If we now apply our rule, all
ψi for 1 ≤ i ≤ n have to be identical to φi. Then, all these premises do not introduce new
subgoals since they are already solved by assumption. But the remaining premises of the rule
φn+1; . . . ;φm still give rise to new subgoals:

φn+1

. . .
φm

(2)

You should compare this to (1).
In the non-simplified formulation, you must replace ‘identical’ with ‘unifiable’, but it is best

you see this in examples.

Proof methods with repetition If we want to repeatedly apply an introduction rule, we
can use the method intro. For example assume we want to show A∧ (B∧ C) from the premises
A, B, C. This can be done by repeatedly applying conjI:

lemma "A==>B==>C==>A/\(B/\C)"

by (intro conjI)

The method intro repeatedly matches the conclusion of the given rule with the right hand side
of the current goal. If it matches she applies the rule splitting the goal into new goals, one for
each premise of the given rule. If the right hand side of one of the newly introduced goal also
matches the rule, Isabelle applies the rule again. This is useful for introduction rules. In the
example above it will remove all the conjunction symbols from the goals, and finally arrive at
the following three sub-goals.
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1. A==>B==>C==>A

2. A==>B==>C==>B

3. A==>B==>C==>C

Remember that by (...) is a shorthand for proof (...) qed. By default, the qed command
tries to solve every sub-goal by assumption. That is, when you write qed and your current
proof state is φ1, . . . , φn =⇒ ψ, Isabelle tries to match ψ against any premise φi. If a match is
found, the goal is closed and if all goals can be closed the proof finishes.

You can also give more then one rule to the method intro. In that case it will try each of
the rules on every goal. Usually, for introduction rules only one of the rules is applicable on
a specific goal, as they all introduce a different outermost symbol. The method intro should
only be used with introduction rules, i.e., rules where the goal is syntactically strictly larger
than any of its premises. Otherwise, the command may go into an infinite loop.

Assume you want to show C from the premise A ∧ (B ∧ C). In this case we need to split the
premise into three premises. Then, we have to show C using, among others, the assumption
C. Splitting the premise can be done by a repeated application of the rule conjE. Isabelle/Isar
provides the proof method elim to repeatedly apply a rule using elimination resolution. Hence,
our proof is really simple:

lemma "A/\(B/\C) ==> C"

by (elim conjE)

How does this work? The method elim checks for the current goal if the rule is applicable as
follows. The rule must be of the form [|φ1, . . . |] =⇒ ψ, i. e., it contains at least one premise and
the first premise is φ1. Isabelle now tries to simultaneously match ψ with the right hand side
of an open goal and φ1 with one of its assumptions. If such a match is possible, she removes
the assumption φ1 and replaces ψ with the remaining premises . . . (splitting the goal if the rule
has three or more premises, or closing the goal if φ1 was the only premise). Then she repeats
on all newly created goals until the rule is no longer applicable.

In the example above, the elimination rule is [|P ∧ Q, ([|P, Q|] =⇒ R|] =⇒ R. The current
goal is A ∧ (B ∧ C) =⇒ C So Isabelle matches R with the right hand side C and P ∧ Q with the
assumption (in this case there is only one assumption). A match is found with P = A, Q = B ∧ C,
and R = C. Applying the elimination rule removes the assumption and replaces the current right
hand side by the second premise of the elimination rule yielding [|A, (B ∧ C)|] =⇒ C. Now, the
elimination rule is applicable again, since the second premise can match P ∧Q (and everything
can match R). Applying the rule yields the goal A =⇒ [|B, C|] =⇒ C, which is the same as
A =⇒ B =⇒ C =⇒ C. This goal can then be closed by assumption.

In the first example, we can also use the method elim on an introduction rule. To see the
differences you can replace the by command with the proof command to see the remaining
sub-goals that are proven by assumption with the qed command. Isabelle does not show you
the intermediate steps. They are as follows. In the first goal A =⇒ B =⇒ C =⇒ A ∧ (B ∧ C) it
matches P∧Q with the conclusion A∧(B∧C) and simultaneously tries to match the first premise
P with any of the assumption. A match is found for P = A and Q = (B ∧ C), the assumption A
is removed and the goal is replaced by the second premise Q, yielding B =⇒ C =⇒ B ∧ C. In the
second elimination step the assumption B is removed and the final goal is C =⇒ C. Note that
the method elim only works by chance here. If you put the parenthesis the other way round,
(A ∧B) ∧ C the rule would fail. In general, elim should only be used on elimination rules.

The method elim is useful to work top-down from the assumptions using an elimination rule
that removes operators from the first premise. On the other hand the method intro is useful
to work bottom-up from the conclusion using an introduction rule that introduces a logical
operator in the conclusion (i.e., in the bottom-up reasoning the operator is removed).

Exercise 5 (2 points)
Prove the following intuitionistic theorems using elimination resolution and disjE and conjE

wherever possible.

1. A ∧ (B ∧ C)→ (A ∧B) ∧ C

2. (A ∨ C) ∧ (B ∨ C)→ (A ∧B) ∨ C

You may want to compare this to proofs without using elimination resolution.
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Variable Occurrences In lecture “First-Order Logic”, it was said that all occurrences of a
variable in a term or formula are bound or free or binding. Please search for the definition in
the slides.

Exercise 1 (1 point)
Mark each variable occurrence in

(∃x. q(x) ∨ p(b)) ∨ p(c)→ p(x) ∧ ∃y.∀z. r(y, f(x, b), g(x, y), g(b, y))

as bound (e.g., red), free (e.g., green) or binding (e.g., blue). For each bound occurrence,
indicate the corresponding binding occurrence. Assume the common convention that x, y, z are
variables and a, b, c are constants.

Exercise 2 (1 point)
Apply the substitution [z ← g(z)] to (∀x. p(y, z, g(x))) ∧ ∃z. r(g(z)) following the definition of
a substitution (in the chapter on “First-Order Logic” in the slides) step by step.

Syntax extensions In lecture “First-Order Logic”, it was mentioned that the syntax of
propositional or first-order logic may be extended with further connectives such as ↔, which
provide shorthands for certain formulae. E.g., φ ↔ ψ stands for (φ → ψ) ∧ (ψ → φ). In
IFOL.thy, we have

definition iff (infixr "<->" 25) where "P<->Q == (P-->Q) & (Q-->P)"

This defines the equivalence of two syntactic forms in the same way as we have seen for negation
in lecture “Propositional Logic”. In Isabelle, you will sometimes have to use unfold and fold

to convert between the two syntactic forms. The definition is implicitly named iff_def.

Exercise 3 (2 points)
Derive the rule

[B]
....
A

[A]
....
B

A↔ B

in Isabelle and using paper and pencil. (First think carefully about how to encode it in Isabelle;
this should definitely involve the symbol <->).

First Order Logic We now have some Isabelle exercises on first-order logic, and so we keep
using the theory FOL, of which propositional logic is a subset. The quantifiers are written ALL

resp. ! and EX resp. ? in FOL. For example, ∀y.∃x.p(x, y) is written ALL y. EX x. p(x,y) or
! y. ? x. p(x,y) (where you have to replace ! and ? by the corresponding logical symbols
as suggested by jedit). Note that quantifiers bind very weak, i. e., (∀x.p(x))→ ∃x.p(x) has to
be written (ALL x. p(x)) --> (EX x. p(x)) or (! x. p(x)) --> (? x. p(x)), including
the parentheses.

Please look up the rules for the quantifiers in the lecture slides! In IFOL.thy, these rules
are encoded as follows:



allI: "(!!x. P(x)) ==> (ALL x. P(x))" and

spec: "(ALL x. P(x)) ==> P(x)" and

exI: "P(x) ==> (EX x. P(x))" and

exE: "[| EX x. P(x); !!x. P(x) ==> R |] ==> R"

The !! is the metalevel universal quantification (jedit also displays this as
∧

). If a goal is
preceded by

∧
x, this means that Isabelle must be able to prove the subgoal in a way which is

independent of x, i. e., without instantiating x. Whenever you apply a rule to a subgoal that
is preceded by

∧
x, then the metavariables of the rule, which will occur in the new subgoals

through the resolution step, will be made dependent on x. You may also say that those variables
will be Skolem functions of x.

Note that the rules with !! in Isabelle are the rules whose paper and pencil versions have
side conditions.

When you are doing proofs in first-order logic, you should introduce metalevel universal
quantification into your proofs as early as possible. In other words, rules with a side condition
should be applied first. Intuitively, in these rules you have no choice so you cannot do anything
wrong applying these rules. Also, if you introduce the variable early you can make the terms
in the other rules depend on this variable. In the Isar syntax the fix command corresponds
to the metalevel quantification. Hence, if your goal is

∧
x.φ(x) you should start your proof by

fix x and then show φ(x) (without meta-level quantification). Note that the fix command
must come before the x occurs for the first time.

To summarize, you should apply allI and exE, the two rules that contain !!, as early as
possible. For allI, this is clear: If you have a conclusion ∀x. . . ., to prove, rule allI is the
obvious choice anyway. But for exE, the ∃ occurs in the premises. This means that whenever
you have an ∃ in the premises of the current subgoal, you should use the rule exE, and by
our explanations about elimination tactic, you may guess that you should apply this rule as
elimination.

Having said that, the above are rules of thumb, so you cannot expect that they always work.
But they work for all exercises of this sheet.

Exercise 4 (7 points)
Try to prove the following theorems of first-order logic in Isabelle. If a theorem cannot be
proven, end the proof with the command oops and state why this lemma cannot be proven.
You might put this statement in a comment in your theory file. Comments are started by (*

and terminated by *) and can span multiple lines.

1. (∀y.q(f(y)))→ (∃x.q(x))

2. ((∀x.p(x)) ∧ (∀x.q(x)))→ (∀x.(p(x) ∧ q(x)))

3. (∀x.(p(x) ∨ q(x)))→ ((∀x.q(x)) ∨ (∀x.p(x)))

4. ((∀x.p(x)) ∧ (∀x.q(x)))→ (∀x.(p(x) ∨ q(x)))

5. (∀x.∃y.p(x, y))→ (∃y.∀x.p(x, y))

6. (∃x.∀y.p(x, y))→ (∀y.∃x.p(x, y))

7. (∀x.p(x))→ (∀x.p(f(x)))

The following is a theorem from lecture “First-Order Logic”.

Exercise 5 (1 point)
Prove (∀x.A→ B(x))↔ (A→ ∀x.B(x)) in Isabelle. Save it under, say, all scoping.

We have said that in the above theorem it is crucial that A does not contain x freely. You
should have a careful look at Exercise 5 (theorem all scoping) again. The metavariable ?A
does not depend on x. This formalizes in Isabelle that A does not contain x freely. If this
condition was violated, we might be tempted to prove p(x)→ ∀x.p(x), which is not valid. You
may want to attempt a proof of p(x) → ∀x.p(x) in Isabelle and try to understand why this
cannot work.
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The next exercise illustrates that whether or not a sub-formula is within the scope of a
quantifier may matter even if the sub-formula does not contain that quantifier.

Exercise 6 (2 points)
Attempt to prove ((∀x.A(x)) → B) → (∀x.A(x) → B) in Isabelle. Does it work? If it does
not work, give (on paper) a counterexample demonstrating that the formula is not valid (i.e.,
sketch a signature and a structure).

Forward resolution In Isabelle, there are several functions that can be used to combine
existing rules into a new rule. In terms of proof trees, this is best understood as collapsing
a fragment from a proof tree into a single application of a rule. For example, consider the
following derivation tree, which might occur in some proof tree:

A ∧B
B

∧-ER
A ∧B
A

∧-EL

B ∧A ∧-I

We may want to replace this by
A ∧B
B ∧A

∧ − symm

We have seen on Sheet 2 how such a rule can be derived and an identifier be bound to it, but
to build big proofs, one may not want to introduce identifiers for each fragment. In Isabelle,
the expression

conjI[OF conjunct2 conjunct1]

combines the rules conjunct2, conjunct1, and conjI into the new rule

[|?P2 & ?P; ?Q & ?Q1|] ==> ?P & ?Q

More precisely, “combining” means that the conclusions of conjunct2 and conjunct1 are
unified with the premises of conjI, respectively. The result is a rule whose premises are the
premises of conjunct2 and conjunct1, and whose conclusion is the conclusion of conjI, where
the unifier is applied. This process is called (forward) resolution.

Exercise 7 (1 point)
Prove the theorem A ∧B → B ∧A in Isabelle using the rule

conjI[OF conjunct2 conjunct1]

Generally, when we write
rule [OF rule list ] ,

rule list may have fewer elements than the number of assumptions of rule. Try

thm conjI[OF conjunct2]

to see what happens in this case. The rules stated in rule list are applied from left to right
to the premises. The previous example showed how to omit premises at the end of the list of
premises. If you want to skip a premise in the beginning of the list, you can use _ as a rule.
Try

thm conjI[OF _ conjunct2]

to see what happens in this case.
Since the result of applying OF to a rule is another rule, you can combine the result with

other rules, say, e. g., impI. Try

thm impI[OF conjI[OF _ conjunct2]]

to see what happens in this case.

Exercise 8 (1 point)
Prove the theorem A ∧B → B ∧A in Isabelle using a combination of

3



conjI[OF conjunct2 conjunct1]

and impI, i. e., your proof should be

by (rule ...)

Actually, using OF, there is a very close correspondence between proofs in Isabelle and
the trees we had in paper and pencil proofs. Each new rule you obtain by an OF expression
corresponds to a subtree. You can look at a tree and construct a corresponding OF expression
inductively. Suppose you have a horizontal bar labeled with rule, and the subtrees above that
line are T1, . . . , Tn, and the OF expressions corresponding to those subtrees are E1, . . . , En.
Then the OF expression for the subtree at this horizontal bar is simply

rule[OF E1 . . . En]

Exercise 9 (1 point)
Consider again the theorem (A → B → C) → (A → B) → (A → C) on Sheet 1 Exercise 1.5,
and have a look at its paper and pencil proof. Then prove the theorem in Isabelle using a single
expression that combines the (six) rule applications involved using OF, i. e., your proof should
read

by (rule ...)

Note that OF can be used to abbreviate proofs but has the disadvantage of making the proof
unreadable. For example compare your proof of the last exercise to the proof done in Exercise
1.5. The latter proof is easier to read and understand. However, sometimes when you do proofs
in Isabelle/Isar, you can sometimes use OF to abbreviate a proof while preserving readability.
For example, assume you have ∀x.p(x)→ q(x) under the name quant and p(a) under the name
p. Then you can derive q(a) by

from quant p have "q(a)" by (rule mp[OF spec])

This does not limit readability a lot, but compresses the proof.

Explicit Instantiation We have mentioned that when you apply (forward) resolution, Is-
abelle unifies the conclusion of your current subgoal with the conclusion of the rule you use. In
general, this unification is not unique, and sometimes you will have to help Isabelle to find it.
For example, suppose your current goal is p(s(s(z))) and you want to prove this from the as-
sumption ALL x. p(s(x)). Intuitively, it should be clear that you can prove this, since p(s(x))
holds for all x, and thus in particular for x = s(z). But when you try proof (rule spec),
Isabelle does not know that you need x to be s(z). There are some ways to do this prove: (1)
write by (rule spec) to let Isabelle know that she only needs additional assumption steps to
discharge this goal, (2) use the method elim to let her try all possible unifiers, (3) use elimina-
tion resolution to reduce the number of unifiers, or (4) tell her the right unifier. To tell Isabelle
about a unifier you first need to find the meta-variable you want to instantiate. Look at the
rule spec. It contains the meta-variables ?P and ?x. In our case we want to instantiate ?x with
s(z) (since ?P should be instantiated to P(s(·))). The attribute where can be used to modify a
rule/theorem. In our example, we want to apply the rule

spec[where x="s(z)"]

Exercise 10 (1 point)
Prove the following theorem of first-order logic in Isabelle:

s(s(s(s(s(zero))))) = five ∧ q(zero) ∧ (∀x.q(x)→ q(s(x)))→ q(five)

Did your proof need manual instantiations? If yes, can you come up with a proof that does
not need manual instantiations. Hint: You can shorten your proof using OF to combine two
frequently needed rules.
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Creating own shortcuts is helpful in Isabelle/Isar to abbreviate proof scripts. In the Isar
syntax you have to state all premises and conclusions explicitly. While this leads to readable
proofs in many cases, sometimes it is just annoying since you have to repeat the same term
over and over again. The Isar syntax helps you with special constructs that allow you to create
new term bindings.

The easiest way to create a new term binding is the let command. You simply say

let "?x" = "some complicated term"

and you can now use ?x whenever you would have to type some complicated term. Note that
Isabelle/Isar uses matching to detect the correct abbreviation. Hence, if you type

let "some ?x term" = "some complicated term"

the variable x will be bound to complicated, i. e., a sub-term. Also note the syntax of the let
command. It has a left-hand side that should contain variables (identifiers preceeded by ?) and
a right-hand side that should not contain variables. Both the left-hand side and the right-hand
side need to be in quotes while the equality sign must not.

If you have just written down a term (e. g., after stating a lemma, theorem, assumption,
intermediate fact, or goal) you do not need to repeat the whole term in a let command to
create a term binding. Isabelle/Isar lets you abbreviate these terms by appending (is "?x")

to this term. Assume you want to show some complicated term. Then, writing

show "some complicated term" (is "some ?x term")

is equivalent to the two commands

show "some complicated term"

let "some ?x term" = "some complicated term"

and, hence, produces the same binding.

Generalized Elimination Isabelle supports a more general version of elimination resolution.
This can be used, e. g., to split a conjunction into its individual parts or to retrieve a witness
for an existential quantifier. The keyword obtain signalizes such a generalized elimination. For
example if you want to split the conjunction A ∧ B ∧ C into A and B and C, you can use the
following Isar statements

assume "A/\B/\C"

then obtain "A" and "B" and "C" by (elim conjE)

To eliminate an existential quantifier and retrieve a witness term, i. e., a term t that justifies
∃x. p(x), use obtain in conjunction with elimination resolution:

assume "EX x. p(x)"

then obtain t where "p(t)" by (rule exE)

How does generalized elimination work? After writing what you want to obtain Isabelle
shows you a goal. For the first example, the goal is∧

thesis. A ∧ B ∧ C =⇒ (A =⇒ B =⇒ C =⇒ thesis) =⇒ thesis



Using elim conjE will split the conjunction and produce the goal∧
thesis. (A =⇒ B =⇒ C =⇒ thesis) =⇒ (A =⇒ B =⇒ C =⇒ thesis)

which can be solved by assumption. Elimination resolution is critical in this example.
For the second example we have to show∧

thesis. (∃x. p(x)) =⇒ (
∧

t. p(t) =⇒ thesis) =⇒ thesis

Hence, without any assumption about thesis, assuming ∃x. p(x) and a derivation of thesis
from p(t) that is independent of t we have to show thesis. If we now use elimination resolution
on the existential quantifier we get the goal∧

thesis x. (
∧

t. p(t) =⇒ thesis) =⇒ p(x) =⇒ thesis

which can again be solved by assumption. Essentially, the obtain keyword corresponds to
existential quantification on the meta-level. But we will not explain this encoding at this stage
of the lecture.

Exercise 1 (7 points)
Prove the following lemmas in Isabelle:

1. (∃x. P (x) ∨Q(x))→ (∃x. P (x)) ∨ (∃x.Q(x))

2. (∀x. ∃y. p(x, y))→ (∀u. ∃v. p(u, v))

3. ¬(∀x. ¬p(x))→ (∃x. p(x))

4. (∃x. p(x))→ ¬(∀x. ¬p(x))

5. ¬(∃x. ¬p(x))→ (∀x. p(x))

6. (∀x. p(x))→ ¬(∃x. ¬p(x))

7. ∃y.(∃x.p(x))→ p(y)

Hint: Parts 3, 5, and 7 are classical. The other exercises can be solved without classical
rules.

Equality In lecture “First-Order Logic with Equality” we have learned that in first-order
logic with equality, the predicate = is not just any predicate, but it has certain properties,
namely it is an equivalence relation and a congruence on all terms and relations.

Note that we have no special theory file for first-order logic with equality, since it is already
included in IFOL.thy. There, all we have is

refl: "a=a" and

subst: "a=b \<Longrightarrow> P(a) \<Longrightarrow> P(b)"

In fact, it turns out that transitivity and symmetry can be derived from reflexivity and congru-
ence. Actually, even subst is a derived rule, but at this stage of the course we do not explain
how.

Exercise 2 (4 points)
Derive rules that state that = is symmetric and transitive:

x = y

y = x
sym

x = y y = z

x = z
trans

Do it both in Isabelle and using paper and pencil (here you may use the reflexivity axiom and
the congruence rules from the lecture).

Hint: In the rule subst, P(b) stands for any formula that contains b; in particular, a = b is
such a formula. Both proofs are extremely short (not more than 5 lines).
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Equational Proofs In lecture “First-Order Theories” we have seen two examples of equa-
tional proofs. Isabelle/Isar provides special support for equational proofs through a set of
keywords. These keywords maintain a special calculation that might finally hold the desired
lemma.

The first important keyword is also. When this keyword is first encountered in a proof,
it remembers the current fact as calculation. Every further occurrence of also composes the
current calculation with the last fact using one transitivity rule. These rules are marked with
the attribute trans and stored specially by Isabelle. You can view the set of transitivity rules
with the command print_trans_rules. Note that trans is one of them.

After you have shown the last step of your calculation, the keyword finally does a transi-
tivity step with the previous calculation and provides this fact as assumption.

With these keywords we can prove a = b =⇒ b = c =⇒ c = d =⇒ a = d as follows:

theorem "a=b ==> b=c ==> c=d ==> a=d"

proof -

assume "a=b"

also

assume "b=c"

also

assume "c=d"

finally

show "a=d" .

qed

Placing the cursor after also resp. finally will display the current calculation.
When doing equational proofs on pen and paper we usually omit the individual transitivity

steps by chaining equalities. Isabelle/Isar supports this syntax by proving the abbreviation . . .
for the right hand side of the last calculation. Hence, in the proof above, we could also write
assume ‘‘...=d’’ instead of assume ‘‘c=d’’.

Groups We will now have some exercises on groups. These exercises use the theory file
Groups.thy available from the lecture page. This theory file provides an extension of first order
logic called group. To use this extension in your theory you (1) have to import Groups.thy

and (2) have to use context group begin and end to inform Isabelle that the lemmas and
theorems proven between begin and end are only valid in group.

Now have a look at the file Groups.thy. It defines a function f (which can be written as *

in Isabelle), a constant e (written as 1), and the function inv (written as ^-1). Furthermore,
it assumes * to be associative, 1 to be the right neutral element of *, and ^-1 to be the right
inverse of *.

Additionally, it defines some lemmas that can be used to rewrite terms. The lemma
assoc_context for example justifies a rewrite using associativity of * even if the term to
rewrite is only a sub-term of the goal. Similarly, rneutr_context and rinv_context can be
used to rewrite terms where the left hand side of an equality contains a sub-term of the form
a*1 resp. a*a^-1 into a resp. 1. Such rules are called congruence rules.

Since sometimes the term to rewrite is not contained in the left hand side, but in the right
hand side, Groups.thy also provides symmetric version of these rules. They have the suffix
_sym and are simply created by adding the attribute symmetric to the original rules.

Exercise 3 (4 points)

1. Show that ^-1 is left inverse, i. e., x^-1 * x = 1.

2. Show that 1 is also the left neutral element, i. e., 1 * x = x.

Hint: You might want to create a congruence rule from Part 1 to simplify this part.

3. Show that the inverse element is unique, i. e., x*y=1 ==> y=x^-1.

4. Show (a*b)^-1 = b^-1*a^-1.

3



A Groups.thy

1 theory Groups
2 imports FOL
3 begin
4

5 locale group =
6 fixes f :: ”’ a ⇒’a ⇒’a” ( infixl ”∗” 70)
7 fixes e :: ’ a (”1”)
8 fixes inv :: ”’ a ⇒’a” (”( ˆ−1)” [79] 80)
9 assumes assoc : ”a ∗ b ∗ c = a ∗ (b ∗ c)”

10 assumes rneutr: ”a ∗ 1 = a”
11 assumes rinv: ”a ∗ aˆ−1 = 1”
12

13 begin
14

15 (∗ This does not work as expected in jedit
16 notation
17 inv (”( \<inverse>)” [79] 80)
18 ∗)
19

20 lemmas assoc context = subst context[OF assoc]
21 and rneutr context = subst context[OF rneutr]
22 and rinv context = subst context[OF rinv]
23

24 lemmas assoc context sym = assoc context[symmetric]
25 and rneutr context sym = rneutr context[symmetric]
26 and rinv context sym = rinv context[symmetric]
27

28 end
29

30 end
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This week we will be using several Isabelle theories. You should have theories named
sheet05 NSet.thy and sheet05 lambda.thy.

Näıve Set Theory has been formalized in Isabelle in NSet.thy. Here are some notes on the
syntax (if this list is incomplete, you may have a look at NSet.thy):

Usual math. notation Isabelle

{1, 2, 3} {1,2,3}

∈ :

/∈ ~:

{y | P (y)} {y. P(y)}

A ∩B A Int B

A ∪B A Un B

A ⊆ B A <= B

A \B A Minus B

P(A) Pow(A)

Have a look at the rules from the lecture on “Näıve Set Theory”. In NSet.thy, instead
of those inference rules we have two axioms ext and Collect. Load NSet (with import) in
sheet05 NSet.thy. You might want to take a look at the lemmas proven in NSet.thy.

Exercise 1 (3 points)
Prove in Isabelle that the subset relation is a partial order, i.e., it is reflexive, transitive and
antisymmetric.

Exercise 2 (1 point)
Prove A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) in Isabelle.

Exercise 3 (1 point)
Prove A ⊆ B ↔ P(A) ⊆ P(B) in Isabelle

Exercise 4 (2 points)
Show that NSet is inconsistent, i.e., that ⊥ can be derived in it.

Hint: recall lecture “Näıve Set Theory”. You should start like this:

lemma "False"

proof (rule notE[where P="{A. A ~: A} ~: {A. A ~: A}"])

Our version of näıve set theory is based on IFOL. Inconsistency can still be shown. If, however,
you prefer classical reasoning, import FOL and do your prove.

Hint: The rule classical dual from Exercise 4 on Sheet 2 will be useful.



Untyped λ-calculus Recall that the syntax of the untyped λ-calculus is defined by the
following grammar:

e ::= x | c | (ee) | (λx. e)

We introduced conventions of left-associativity and iterated λ’s in order to avoid cluttering the
notation.

Exercise 5 (2 points)
Write out the following λ-terms with full bracketing and without iterated λ’s:

1. (λxyz. xz(yz))(λxy. x)(λxyz. x(zy)z)

2. (λu. uu)(λxz. (λv. x)(λxy. xy))(c(λw.wc))

Exercise 6 (2 points)
Rewrite the following λ-term using left-associativity and iterated λ’s:

1. ((λx. (λy. (λz. (z(yz)(w(xz))))))(λx. (xx)))

2. ((λx. ((λw. v)(λy. (yz))))((λz. x)(λx. (λz. (λu. (((xy)z)(uz)))))))

In a λ-term, a subterm of the form (λx.M)N is called a redex (plur. redices). It is a subterm
to which β-reduction can be applied.

Exercise 7 (3 points)
Reduce the terms (λxy. (λz.wz)(λw.w)x)y, (λx. yx)(λy. y), and (λxyz. zyx)(λx. x)((λv. x)c) to
β-normal form (on paper), underlining the redex in each step.

In Isabelle, the untyped λ-calculus has been implemented in lambda.thy (for β-reduction
and β-conversion).

Concerning the syntax, λ is written lam, and application MN is written M^N. Reduction is
denoted by >--> (note that jedit might replace this with >−→ which is not what we want).
Conversion is denoted by >=<. Moreover, for some frequently used λ-terms called combinators
[1, chapter 2], letters are introduced as a means of abbreviation: I ≡ λx. x, K ≡ λxy. x,
S ≡ λxyz. xz(yz), YC ≡ λf. (λx. f(xx))(λx. f(xx)), YT ≡ (λzx. x(zzx))(λzx. x(zzx)).

The reduction calculus is implemented in the context RED, the conversion calculus in the
context CONV. Both provide the basic rules and the combinators mentioned above. Make sure
you put the exercises done in RED between context RED begin and end and the exercises done
in CONV between context CONV begin and end.

Schematic lemmas When doing β-reductions you typically do not know what the resulting
term will be. In this case you would like to use a schematic variable like ?x to capture the result
value. Isabelle however does not let you state a lemma containing a variable for obvious reasons.
However, the Isabelle/Isar syntax contains the keyword schematic_lemma which allows you to
state lemmas containing schematic variables. For example, we could write

schematic_lemma "(lam x y. x ^ y) ^ (lam x. x) ^ z >--> ?x"

if we did not know the β-normal form. Note that there is an easy proof using reflexivity, but
this clearly does not produce β-normal form! Hence, we have to do a series of derivation steps.
These can be done with equational reasoning. Note that neither RED nor CONV provides rules to
substitute a sub-term. Instead you have to use the congruence axioms of these theories. But
sometimes isolating the redex can be done with a combination of multiple axioms using OF. An
example β-reduction proof of the above theorem is

proof -

have "(lam x y. x ^ y) ^ (lam x. x) ^ z >-->

(lam y. (lam x. x) ^ y) ^ z" by (rule appr[OF beta])

also have "... >--> (lam x. x) ^ z" by (rule beta)
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also have "... >--> z" by (rule beta)

finally show "(lam x y. x ^ y) ^ (lam x. x) ^ z >--> z" .

qed

Import lambda in sheet5 lambda.thy. The following exercises will be in the context RED.

Exercise 8 (3 points)
Reduce the following terms to β-normal form in Isabelle:

1. SKK

2. SKS

3. SK

Your result should only contain lambdas and combinators, but no redices.
Hint: You should use schematic lemmas. In the end, the metavariable used in your schematic

lemma should be instantiated to a term in β-normal form. Use fold to turn a lambda-term
back into the corresponding combinator.

Exercise 9 (2 points)

1. Prove YTF>-->F (YTF ).

2. Try to prove YCF>-->F (YCF ). Does it work? If not state at which point you stopped
and why you stopped there.

Exercise 10 (2 points)
Prove the following goals in the context CONV:

1. YTF >=< F (YTF ).

2. YCF >=< F (YCF ).

References

[1] J. R. Hindley and J. P. Seldin. Introduction to Combinators and λ-Calculus. Cambridge
University Press, 1990.

A Encoding of näıve set theory

1 theory NSet
2 imports IFOL
3 begin
4

5 declare [[ eta contract = false ]]
6

7 typedecl i
8

9 type synonym set = i
10

11 arities i :: ” term”
12

13 consts
14 ”zero ” :: i (”0”)
15 ”one ” :: i (”1”)
16 ”empty” :: set (”{}”)
17 insert :: ”[ i , set ]⇒set”
18 ”member” :: ”[i , set ]⇒o”
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19 ”lesseq ” :: ”[ set , set ]⇒o” (infixl ”<=” 50)
20 Collect :: ”[ i⇒o]⇒set”
21 INTER :: ”[set, i⇒set]⇒set”
22 UNION :: ”[set, i⇒set]⇒set”
23 ”Minus” :: ”[ set , set ]⇒set” (infixl ”−” 65)
24 ”Int ” :: ”[ set , set ]⇒set” (infixl ”\<inter>” 70)
25 ”Un” :: ”[ set , set ]⇒set” (infixl ”\<union>” 65)
26 Compl :: ”set⇒set”
27 Pow :: ”set⇒set”
28 UNIV :: set
29 Ball :: ”[ set , i⇒o]⇒o”
30 Bex :: ”[ set , i⇒o]⇒o”
31

32 notation
33 member (”op :”) and
34 member (”( / : ) ” [51,51] 50)
35

36 notation (xsymbols)
37 member (”op \<in>”) and
38 member (”( / \<in> ) ” [51, 51] 50)
39

40 notation (HTML output)
41 member (”op \<in>”) and
42 member (”( / \<in> ) ” [51, 51] 50)
43

44 syntax
45 ” Coll ” :: ” pttrn => o => set” (”(1{ ./ })”)
46 translations
47 ”{x. P}” == ”CONST Collect (%x. P)”
48

49 hide const (open) member
50

51 syntax
52 ” Ball” :: ” pttrn => set => o => o” (”(3ALL : ./ ) ” [0, 0, 10] 10)
53 ” Bex” :: ” pttrn => set => o => o” (”(3EX : ./ ) ” [0, 0, 10] 10)
54

55 syntax (HOL)
56 ” Ball” :: ” pttrn => set => o => o” (”(3! : ./ ) ” [0, 0, 10] 10)
57 ” Bex” :: ” pttrn => set => o => o” (”(3? : ./ ) ” [0, 0, 10] 10)
58

59 syntax (xsymbols)
60 ” Ball” :: ” pttrn => set => o => o” (”(3∀ \<in> ./ ) ” [0, 0, 10] 10)
61 ” Bex” :: ” pttrn => set => o => o” (”(3∃ \<in> ./ ) ” [0, 0, 10] 10)
62

63 syntax (HTML output)
64 ” Ball” :: ” pttrn => set => o => o” (”(3∀ \<in> ./ ) ” [0, 0, 10] 10)
65 ” Bex” :: ” pttrn => set => o => o” (”(3∃ \<in> ./ ) ” [0, 0, 10] 10)
66

67 translations
68 ”ALL x:A. P” == ”CONST Ball(A (%x. P))”
69 ”EX x:A. P” == ”CONST Bex(A (%x. P))”
70

71 syntax
72 ”op ˜:” :: ”[ i , set ]⇒o” (”( / ˜: ) ” [50, 51] 50)
73 (∗ ”@Collect ” :: ”[ pttrn , o]⇒set” (”(1{ ./ })”) ∗)
74 ”@Finset” :: ”args ⇒set” (”{( )}”)
75 (∗ ”op Int ” :: ”[ set , set ]⇒set” (infixl ”\<inter>” 70)
76 ”op Un” :: ”[ set , set ]⇒set” (infixl ”\<union>” 65)∗)
77 ”@INTER” :: ”[pttrn, set, set ]⇒set” (”(3INT : ./ )” 10)
78 ”@UNION” :: ”[pttrn, set, set]⇒set” (”(3UN : ./ )” 10)
79 ” Ball ” :: ” pttrn ⇒set ⇒o ⇒o” (”(3ALL : ./ ) ” [0, 0, 10] 10)
80 ” Bex ” :: ”[ pttrn , set , o]⇒o” (”(3EX : ./ ) ” [0, 0, 10] 10)
81

82 translations
83 ”NSet.UNIV” == ”NSet.Compl({})”
84 ”x˜: y” == ”(x : y)”
85 ”{x, xs}” == ”NSet.insert(x,{xs})”
86 ”{x}” == ”NSet.insert(x,{})”
87 ”{x. P}” == ”NSet.Collect(\<lambda>x. P)”
88 ”INT x:A. B” == ”NSet.INTER(A, (\<lambda>x. B))”
89 ”UN x:A. B” == ”NSet.UNION(A, (\<lambda>x. B))”
90 ”ALL x:A. P” == ”CONST NSet.Ball(A, (\<lambda>x. P))”
91 ”EX x:A. P” == ”CONST NSet.Bex(A, (\<lambda>x. P))”
92
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93 axiomatization where
94 ext : ”A = B\<longleftrightarrow>(∀x. ((x:A)\<longleftrightarrow>(x:B)))” and
95 Collect : ”( t :{x. P(x)})\<longleftrightarrow>(P(t))”
96

97 syntax (”” output)
98 ” setle ” :: ”[ set , set ]⇒o” (”op <=”)
99 ” setle ” :: ”[ set , set ]⇒o” (”( / <= )” [50, 51] 50)

100 ” setless ” :: ”[ set , set ]⇒o” (”op <”)
101 ” setless ” :: ”[ set , set ]⇒o” (”( / < )” [50, 51] 50)
102

103 syntax (xsymbols)
104 ” setle ” :: ”[ set , set ]⇒o” (”op \<subseteq>”)
105 ” setle ” :: ”[ set , set ]⇒o” (”( / \<subseteq> )” [50, 51] 50)
106 ” setless ” :: ”[ set , set ]⇒o” (”op \<subset>”)
107 ” setless ” :: ”[ set , set ]⇒o” (”( / \<subset> )” [50, 51] 50)
108 ”op ˜:” :: ”[’ a , set ]⇒o” (”op \<notin>”)
109 ”op ˜:” :: ”[’ a , set ]⇒o” (”( / \<notin> )” [50, 51] 50)
110

111 translations
112 ”op \<subseteq>” == ”op <= :: [set,set] ⇒o”
113

114 defs
115 subset def : ”A <= B≡∀x. x\<in>A −→ x\<in>B”
116 empty def: ”{} ≡{x. False}”
117 Minus def: ”A − B≡{x. x\<in>A ∧ x\<notin>B}”
118 Un def: ”A \<union> B≡{x. x\<in>A ∨ x\<in>B}”
119 Int def : ” A \<inter> B≡{x. x\<in>A ∧ x\<in>B}”
120 Ball def : ”Ball(A, P)≡(∀x. x\<in>A −→ P(x))”
121 Bex def: ”Bex(A, P)≡(∃x. x\<in>A ∧ P(x))”
122 Compl def: ”Compl(A)≡{x.x\<in>A}”
123 INTER def: ”INTER(A, B)≡{y. ALL x:A. y\<in>B(x)}”
124 UNION def: ”UNION(A, B)≡ {y. EX x:A. y\<in>B(x)}”
125 insert def : ” insert (a , B)≡{x. x=a} \<union> B”
126 Pow def: ”Pow(A)≡{B. B<= A}”
127

128 lemma inI: ”(P(t)) =⇒ (t\<in>{x. P(x)})”
129 proof (rule iffD2)
130 show ”t \<in> {x. P(x)} \<longleftrightarrow> P(t)” by (rule Collect)
131 qed
132

133 lemma ”inE2”: ”(t\<in>{x. P(x)}) =⇒ P(t)”
134 proof (rule iffD1)
135 show ”t \<in> {x. P(x)} \<longleftrightarrow> P(t)” by (rule Collect)
136 qed
137

138 lemma inE:
139 assumes p1: ”(t\<in>{x. P(x)})”
140 assumes p2: ”P(t) =⇒ R”
141 shows ”R”
142 proof (rule p2)
143 from p1 show ”P(t)” by (rule inE2)
144 qed
145

146 lemma equalsI: ”(∀ x. x\<in>A\<longleftrightarrow>x\<in>B) =⇒ A = B”
147 proof (rule iffD2)
148 show ”A=B \<longleftrightarrow> (∀x. x \<in> A \<longleftrightarrow> x \<in> B)” by (rule ext)
149 qed
150

151 lemma equalsE2: ”A = B =⇒ (∀ x. x\<in>A\<longleftrightarrow>x\<in>B)”
152 proof (rule iffD1)
153 show ”A=B \<longleftrightarrow> (∀x. x \<in> A \<longleftrightarrow> x \<in> B)” by (rule ext)
154 qed
155

156 lemma equalsE:
157 assumes p1: ”A = B”
158 assumes p2: ”(∀ x. x\<in>A\<longleftrightarrow>x\<in>B) =⇒ R”
159 shows ”R”
160 proof (rule p2)
161 from p1 show ”∀x. x \<in> A \<longleftrightarrow> x \<in> B” by (rule equalsE2)
162 qed
163

164 end
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B Encoding of untyped lambda calculus

1 theory lambda
2 imports Pure
3 begin
4

5 setup Pure Thy.old appl syntax setup
6

7 typedecl ”term”
8

9 lemma [trans]: assumes st: ”s == t”
10 shows ”PROP P(t) ==> PROP P(s)”
11 by (unfold st)
12

13 lemma [trans]:
14 assumes ps: ”PROP P(s)”
15 assumes st: ”s == t”
16 shows ”PROP P(t)”
17 using ps by (unfold st)
18

19 locale RED =
20 fixes abs :: ”[ term ⇒term] ⇒term” (binder ”lam ” 10)
21 fixes ”apply” :: ”[term, term] ⇒term” ( infixl ”ˆ” 20)
22 fixes K :: ” term”
23 fixes I :: ” term”
24 fixes S :: ” term”
25 fixes B :: ” term”
26 fixes YC :: ” term”
27 fixes YT :: ” term”
28 fixes Red :: ”[ term, term] ⇒prop” (”( >−−> )”)
29 assumes K def : ”K ≡lam x. (lam y. x)”
30 assumes I def : ” I ≡ lam x. x”
31 assumes S def : ”S ≡ lam x. (lam y. (lam z. xˆzˆ(yˆz)))”
32 assumes B def : ”B ≡Sˆ(KˆS)ˆK”
33 assumes YC def: ”YC ≡lam f. ((lam x. fˆ(xˆx))ˆ(lam x. fˆ(xˆx)))”
34 assumes YT def: ”YT ≡(lam z. lam x. xˆ(zˆzˆx))ˆ(lam z. lam x. xˆ(zˆzˆx))”
35 assumes beta : ”(lam x. f (x))ˆa >−−> f(a)”
36 assumes refl : ” M >−−> M”
37 assumes trans[trans ]: ” [[ M >−−> N; N >−−> L ]] =⇒ M >−−> L”
38 assumes appr : ”M >−−> N =⇒ MˆZ >−−> NˆZ”
39 assumes appl : ”M >−−> N =⇒ ZˆM >−−> ZˆN”
40 assumes epsi : ” [[ !! x . P(x) >−−> Q(x) ]] =⇒ (lam x. P(x)) >−−> (lam x. Q(x))”
41 begin
42 (∗
43 notation (output)
44 ”abs” (binder ”\<lambda> ” 10)
45 ∗)
46 end
47

48 locale CONV = RED +
49 fixes Conv :: ”[ term, term] ⇒prop” (”( >=< )”)
50 assumes beta : ”(lam x. f (x))ˆa >=< f(a)”
51 assumes refl : ” M >=< M”
52 assumes symm[sym] : ”M >=< N =⇒ N >=< M”
53 assumes trans[trans ]: ” [[ M >=< N; N >=< L ]] =⇒ M >=< L”
54 assumes appr : ”M >=< N =⇒ MˆZ >=< NˆZ”
55 assumes appl : ”M >=< N =⇒ ZˆM >=< ZˆN”
56 assumes epsi : ” [[ !! x . P(x) >=< Q(x) ]] =⇒ lam x. P(x) >=< lam x. Q(x)”
57 begin
58 lemmas beta red = RED.beta[OF RED axioms] and
59 appr red = RED.appr[OF RED axioms] and
60 appl red = RED.appl[OF RED axioms] and
61 epsi red = RED.epsi[OF RED axioms] and
62 trans red = RED.trans[OF RED axioms] and
63 refl red = RED.refl[OF RED axioms]
64 end
65

66 end
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Universität Freiburg
Institut für Informatik
Lehrstuhl für Softwaretechnik
Dr. Jochen Hoenicke Jürgen Christ

Computer Supported Modeling and Reasoning WS13/14
Exercise Sheet No. 6 (26th November 2013)

This week we will be using several Isabelle theories. You should have two proof scripts
named sheet06 CNUM.thy and sheet06 FOL.thy

Turing-Completeness In lecture “The λ-Calculus”, it was said that the untyped λ-calculus
is Turing-complete. This is usually shown not by mimicking a Turing machine in the λ-calculus,
but rather by exploiting the fact that the Turing computable functions are the same class as the
µ-recursive functions [1, chapter 4]. In a lecture on theory of computation, you have probably
learned that the µ-recursive functions are obtained from the primitive recursive functions by
so-called unbounded minimalization, while the primitive recursive functions are built from the
0-place zero function, projection functions and the successor function using composition and
primitive recursion [2].

The proof that the untyped λ-calculus can compute all µ-recursive functions is thus based on
showing that each of the abovementioned ingredients can be encoded in the untyped λ-calculus.
While we are not going to study this, one crucial point is that it should be possible to encode
the natural numbers and the arithmetic operations in the untyped λ-calculus.

Such an encoding has been proposed by Alonzo Church. Here the number n is encoded
as the term λfx. f(f . . . (f︸ ︷︷ ︸

n times

x) · · ·), which we abbreviate by writing λfx. fnx. The successor

function and addition are given by the λ-terms:

succ ≡ λufx. f(ufx)

add ≡ λuvfx. uf(vfx)

Exercise 1 (2 points)
Prove (on paper, not in Isabelle) that succ and add are indeed the successor and addition
function, by evaluating them symbolically (i.e, on “terms” λfx. fnx and λfx. fmx).

The encoding of the natural numbers proposed by Alonzo Church is implemented in the
theory church.thy in the context CNUM. It requires the theory lambda.thy from the previous
exercise sheet. In church.thy, you will also find abbreviations C0, . . . for some small numbers.

Exercise 2 (2 points)
Reduce the following terms in CNUM:

1. succ C1

2. add C2 C3

Exercise 3 (4 points)
The existence of the fixpoint combinator YT (Exer. 9 on Sheet 5) seems to suggest that every
function has a fixpoint [1, chapter 3]. This exercise tries to shed some light on this strange
impression.

1. From what you remember from any math course that you took: does every function have
a fixpoint?

2. Is a Church numeral a λ-term in β-normal form?



3. Try to reduce (on paper) the term YT succ to normal form. To avoid getting terms that
are too complicated, follow two strategies:

• replace a combinator by its definition only if that allows you to do a β-reduction.
After each step, simplify the term by replacing (λzx. x(zzx))(λzx. x(zzx)) with YT
and λufx. f(ufx) with succ.

• whenever several reduction steps are possible, avoid steps for which it is obvious that
they will lead to divergence.

What do you observe? Compare this to point 1.

4. The function that always returns 0 is encoded as Z ≡ λu.(λfx. x). Try to reduce (on
paper) the term YT Z to normal form. What do you observe this time?

The simply-typed λ-calculus We now do some paper-and-pencil exercises on the simply-
typed λ-calculus.

Exercise 4 (1 point)
Why is it a useful convention that function applications associate to the left whereas types
associate to the right?

Exercise 5 (1 point)
Derive (on paper) a type judgement for the term λfghx. f(g(hx)x)x (including inserting the
appropriate type superscripts for the variables f, g, h, x you bind with λ), as this has been done
for λfx. f x x in lecture “The λ-Calculus”.

Polymorphism We now have an exercise where a type judgement in the λ-calculus with
polymorphism must be derived.

Exercise 6 (2 points)
Let B = {bool/0,N/0, pair/2} (e.g., pair has arity 2) and Σ = 〈> : bool , 3 : N, 4 : N, E : α →
α→ bool , P : α→ β → (α, β) pair〉.

Derive (using paper and pencil) an appropriate type judgement for

1. (E > (E 3 4)).

2. P 4 (P 3 >).

Assumptions in lemmas Isabelle/Isar has two different ways to state lemmas with assump-
tion. Until now we have always written the assumption in the lemma and assumed them in the
proof, e. g.,

lemma "x=y==>y=x"

proof -

assume xy: "x=y"

Alternatively, you can explicitly name the assumption when stating the lemma and use the
name just like you use assumptions, e. g.

lemma assumes xy: "x=y" shows "y=x"
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Higher-Order Unification We have seen many times by now that applying tactics in Is-
abelle usually involves unification. In the following, assume that any object term or formula
is (represented by) a λ-term, so the variables of the λ-calculus will be called metavariables, as
explained in lecture “Encoding Syntax”.

Often Isabelle will not immediately find the appropriate unifier. An example of this was the
derived rule

"x=y ==> y=x"

The paper and pencil proof of it is

x = y x = x
refl

y = x
subst

but when you try to do this proof in Isabelle starting from the bottom using rule subst, the
problem is to make her know that the metavariable ?b contained in subst should be y. The
unification problem

?P(?b) =αβη y = x

has solutions
[?P← (λz. z = x), ?b← y]
[?P← (λz. y = z), ?b← x]
[?P← (λz. y = x), ?b← t] (for any t)

If you have ever programmed in Prolog, or have taken a course on first-order logic, you may
remember that in that context, every unification problem that has a solution has a unique (up
to variable renaming) solution, called the most general unifier. So what is different here? The
difference is that the variables may assume functions as values, such as λz. z = y above. We
also speak of higher-order variables. This is why we speak of higher-order unification.

There are several ways of helping Isabelle to find the right unifier, including:

• Giving some premises as facts using from.

• Using where or of.

• Using OF or THEN: Can you explain intuitively why these are useful for finding the right
unifier?

• back: Whenever Isabelle is at a point where the result of applying a tactic is non-unique
(e.g. because the unification is not unique), she creates a branch point, indicating that
there are several possibilities of action. She will try the first possibility, but you can call
the function back to go to the most recent branch point and try the next possibility that
has not been tried yet.

Exercise 7 (4 points)
Derive (in FOL)

x = y

y = x
sym

using

1. from. Note that you should use - for the initial proof step.

2. where, where you instantiate the metavariable ?P occurring in rule subst. In this context,
note that in Isabelle, λ is written %.

3. OF;

4. back (Note that this is not a good Isar style)

5. THEN.
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Encoding Propositional Logic in λ→ We have seen in lecture “Encoding Syntax” that
λ→ can be used to encode propositional logic. To this end, we introduced constants not, and,
imp (this list could easily be extended), i.e. we introduced a signature

Σ = 〈not : o→ o, and : o→ o→ o, imp : o→ o→ o〉.

The propositional variables were typed by a context Γ. This Γ will be different for each formula
we want to encode.

Exercise 8 (1 point)
Using paper and pencil, encode a ∧ ¬b in λ→ and give the proof tree of the judgement Γ `
pa ∧ ¬bq : o, as this has been done for ¬a → a in lecture “Encoding Syntax”. What is an
appropriate Γ?

References

[1] J. R. Hindley and J. P. Seldin. Introduction to Combinators and λ-Calculus. Cambridge
University Press, 1990.

[2] H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation. Prentice-
Hall, 1981.
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Computer Supported Modeling and Reasoning WS13/14
Exercise Sheet No. 7 (3rd December 2013)

This week we will not do any Isabelle exercises, but concentrate on the metalogic. Hence,
all exercises should be done on paper.

Encoding First-Order Logic in λ→

Exercise 1 (1 point)
Using paper and pencil, encode ∀x.∃y.p(x, f(y)) in λ→ and give the proof tree of the judgement
. . . ` p∀x.∃y.p(x, f(y))q : o.

I also suggest you have a look at IFOL.thy to see how the concepts of lecture “Encod-
ing Syntax” are implemented. The keyword axiomatization precedes some declarations of
constants such as False, and All.

An alternative way to declare constants is shown in our encoding of the untyped lambda
calculus lambda.thy. There, we have a local theory where the constants are defined using the
keyword fixes.

Exercise 2 (1 point)
Encode (lam x y. y)^(lam x. x) >--> (lam x. x) and derive the type of this expression
in RED.

Exercise 3 (1 point)
What is the order of the encoding of the untyped lambda calculus in lambda.thy. Justify your
answer.

Exercise 4 (1 point)
In several exercises we have used the equivalence between lam x. t x and lam y. t y even
though we do not have α-conversion in RED or CONV. Explain, based on the encoding of the
untyped lambda calculus why this equivalence holds.

Metalogic

Exercise 5 (1 point)
In the lecture we have seen how existential elimination is expressed in Isabelle’s metalogic.
Explain how the side condition of exE is expressed in the encoding. In particular state what
happens if R is instantiated with Qx.

Exercise 6 (2 points)
Derive on paper transitivity of ≡, i. e., derive

∧
s t u. s ≡ t⇒ t ≡ u⇒ s ≡ u.

Exercise 7 (3 points)
In the lecture we have seen how to derive ∃-E if we consider ∃x. P (x) as abbreviation for
¬∀x. ¬P (x). Derive this proof in Isabelle’s metalogic.

Hint: Landscape paper might be helpful.
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Computer Supported Modeling and Reasoning WS13/14
Exercise Sheet No. 8 (10th December 2013)

This week we will connect the Isabelle/Isar language to Isabelle’s metalogic. All exercises
should be done with pen and paper.

FOL-rules in metalogic The rules we used so far are either axioms or rules derived from
these axioms. In metalogic, a rule is a fully quantified statement. Here are some of the rules
we used so far together with their metalogic encoding.

Rule Metalogic encoding

∧-I
∧
P Q. P ⇒ Q⇒ P ∧Q

∨-IL
∧
P Q. P ⇒ P ∨Q

∨-IR
∧
P Q. Q⇒ P ∨Q

∨-E
∧
P QR. P ∨Q⇒ (P ⇒ R)⇒ (Q⇒ R)⇒ R

→-I
∧
P Q. (P ⇒ Q)⇒ P → Q

∃-E
∧
PR. (∃x.Px)⇒ (

∧
x. Px⇒ R)⇒ R

conjE
∧
P QR. P ∧Q⇒ (P ⇒ Q⇒ R)⇒ R

RAA
∧
P (¬P ⇒ ⊥)⇒ P

Exercise 1 (1 point)
In the Lecture on the Isar language we have seen that a rule application corresponds to multiple
applications of rules at the meta level. Give a proof on the meta-level for the following Isar
statements:

1 assume ”P” ”Q”
2 then have ”P ∧Q” by (rule conjI)

Exercise 2 (1 point)
Translate the following Isar script into metalogic, i. e., derive the proof state after the last line.

1 {
2 fix x
3 assume ”P(x)”
4 hence ”P(x) ∨Q(x)” by (rule disjI1)
5 }

Exercise 3 (2 points)
Translate the following proofs into metalogic.

1. Existential elimination using obtain:

1 from ‘∃ x. P(x)‘
2 obtain t where ”P(t)” proof (rule exE) qed

2. Splitting of a conjunction into its parts:

1 from ‘P ∧Q‘ obtain ”P” and ”Q” proof (rule conjE) qed



Exercise 4 (2 points)
Consider the following proof script.

1 lemma ”∀ y. ∃x. p(x,y) =⇒ ∃x. ∀y. p(x,y)”
2 proof (intro exI allI )
3 fix y
4 assume ”∀ y. ∃ x. p(x,y)”
5 hence ”∃ x. p(x,y)” by (rule allE)
6 then obtain x where ”p(x,y)” by (rule exE)
7 then show ”p(x,y)” .
8 qed

Explain why this proof script fails.

Exercise 5 (4 points)
Transform the following Isar proof script into metalogic.

1 lemma orcomm: ”P ∨Q −→ Q ∨ P”
2 proof (rule impI)
3 assume ”P ∨Q”
4 then show ”Q ∨ P”
5 proof (rule disjE)
6 assume ”P” thus ”Q ∨ P” proof (rule disjI2) qed
7 next
8 assume ”Q” thus ”Q ∨ P” proof (rule disjI1) qed
9 qed

10 qed

Folding and unfolding We have seen at a very early stage of the course that several con-
structs are ”syntactic sugar”. To deal with these constructs we used the proof prefix unfolding

or the proof methods fold or unfold. These methods take meta-level equalities and transform
the proof state.

Exercise 6 (1 point)
Explain how fold, unfold, and unfolding can be reflected in the metalogic.
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Proof automation To study proof automation in Isabelle we consider a simply typed set
theory that is similar to näıve set theory studied on sheet 5. But this theory distinguishes
between the types element (type e in the Isabelle theory) and the type set (type s). These
types cannot be the same. Hence, this theory trivially prevents Russell’s paradox.

The theory file already has some introduction, destruction, and elimination rules proven.
But there are still some operators left. On this sheet, we will derive introduction and elimination
rules for most of them. The ultimate goal is to be able to proof all the simple lemmas on this
sheet by one call to Isabelle’s proof tools fast, blast, or clarify.

Isabelle’s automatic proof tools differ in their proof search strategies. In general, you should
try this procedure:

1. Try blast.

2. If blast seems to run endlessly, try fast.

3. If fast does not terminate or either blast or fast yields an error, try clarify.

Note that clarify will quite likely not solve your goal directly, but apply rules until either no
rule is applicable anymore, or a rule that generates more than one sub-goal has to be applied,
or backtracking is needed. Hence, clarify can be used to advance your prove to the next state
where you either missed a rule, or need a case split. If you miss a rule, proof that rule, add it to
the claset of the current context, and continue with your proof. If clarify stopped because
the next rule would generate more sub-goals, perform the next step “by hand” and continue
with clarify. Ultimately, your proof should be done and all your sub-goals should be proven
by clarify. Then, all you need to do is to check that all splitting rules are contained in the
claset and you can simplify the proof to one invocation of fast.

So how can we manage the claset? Use the command print_claset to see what is con-
tained in the current claset. You can add rules to the current claset by adding the attributes
intro or elim to the lemma. If you want to redeclare a lemma with different attributes, use
lemmas. Note that by default all rules are treated as unsafe. Thus, automated proof tools
generate a backtracking point when applying these rules. This is needed since the proof might
become impossible after a rule application. Then, the automated tool has to revert this appli-
cation and try something different. If you are sure it is safe to apply a rule you should a ! to
the attribute. This classifies the rule as safe and speeds up proof search. Be careful. If you
declare a rule as safe but the rule is actually unsafe, you might end up with a failed proof even
though a proof is possible.

Sometimes it is not necessary to add all the rules to the claset of the current context.
Instead, we can give a modification of the claset for every invocation of an automated tool.
Isabelle/Isar allows us to simply add new introduction and elimination rules when calling a
tool by appending intro: and/or elim: to the call. Hence, if we want to add a rule newE

as elimination rule and a rule newSafeI as safe introduction rule to an invocation of fast we
would write

fast elim: newE intro!: newSafeI

If we are sure that these rules are always useful if we use the current theory, we can either add
the attributes to the rule, or redeclare them as

lemmas [elim]: newE

lemmas [intro!]: newSafeI



Let’s turn to simply typed set theory. It is implemented in the theory file SimpleTypedSet.thy.
Make yourself familiar with all the operators defined in this theory and the corresponding lem-
mas.

Exercise 1 (6 points)
Classify (on paper) each of the six rules proven in SimpleTypedSet.thy as introduction or
elimination rule. State whether they are safe or unsafe.

Finite sets The theory allows us to write finite sets using typical math notation. The defini-
tion recursively adds elements to the base set starting with the empty set. We will now derive
some rules to reason about finite sets.

Exercise 2 (3 points)

1. Derive the rule emptyE2: x : {} ==> False in Isabelle.

2. Derive the safe elimination rule emptyE: x : {} ==> R.

3. Do we need an introduction rule for the empty set? How would it look like?

After proving some rules to deal with empty sets, we now consider insertion into a set.

Exercise 3 (5 points)

1. Proof the insertion introduction rules insertI1: x = y ==> x : insert(y, A) and
insertI2: x : A ==> x : insert(y, A).

2. For each of these rules, give an example demonstrating that these rules are not safe.

3. Proof the safe version of these rules.

Hint: We have seen in the lecture how to use classical reasoning to derive safe rules.

Now that we have some rules, we can try to prove simple theorems using full automation.

Exercise 4 (3 points)
Proof the theorems using only blast, fast, or clarify:

1. a : {a, b, c}

2. b : {a, b, c}

3. c : {a, b, c}

Set complement Now we will switch to the complement operation. In our theory, the com-
plement of a set A is written Compl(A). Ultimately we want to show that A Int Compl(A) = {}

by full automation. Hence, the first thing to do is to derive introduction and elimination rules
for Compl.

Exercise 5 (3 points)

1. Show the rule ComplI: x ~: A ==> x : Compl(A).

2. Show the destruction rule ComplD: x : Compl(A) ==> x ~: A

3. Show the elimination rule ComplE: x : Compl(A) ==> (x ~: A ==> R) ==> R

2



With these rules we can proof the fact we want to prove.

Exercise 6 (1 point)
Proof A Int Compl(A) = {} using full automation, i. e., with only one application of blast or
fast.

Set union and set intersection Now we want to reconsider Exercise 2 from Sheet 5. There,
we had a really long proof. Now we want to see how we can proof this exercise with as much
automation as possible.

Exercise 7 (5 points)
Prove A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) in Isabelle using full automation. You should not use
unfolding, but derive introduction and elimination rules for the operators used in this exercise.

We wish you a merry Christmas and a happy new year.
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Equational Theories and Term Rewriting In lecture “First-Order Logic with Equality”
(and “Term Rewriting”), we have seen that an equational theory is given by the four rules refl,
sym, trans, and subst plus additional (possibly conditional) rules of the form φ1 = ψ1, . . . , φn =
ψn =⇒ φ = ψ. We will call the rules of an equational theory other than the four standard rules:
particular rules. We have seen an (in general incomplete) decision procedure for an equality
e = e′ in an equational theory, see lecture “Term Rewriting”. The procedure defines a term
rewriting system (TRS).

Our notion of term is that of the λ-calculus as it is built into Isabelle. It is the universal
representation for object logics in Isabelle (see lecture “Encoding Syntax”). As syntactic sugar,
we sometimes use constants written in infix notation, and constants applied to a tuple of
arguments (as opposed to Currying).

Exercise 1 (7 points)
For each of the four general rules refl, sym, trans, subst of an equational theory, explain how
(at which place exactly) the procedure reflects that rule, i. e., explain how the procedure can
be modified to produce a proof using only these rules.

At what point are the particular rules (of the form φ1 = ψ1, . . . , φn = ψn =⇒ φ = ψ)
reflected?

Is rule sym fully catered for in the procedure? Under which conditions does it matter? Can
you think of an extension of the procedure?

Typically, equational theories are associated with a set of function symbols occurring in the
rewrite rules. E. g., one may speak of an equational theory for +.

Exercise 2 (4 points)
Consider an equational theory

E = {x = f(x, x)}
(here f is a constant). Suppose moreover that 1 is a constant. Solve the goal

f(1, f(1, f(1, 1))) = 1

using our procedure.
Now consider the equational theory

E′ = {f(x, x) = x}

and solve the same goal using our procedure. Any remarks?

Ordered Rewriting The biggest problem for term rewriting is (non-)termination. For some
crucial rules, this problem is solved by ordered term rewriting. A term ordering is a partial
order on ground terms. It can be defined using a norm, which is some function from terms to
natural numbers. In lecture “Term Rewriting” it was said that ordered term rewriting solves
the problem of rewriting modulo ACI. Ordered rewriting will be useful in the following exercise.

Exercise 3 (8 points)
Consider the equational theories given by

E1 = { f(f(x, y), z) = f(x, f(y, z))}
E2 = { f(f(x, y), z) = f(x, f(y, z)), f(x, y) = f(y, x)}
E3 = { f(f(x, y), z) = f(x, f(y, z)), f(x, y) = f(y, x), f(x, x) = x}



(Here f is a constant). Suppose moreover that 0, 1, . . . and l are constants.
What are the properties stated for f called? Can you give an example for E3 from common

mathematics?
Give a term ordering suitable for solving equations in E3 while preserving termination.
For each of the above theories, use our procedure to decide the following equations positively;

if equality does not hold simply state “False”.

1. f(f(l(1), l(2)), l(3)) = f(f(l(1), l(1)), l(3))

2. f(f(l(3), l(2)), l(1)) = f(f(l(2), l(3)), l(1))

3. f(l(2), f(l(1), l(1))) = f(l(2), l(1))

4. f(f(f(l(1), l(2)), l(3)), l(4)) = f(l(1), f(l(2), f(l(3), l(4))))

Exercise 4 (2 points)
You may have noticed that the TRS E2 of the last exercise

E2 = {f(f(x, y), z) = f(x, f(y, z)), f(x, y) = f(y, x)}

with a suitable term ordering is not confluent. Take the term ordering, where the terms are
first ordered by their depth (number of nested function applications) and then lexicographic,
i. e., f(a, b) < f(c, d) if a < c or a = c ∧ b < d (provided they have the same depth). Also
assume that natural numbers are ordered according to their natural order. When starting with
f(f(2, 1), 3), then using the first rule you end with f(2, f(1, 3)) while using the second rule you
get f(3, f(2, 1)) and finally end with f(3, f(1, 2)).

1. Give another rewrite rule that allows for swapping two elements in a right parenthesized
expression. Since this rule is symmetric, the rule should only be applied if the right hand
side is smaller than the left hand side according to this ordering.

2. Show, that using the rule you can rewrite the terms f(2, f(1, 3)) and f(3, f(1, 2)) to a
common normal form.

Higher-Order Pattern Rewriting Recall higher-order abstract syntax. We will consider
first-order logic as an example, and so you should note that the quantifiers occurring below are
constants on the level of the representation. Assume that P , Q, and R are metavariables (as
far as term rewriting is concerned, simply think: variables).

In the following exercise, assume that 0, 1, . . . are constants, in addition to constants used
for representing the logical symbols of first-order logic.

Exercise 5 (5 points)
Which of the following expressions are higher-order pattern rules (for each expression that is
not, state the reason):

1. (∀x.P x ∧Q x) = (∀x.P x) ∧ (∀x.R x)

2. (∀x.(P x) ∧ (λq.q x)Q) = (∀x.P x) ∧ (∃x.Q x)

3. (λx.P x) = (λy.P y)

4. (∀x.P x ∧ (∃y.Q y)) = (∃y.Q y) ∧ (∀x.P x)

5. (∀x.P x ∧Q 0) = (∀x.P x) ∧ (∀x.Q x)

See [1, 2] for more details on term rewriting (not higher-order rewriting, however; we are
not aware of a book on that topic).
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Exercise 1 (1 point)
In lecture “HOL: Foundations”, it has been said that a tuple (x, y) can be encoded as {{x}, {x, y}}.
Show (on paper) that this encoding has all the properties you expect from the Cartesian prod-
uct.

Definitions in HOL The basic inference rules of HOL involve only the constants =, →, and
ε. All other constants are defined in terms of those three, and the rules are derived, as we saw
in lecture “HOL: Deriving Rules”. But now, we want to check the definitions semantically:

True = (λxBool.x = λx.x)
∀ = λφ.(φ = λx.True)
False = ∀φ.φ
∨ = λφη.∀ψ.(φ→ ψ)→ (η → ψ)→ ψ
∧ = λφη.∀ψ.(φ→ η → ψ)→ ψ
¬ = λφ.(φ→ False)
∃ = (λφ.φ(εx.φx))

Consider True: The term λxBool.x = λx.x evaluates to T , and so it is a suitable definition
for the constant True.

Now consider ∀: Note the use of HOAS here. ∀ should be a function that expects an
argument φ of type α → Bool (generalizing the technique we used for encoding first-order
∀). So φ is such that when you pass it an argument x of type α, it will return a proposition
(something of type Bool). Now when does φx hold for all x? This is the case exactly when φx
evaluates to T for all x, which is the same as saying that φ is the function λx.True.

Think about similar intuitive explanations for the other definitions. You may also have a
look at the chapter “HOL Foundations” in the lecture.

Exercise 2 (3 points)
Consider the rules and definitions of constants ∨, ∧ etc. in Isabelle/HOL as they were presented
in the lecture (this corresponds to an older version of Isabelle). Now have a look at HOL.thy

(see the theory files in http://isabelle.in.tum.de/library/). Point out where the rules
and definitions deviate from the presentation in the lecture.

Basic HOL In this lecture we derive all well-known inference rules for logical connectives
and quantifiers in HOL.

However, in a realistic setup of Isabelle/HOL, those rules are available by default since they
are derived from the eight basic rules once and for all. For the sake of exercise, this week we
will work with a setup where those derived rules are not present already.

We provide a theory file HOL BASIC which contains the definitions of HOL without any
pre-proven lemmas. You should create a script sheet11.thy, that imports HOL BASIC.

In a previous version of Isabelle, subst was actually a derived rules. In the theory HOL BASIC,
subst is a basic rule. The reason why we preferred to provide HOL BASIC with subst as a basic
rule is that the derivation is quite tricky and many other exercises of this sheet depend on it.
Nevertheless, in the following exercise you are asked to attempt this derivation.

Exercise 3 (3 points)
Derive the rule subst using only elementary proof steps (no auto, simp etc.), and using just a
single basic rule from HOL BASIC.thy.

http://isabelle.in.tum.de/library/


Hint: this proof is short, and all the difficulty is at the level of Isabelle technicalities (gen-
erating equalities in the meta-logic and folding resp. unfolding them).

The following exercise illustrates an important point using a very simple example: The
unification algorithm of Isabelle is incomplete!

Exercise 4 (3 points)
Derive the following rules in HOL BASIC:

1. f = g =⇒ f(x) = g(x) (fun cong)

2. x = y =⇒ f(x) = f(y) (arg cong)

Hint: For fun cong, you should first draw a derivation tree. When you translate this tree
into an Isabelle backwards proof, Isabelle will not find the unifier. You have to think of a way
of helping Isabelle find the unifier. There are at least three techniques for doing this.

Exercise 5 (10 points)
Derive the following rules from the lecture in HOL BASIC.

1. s = t =⇒ t = s (sym)

2. Jr = s; s = tK =⇒ r = t (trans)

3. JP =⇒ Q;Q =⇒ P K =⇒ P = Q (iffI)

4. JP = Q;QK =⇒ P (iffD2)

5. True (TrueI)

6. P = True =⇒ P (eqTrueE)

7. P =⇒ P = True (eqTrueI)

8. (
∧
x.P x) =⇒ ∀x.P x (allI)

9. (∀x.P x) =⇒ P x (spec)

10. False =⇒ P (FalseE)

11. False = True =⇒ P (False neq True)

12. True = False =⇒ P (True neq False)

13. (P =⇒ False) =⇒ ¬P (notI)

14. J¬P ;P K =⇒ R (notE)

15. ¬(True = False) (True Not False)

16. P (x) =⇒ ∃x.P x (existsI)

17. J(∃x.P x);
∧
x.P x =⇒ QK =⇒ Q (existsE)

18. JP ;QK =⇒ P ∧Q (conjI)

19. P ∧Q =⇒ P (conjEL)

20. P ∧Q =⇒ Q (conjER)

21. JP ∧Q; JP ;QK =⇒ RK =⇒ R (conjE)

22. P =⇒ P ∨Q (disjIL)

23. Q =⇒ P ∨Q (disjIR)

24. JP ∨Q;P =⇒ R;Q =⇒ RK =⇒ R (disjE)

25. P ∨ ¬P (excl midd)
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In Exercise 2 we have seen that the existential quantifier is not defined using Hilbert’s choice
operator. In the theory HOL BASIC we have the definition EXold_def that defines the existential
quantifier Exold using the choice operator. The next exercise tries to show equivalence of these
two definitions.

Exercise 6 (2 points)
Prove the following rules in the theory HOL BASIC:

1. ∃x.Px =⇒ ∃oldx.Px

2. ∃oldx.Px =⇒ ∃x.Px

3



Universität Freiburg
Institut für Informatik
Lehrstuhl für Softwaretechnik
Dr. Jochen Hoenicke Jürgen Christ

Computer Supported Modeling and Reasoning WS13/14
Exercise Sheet No. 12 (21st January 2014)

The Semantics of HOL In HOL, we have the three basic constants ε, = and →. We then
define the constant True, and afterwards the constant False. To understand on a semantic level
why ∀P.P is an appropriate definition for False, it is instructive to see explicitly that it is not
the case that “everything is true”.

Exercise 1 (3 points)
Expand the definition of False to a lambda-term φ using just the constants ε, =, →. Show that
VM
A (φ) = F for all interpretations M and assignments A.

Working with Isabelle HOL From now on, we will work with a full-fledged Isabelle HOL
setup. You will have to set the logic used by Isabelle to “HOL” in the same way that you set
it to “FOL” at the beginning of this course. Remember to restart jedit. Instead of FOL your
theories should now import HOL.

Simplifier Much more than the theories we have looked at previously, HOL is centered around
proving equalities. The reason for the central role of equalities is that in higher-order logic,
formulae are terms of type bool , and so rather than saying that two formulae are equivalent,
we say that they are equal.

Since equality has such a central role, the simplifier is extremely important in HOL. Generally
in Isabelle, the simplifier is a module that simplifies subgoals by rewriting using equalities. Of
course, those equalities must be true in the given theory. Even so, one should not simply apply
equalities blindly, since this may lead to inefficiencies or even non-termination. For example,
if our theory contains an equality x + y = y + x, then this equation can be applied infinitely
many times.

Note that technically, the rewriting works with metalevel equalities (==), not object level
equalities (=). The following simple exercise sheds light on this distinction.

Exercise 2 (2 points)
Derive the lemmas (x = y) =⇒ (x == y) and (x == y) =⇒ (x = y) in HOL and add a little
explanation as comment in your proof script. Use elementary proof steps (no auto, simp, blast
etc.) and only basic rules (i. e., axioms in HOL.thy, not lemmas).

The simplifier has to be set separately for each major Isabelle theory such as FOL, ZF,
HOL. The data-structure containing the setup of the simplifier is called the simpset. For HOL,
this is built by reading the file simpdata.ML. When we work with extensions of HOL, we will
mainly rely on this setup. However, we will also sometimes modify the simpset.

To manipulate the simpset, you can use the attributes simp, split, and cong. Adding the
attribute simp to a lemma makes this lemma available as simplification rule. The attribute
split declares splitting rules (recall the lecture on “Term Rewriting”). Finally, to simplify
arguments of a function, Isabelle uses congruence rules that are declared with the cong attribute.
For example, the lemma

P = Q =⇒ (Q =⇒ a = c) =⇒ (¬Q =⇒ b = d) =⇒ (if P then a else b) = (if Q then c else d)

can be used to simplify all arguments of the if function. A slightly simpler variant of this
lemma can be used to only simplify the condition, but neither the then nor the else part:

P = Q =⇒ (if P then a else b) = (if Q then a else b).



One additional point to note here is the use of the object level equality (=). When Isabelle
adds an equality the the simpset, this equality is implicitly turned into a meta-level equality
using the rules from the previous exercise. Hence, all object level equalities can be added
to the simpset without explicitly turning them into meta-level equalities. If we for example
want to find which rules Isabelle already has proven containing the if construct, we can use
find_theorems:

find_theorems "if ?P then ?Q else ?R"

In the output we see that If_def is actually a meta-level equality, but all other equali-
ties are object-level equalities. Nevertheless we can rewrite an if into a disjunction using
simp add:if_bool_eq_disj.

You can inspect the current simpset with the command print_simpset.

Tracing If you want to see what the simplifier is doing you can set the attribute simp_trace

to true. You can do this either by declaring this attribute globally or noting it locally, i. e.,
using declare[[simp_trace=true]] at global theory level, or note[[simp_trace=true]] in
a proof script. Additionally you can set the attribute simp_trace_depth_limit to a positive
number. This attributes controls how many recursive invocations of the simplifier should be
traced. The default value is 1.

For more details on the simplifier, you should look at [1, Chapter 10]. In the following
exercise, you will find that using a combination of simplification and blast (or fast if you like)
is effective.

Integration of Simplifier and Automation Isabelle offers some automatic provers that
integrate the simplifier. These tools are auto, force, fastforce, slowsimp, bestsimp, and
clarsimp. The automated tools auto and clarsimp - much like clarify - have a special role.
These tools try to solve a goal, but do not fail if the goal cannot be proven. Instead, they give
you a simplified goal.

Besides the usual methods to manipulate the claset used by these tools, there is also a way
to manipulate the simpset. You can add or delete simplification, congruence, and splitting rules
using simp add, cong add, split add, resp. simp del, cong del, or split del. Furthermore,
you can restrict the simplification rules to the rules in a specific set using simp only.

Nitpicking a formula Isabelle/HOL has limited support for counterexample generation.
The tool nitpick for example can be used to search for a counterexample. If you try to find a
counterexample to the formula A∨B using nitpick, you should create a proof script like this:

lemma "A\/B" nitpick oops

Note that you have to end the prove-mode of Isabelle using the oops command, or finish the
proof in case no counterexample exists. In this example, nitpick finds that setting the variables
A and B to False will falsify this formula.

Exercise 3 (6 points)
The following are some theorems and non-theorems of HOL. For each of them, prove it or else
state that it is not provable.

1. (if False then A else B) = B

2. (if False then A else B) 6= A

3. J¬E =⇒ B = B′K =⇒ (if E then A else B) = (if E then A else B ′)

4. J¬E =⇒ B 6= B′K =⇒ (if E then A else B) 6= (if E then A else B ′)

5. JA 6= A′;B 6= B′K =⇒ (if E then A else B) 6= (if E then A′ else B ′)

6. (if E then A else B) = (if ¬E then B else A)

7. f (if E then x else y) = (if E then (f x ) else (f y))

8. P ∨Q =⇒ (if P then A else B) = (if Q then B else A)
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9. JP ∨Q;P = (¬Q)K =⇒ (if P then A else B) = (if Q then B else A)

10. J¬E =⇒ B 6= B′;¬EK =⇒ (if E then A else B) 6= (if E then A else B ′)

11. (if R then A else B) =⇒ A ∨B

12. A ∨B =⇒ (if P then A else B)

It may be interesting to switch on the tracer as explained above and look at how the
simplification has worked.

Closedness Requirement in Constant Definitions Recall from lecture “Conservative
Theory Extensions” that the term defining a constant must be closed. We illustrated what
goes wrong otherwise. We now repeat this in Isabelle.

Exercise 4 (2 points)
Formalise a flawed constant definition for the fix rule from the lecture in Nonconservative.thy.
You only need a line of the form

axiomatization where ...

Have a look at HOL.thy for some examples.
Hint: You should think of a name for this axiom.

Exercise 5 (3 points)
Prove False in the theory Nonconservative.thy.
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The primrec syntax In lectures “Well-Founded Recursion” and “Arithmetic”, we have seen
the primrec syntax for defining recursive functions.

Exercise 1 (3 points)
Consider the functional iterate defined as follows:

iterate n f a = fn(a)

Generate a theory file Iterate.thy, where you define this function iterate (its type is nat ⇒
(α⇒ α)⇒ α⇒ α) using the primrec syntax.

Try it out on the goals

1. iterate (Suc(Suc 0)) Suc (Suc 0) =?x;

2. iterate (Suc(Suc(Suc 0))) (Suc ◦ Suc) 0 =?x.

What instantiations do you obtain for ?x in each case?
Hint: Look around in any theory files to get the syntax right.

Primitive recursion Typing thm nat.recs gives you a scheme for defining primitive recur-
sive functions on the natural numbers. Recall (from your knowledge of the theory of computa-
tion [2]) that a primitive recursive function f of type nat ⇒ nat is defined by giving a constant
c (of type nat) and a function g of type nat ⇒ nat ⇒ nat , as follows:

f 0 = c

f n+ 1 = g n (f n)

In Isabelle, the expression nat rec c g defines f . You can address the two thm’s of the recursion
scheme by the names nat rec 0 and nat rec Suc (search in Nat.thy to understand why).

Exercise 2 (2 points)
Define the factorial function by primitive recursion, i.e., find appropriate φ and γ, and prove
the following two goals:

Jc = φ; g = γK =⇒ nat rec c g 0 = Suc 0
Jc = φ; g = γK =⇒ nat rec c g (Suc (Suc (Suc (Suc 0)))) =

Suc (Suc (Suc (Suc (Suc (Suc (
Suc (Suc (Suc (Suc (Suc (Suc (
Suc (Suc (Suc (Suc (Suc (Suc (
Suc (Suc (Suc (Suc (Suc (Suc 0)))))))))))))))))))))))

Hint: if you find it silly to type Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc
(Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0))))))))))))))))))))))), just type 24.

Now prove the goal
Jc = φ; g = γK =⇒ nat rec c g 13 =?x

What instantiation do you obtain for ?x?
Advice: have a coffee while Isabelle calculates.



AVL trees In the remaining weeks, we will develop a theory of AVL trees. These are binary
trees where the inner nodes are labeled with terms of a type α. These trees can thus be used
to store such a set of labels and thereby implement finite sets, dictionaries etc. AVL trees
allow for efficient insert-algorithms of the order O(log n). The idea is to maintain a certain
“balanced-ness”-invariant during inserting by certain “rotation-operations”. We will develop
the necessary recursive functions in such a way that they can be executed in Haskell (and with
some minor changes related to type classes) also in SML.

Before diving into AVL trees we start with binary search trees. Hence, in this week, we
will not consider any balancing operations. We will start with the definitions of a datatype
and a few primitive recursive functions in a newly created theory Tree.thy. As a convention
we insert elements that are less than the element in the root of the tree into its left child and
elements that are greater than the element in the root of the tree into its right child. Note that
(in general) it is easier to only use one operator for comparisons, e. g., <.

datatype ’a tree = Leaf | Node ’a "(’a tree)" "(’a tree)"

is interpreted by Isabelle as a datatype definition, as we have seen in lecture “Datatypes”.
Similar to a type definition using typedef, such a definition will cause Isabelle to prove a
number of theorems about the new type, e. g., stating that Leaf 6= Node a t1 t2 or that there is
an induction schema for this type.

So each node has a node label of type ′a, and a left and right subtree. But this definition only
defines a binary tree. To model a binary search tree we need to add an additional constraint
on the type.

Exercise 3 (1 point)
Create the theory file Tree.thy and import the theory Main.thy which is a collection of some
Isabelle/HOL theories. Define a datatype for binary trees.

Next we define a containment test function isin and a function toset to transform a tree
into a set.

Exercise 4 (2 points)

1. Define the primitive recursive function isin that tests whether a specific element is con-
tained in the tree. You should not assume any ordering of the tree nodes.

2. Define the primitive recursive function toset that returns a set containing all elements
in the tree.

Proofs by Induction and Case Splitting To prove properties related to datatypes one
often uses structural induction. In fact, when a new datatype is defined in Isabelle, she proves
an induction theorem. Assuming your datatype is called tree like in the example above,
typing thm tree.induct shows you the induction theorem. This theorem can then be used in
conjunction with the proof method induct.

There are several ways to tell Isabelle what kind of induction you want to use. We will
simply tell Isabelle the variable over which we want to induct and let Isabelle find the correct
induction rule. Hence, if our variable is t, we use the proof method induct t. In our case, this
generates two cases. The base case asks us to show the property provided the tree is a leaf.
The induction step then asks us to show the property for a non-leaf node provided we know
that the property holds for the left and the right child. If you want to generalize parameters
for the induction you can use arbitrary: to specify them. In general, if you have a parameter
in your assumptions or goals that depend upon the variable you use for induction, you have to
make this parameter general as it will have different values in the different cases. We will see
examples of general parameters later.

A similar proof method is cases. This method simply splits the goal according to the
different type constructors. In the case of our tree, cases t would ask us to show the property
provided the tree is a leaf, and then to show the property provided the tree is a non-leaf node.
However, we don’t get any hypothesis about the children of the non-leaf node. Hence, in general,
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if you can prove a fact using cases you can also prove it using induct, but not vice versa. Case
splitting over a Boolean predicate can also be realized with cases. Additionally, if you start a
proof with cases you can use the case command in your proof script to select the individual
cases. Consider the following proof.

lemma "(~A ==> B) ==> A \/ B"

proof (cases A)

case True then show "A \/ B" ..

next

case False

assume ab: "~A ==> B"

from False have "B" by (rule ab)

thus "A \/ B" ..

qed

After the proof statement case True the current fact is set to A since we split cases on A.
Essentially this statement corresponds to assume True: "A". Hence, you can recall that fact
whenever you need the assumption A.

When dealing with datatypes the situation is a little bit different. Assuming t is a tree and
we write cases t we get two cases: One for the empty tree and one for an internal node. The
empty tree case is simply named Leaf and corresponds to assume Leaf: "t=Leaf", but the
other case is a bit more tricky. The case is called Node. But since the Node constructor takes
arguments, the case is specified as case (Node a l r). This corresponds to

fix a l r

assume Node: "t = (Node a l r)"

Cases can also be used with induct. In this case, the assumption for the current case also
contains the whole induction premise.

Exercise 5 (2 points)
Proof that every x that is contained in the tree is also in the set generated by toset, i. e., proof
(isin x t) = (x : toset t)

Hint: You need induction.

Search Tree Functions To simplify typing we put the remaining lemmas and definitions in
the context linorder. This is done by placing them between context linorder begin and
the corresponding end.

The function isin from Exercise 4 is rather näıve. Especially when operating on binary
search trees we can provide a much more efficient version. But to ensure correctness of this
function, we need to restrict the input to sorted trees.

Most of the proofs can be done automatically. Sometimes Isabelle finds an if in the as-
sumptions. Then, the simplifier usually gives up since it is not configured to split ifs in the
assumptions. You can fix this by adding split: split_if_asm as a modification to the sim-
plifier setup.

Exercise 6 (2 points)
Consider the following function:

primrec isordP :: "’a tree => (’a => bool) => bool" where

isord_leaf: "isordP Leaf P = True" |

isord_step: "isordP (Node n l r) P =

(P n & isordP l (%x. P x & x < n) & isordP r (%x. P x & n < x))"

This function is a helper function to define a function isord that returns True if and only if
the input tree is sorted.

1. Explain the second parameter of isordP. What is it used for?

2. Using isordP define a function isord :: "’a tree => bool" that return True if and
only if the input tree is sorted.

3



This function isin is correct even if the tree is not sorted. If the tree is sorted, we can write
a more efficient version, called contains.

Exercise 7 (1 point)

1. Write the function contains that takes a tree and returns True if and only if the element
occurs in the tree. This function should assume the input tree to be sorted. Note that
you cannot state this directly when defining the function.

Now an obvious goal is to show that contains and isin return the same value under suitable
assumptions. But before we can do this, we need a couple of helper lemmas.

Exercise 8 (5 points)
Show the following helper lemmas:

1. isordP t P ==> isin x t ==> P x

Note that P in the induction hypothesis differs from the P in the conclusion.

2. contains x t ==> isin x t

3. P x ==> isordP t P ==> isin x t ==> contains x t

Exercise 9 (3 points)
Using these helper lemmas show (isin x t) = (contains x t) under a suitable hypothesis
on t.

So far we did not modify a tree. Now, we will define insertion into a binary search tree.
By convention, we place elements less than the label of the current node into the left subtree,
elements greater than the label in the right subtree, and elements equal to the current element
are already contained and not added a second time.

Exercise 10 (3 points)
Define a function insert::"’a => ’a tree => ’a tree" that takes an element and a tree
and inserts this element into the tree according to our convention. You might want to use the
if construct of Isabelle.

Finally, we can prove some simple lemmas about insertion.

Exercise 11 (6 points)
Prove the following lemmas.

1. isin x (insert x t)

2. isin y t ==> isin y (insert x t)

3. P x --> isordP t P --> isordP (insert x t) P

4. isord t --> isord (insert x t)

5. contains x (insert x t)

6. contains y t --> contains y (insert x t)
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AVL trees This week we continue to look at AVL trees. In last week’s exercises you should
have obtained a syntactically correct Isabelle theory, and a number of thm’s of this theory have
already been proven by Isabelle. You should import the theory Tree.thy in your new theory
AVL.thy. Again we will work in the context linorder.

Names for recursion rules It can be convenient to have names for the two equations (base
case and recursive case) of a recursive definition. The primrec syntax allows for this. Instead
of

primrec height :: "’a tree => nat" where

"height Leaf = 0" |

"height (Node n l r) = Suc(max (height l) (height r))"

you can have

primrec height :: "’a tree => nat" where

height_empty: "height Leaf = 0" |

height_branch: "height (Node n l r) = Suc(max (height l) (height r))"

defining two names height_empty and height_branch for the according thm’s. You should
copy this fragment into AVL.thy.

Balancing AVL Trees The efficiency of the datastructure AVL tree hinges on the fact that
a tree should be balanced and ordered. Of course, when a node is inserted into or deleted from
the tree, these properties must be maintained by certain rotation operations on AVL trees.
Note that unless a tree contains 2n − 1 nodes for some n, it cannot be “exactly” balanced. All
we can expect is that the height of the left and right subtrees differ by at most one.

In order to decide in which way a tree should be rotated, it is convenient to have a function
bal that tells us if a tree is perfectly balanced, or deeper on the right, or deeper on the left. To
this end, you should insert the following lines into the AVL.thy file:

datatype bal = Just | Left | Right

consts bal :: "’a tree => bal"

defs bal_def:

"bal t == case t of

Leaf => Just |

(Node n l r) => if height l = height r then Just

else if height l < height r then Right

else Left"

Note that datatype definitions and the declaration and definition of constants have to be done
outside of any contexts. Hence, you either have to put the definition before you begin the
context linorder, or temporarily end that context. If you want to define something inside a
context, use the definition syntax.

Exercise 1 (1 point)
What is the complexity of bal in n, where n is the number of nodes in the tree? If inserting
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Figure 1: r rot and l rot

a node into a tree involves calls to bal , do you think this complexity is satisfactory? Can you
suggest a way of improvement?

We now consider the rotation operations. There are four different kinds of rotations, depicted
in Figures 1 and 2.

You should insert the following lines into the AVL.thy file:

fun r_rot :: "’a * ’a tree * ’a tree => ’a tree" where

"r_rot (n, Node ln ll lr, r) = Node ln ll (Node n lr r)"

fun rl_rot :: "’a * ’a tree * ’a tree => ’a tree" where

"rl_rot(n, l, Node rn (Node rln rll rlr) rr) =

Node rln (Node n l rll) (Node rn rlr rr)"

The fun syntax is provided in Isabelle for defining recursive functions. It is more general
than the primrec syntax, since a the function definition does not have to be primitive-recursive.
Isabelle tries to find a well-founded ordering to ensure termination of the recursive definition. If
she fails, the definition is rejected. But, as you might know, termination is undecidable. Hence,
Isabelle might reject a definition even though the defined function would actually terminate. In
these cases, the function syntax can be used. This syntax is slightly more powerful than the
fun syntax since a well-founded ordering can be provided by the user. We use the fun syntax
although the rotation functions are not recursive, since this syntax also allows for pattern
matching, which is convenient. After inserting these lines, Isabelle will show you the ordering
found to prove termination which is {} in this case. Essentially this means that every call to
this function terminates since it is non-recursive. You might want to try different (especially
recursive) definitions.

Note that each rotation function does not actually take a tree as input, but rather a triple
consisting of a node and two trees. However, this is a a technical detail: conceptually, the
rotation functions have a tree as input and output. Note moreover that the rotation functions
are partial: e.g., r rot (n,Leaf ,Leaf ) is undefined. This is no problem.

Exercise 2 (2 points)
Define the two missing rotation functions in your AVL.thy file.

AVL tree insertion We explain insertion of a node into an AVL tree in order to motivate
the use of the rotation functions. Suppose we insert a node x into a (balanced ordered) tree
Node n l r. If x = n, then x should not be inserted at all since the property of being ordered
requires that the tree contains no duplicates (why?). If x < n, we must insert x into l (to
maintain the orderedness property). Let l′ be the tree obtained by inserting x into l, and
assume (by “inductive hypothesis”) that it is balanced and ordered. As an intermediate result,
we have the tree Node n l′ r. It is ordered, but it might not be balanced.

In fact, it might be the case that height l = height r + 1 and height l′ = height l + 1. Then
height l′ = height r+2 and so Node nl′ r is not balanced. Note that in all other cases, Node nl′ r
is balanced.

So suppose that height l′ = height r+ 2. Then Node n l′ r looks as shown in the first picture
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of Figure 3, where either height ll ′ = height r + 1 or height lr ′ = height r + 1.1 The tree is too
deep on the left, and rotation must rectify this. We distinguish two cases:

bal l′ = Right. Since l′ is balanced, this means that height lr ′ = height r + 1 and height ll ′ =
height r. So, since lr ′ has height > 0, it follows that Node n l′ r actually looks as shown in
the second picture of Figure 3, where both lrl ′ and lrr ′ have height height r or height r−1.
Since all three trees ll ′, lrl ′, lrr ′ have the same height as r or one less, it follows that lr rot
produces a balanced tree (see Figure 2).

bal l′ 6= Right. In this case, height ll ′ = height r + 1, and, since l′ is balanced, height lr ′ =
height r + 1 or height lr ′ = height r. One can easily see that r rot produces a balanced
tree (see Figure 1).

Exercise 3 (2 points)
Define a function l bal which performs an appropriate rotation for a tree that is too deep on
the left. Here is a fragment of the code you should insert into AVL.thy:

definition

l_bal :: " " where

l_bal_def: "l_bal n l r == if

then

else "

In complete symmetry, define a function r bal .

The insertion function is defined as follows:

primrec insert_avl :: "’a::order => ’a tree => ’a tree" where

"insert_avl x Leaf = Node x Leaf Leaf" |

"insert_avl x (Node n l r) =

(if x=n

then Node n l r

else if x<n

then let l’ = insert_avl x l

in if height l’ = Suc(Suc(height r))

then l_bal n l’ r

else Node n l’ r

else let r’ = insert_avl x r

in if height r’ = Suc(Suc(height l))

then r_bal n l r’

else Node n l r’)"

You should also insert this fragment into AVL.thy.

“Declarative” AVL trees So far, we have reconstructed the theory of AVL trees as defined
by Cornelia Pusch and Tobias Nipkow. We have already mentioned that there are some in-
herent inefficiencies in the way that the datastructure itself is defined and the procedures are
implemented. This is what computer-supported modeling and reasoning is about: one should
think of the theory file so far as a specification of AVL trees rather than an implementation.
We use this specification to prove any property about AVL trees that we consider essential
for “correct” behaviour of AVL trees. We will then aim at implementing AVL trees in more
efficient ways.

But first, we work on the theory file we have so far. In the file AVL lemmas.thy, you
find a number of essential lemmas about AVL trees. Several symmetric cases are left out
(i. e., they are proven by sorry). A point to note is that the goals are usually of the form
φ1 −→ . . . −→ φn −→ ψ, where Jφ1; . . . ;φnK =⇒ ψ would be more natural. However, it
turns out that highly automated proofs can deal better with the first form. The attribute
rule_format saves the theorem as Jφ1; . . . ;φnK =⇒ ψ rather than φ1 −→ . . . −→ φn −→ ψ
when the command qed is issued.

1 Never both actually, but this is not needed in the proofs.
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You may encounter problems with the provided theory file since you might have defined the
AVL theory file in a different way than expected by AVL lemmas.thy. If this is the case, see if
you can repair AVL.thy appropriately. Comment out all lemmas you cannot repair.

Exercise 4 (2 points)
Proof the symmetric cases in AVL lemmas.thy.

Exercise 5 (2 points)
For each of the lemmas already proven in AVL lemmas.thy, state in simple informal language
what it says (you may say “symmetric to . . . ”, wherever appropriate).

Which of the proofs needed induction? Can you give a high-level explanation for this? Your
explanation should make plausible that, e.g., isbal_r_rot does not need induction.
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