Contents & Goals

Last Lecture:
= Motivation: model-based development of things (houses, software) to cope

. . . with complexity, detect errors early)
Software Design, Modelling and Analysisin UML + Model-based (or driven) Software Engincering Why (of all things) UML?

* UML Mode of the Lecture: Blueprint.

Lecture 02: Semantical Model This Lecture:
« Educational Objectives: Capabilities for these tasks/questions:
* Why is UML of the form ?
20131023 « Shall one mm.m_ bad i
« What is a signature, an object, a system state, etc.?
What's the purpose of signature, object, etc. in the course?
= How do Basic Object System Signatures relate to UML class diagrams?

not using all diagrams during software development?

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal
i 7« Content:
w Albert-Ludwigs-Universitat Freiburg, Germany 3 * Brief history of UML 3
- H « Course map revisited H
B Basic Object System Signature, Structure, and System State o .
Why (of all things) UML? A Brief History of UML A Brief History of UML
e software for ages. » Boxes/lines and finite automata are used to visualise software for ages.
: _A,_owac _un_m__m 3 modeling _Hm__nmmﬂ_oa: t mean being graphica + 1970's, Software Crisis™ + 1070's, Software Crisis™
For inst [Kast d Biining, 2008] al — Idea: learn from engineering disciplines to handle growing complexity. — Idea: learn from engineering disciplines to handle growing complexity.
« For instance, [Kastens and Biining, also name:
N € 1 Flowcharts, Nassi i Entity-Relation Diagrams Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams
o Sets, Relations, Functions
o Terms and Algebras « Mid 1980's: Statecharts [Harel, 1987], StateMate™ [Harel et al., 1990] « Mid 1980's: Statecharts [Harel, 1987], StateMate™ [Harel et al., 1990]

« Propositional and Predicate Logic
o Early 1990’s, advent of Object-Oriented. lysis/Design/P
— Inflation of notations and methods, most prominent:

« Object-Modeling Technique (OMT) [Rumbaugh et al., 1990]

« Graphs
o XML Schema, Entity Relation Diagrams, UML Class Diagrams
« Finite Automata, Petri Nets, UML State Machines

s e s o | acaag e
v s pup——

Pro: visual formalisms are found appealing and easier to grasp.
Yet they are not necessarily easier to write!

.

.

Beware: you may meet people who dislike visual formalisms just for H
being graphical — maybe because it is easier to “trick” people with a ;
meaningless picture than with a meaningless formula.

More serious:

's maybe easier to misunderstand a picture than a formula.

A Brief Histg -

» Boxes/lines g
1970’s, Soft] S
— Idea: lear B

Languages: / r\u‘ F

Mid 1980's: L e Y

ages.

Johannes Fasolt

slexity.

o 0 KassaB

ams

1990]

Ry
Early 1990's| - o
— Inflation

« Object-Madelng Tech OMT) | gh et al., 1000]

g q

* Booch Method and Notation [Booch, 1993]

Verwendung " amming

Common Expectations on UML

« Easily writeable, readable even by customers

Powerful enough to bridge the gap between idea and implementation

Means to tame complexity by separation of concerns (“views")

Unambiguous

« Standardised, exct ble between

tools

UML standard says how to develop software
Using UML leads to better software

We will see...

Seriously: After the course, you should have an own opinion on each of these claims.
In how far/in what sense does it hold? Why? Why not? How can it be achieved?
Which ones are really only hopes and expectations? ... ?

A Brief History of UML

310

20131023

» Boxes/lines and finite automata are used to visualise software for ages.

+ 1970's, Software Crisis™
— Idea: learn from engineering disci

nes to handle growing complexity.

L Flowcharts, Nassi- i Entity-Relation Diagrams

y

Mid 1980’s: Statecharts [Harel, 1987, StateMate™ [Harel et al., 1990]

Early 1990's, advent of Object-Oriented-Analysis/Design/Programming
— Inflation of notations and methods, most prominent:

= Object-Modeling Technique (OMT) [Rumbaugh et al., 1990]

* Booch Method and Notation [Booch, 1993]

« Object-Oriented Software Engineering (OOSE) [Jacobson et al., 1092]

Each “persuasion” selling books, tools, seminars. ..

« Late 1990's: joint effort UML 0.x, 1.x
Standards published by Object Management Group (OMG), “international,
open i for-profi industry c ium” .

Since 2005: UML 2.x 5/

Course Map Revisited

UML Overview [owme, 2007, 684

ocL

Suvciure

Diagram

Dlagram

companent object
Blagram

Diagram

Deployment

package
Bagram Dlagram

Dlagram

Figure A.5 - The taxonomy of structure and behavior diagram

The Plan

Recall

« Overall aim: a formal language
for software blueprints,

« Approach
Common semantical domain

UML fragments as syntax.

Abstract representation of

diagrams
(iv) Informal semantics;
UML standard

(v) assign meaning to diagra

(vi) Define, e, consistency.

UML: Semantic Areas

Activities State Machines. Interactions

H

Intra-Object Behavior Base

Inter-Object Behavior Base

Structural Foundations. &

Figure 6.1 - A schematic of the UML semantic areas and their dependencies

[OMG, 2007b, 11]

Basic Object System Sgnature Example

10722

S = (7,6, V, atr) where
« (basic) types 7 and classes %, (both finite),
o typed attributes V, 7 from .7 or Cpy or C,, C € €,

o atr: € — 2V mapping classes to attributes.

il =5

s athibufs i@
ase g s YR ok “
N T

o = ({Int} {C, D}, {z: Int,p: Coyn s C.}, {C = {pyn}. D s {a}})

e ost

13/

Common Semantical Domain

Basic Object System Sgnature Another Example

S =(F,%,V, atr) where
« (basic) types 7 and classes €, (both finite),
 typed attributes V, 7 from 7 or Cpy or C,, C € €,

o atr : € — 2V mapping classes to attributes.

Example:

S (183,665 0 8, p B, §

1172

Erg,
ENCETI
G 1y

hr Wﬁmv

14723

Basic Object System Sgnature

on. A (Basic) Object System Signature is a quadruple

S = (F,6,V, atr)

where
« 7 is a set of (basic) types,

« € is a finite set of classes,

o
D
o T 51
n R srele:
Aol -\ T 0 D IDe}
o atr: %\lmm maps each class to its set of attributes.
Hotel fomction poneset of V/
Note: Inspired by OCL 2.0 standard [OMG, 2006], Annex A.

eTET or
» Cy,1 or C,, where C' € &M_
(written v : 7 or v : Coy or v: C.),

Basic Object System Structure

on. A Basic Object System Structure of
S =(7,€,V,atr)

is a domain ?:ozo:\%ﬁir_nr assigns to each type a domain, i.e.
« 7€ J is mapped to Z(7),
« C € € is mapped to an infinite set Z(C) of (object) identities.
Note: Object identities only have the “=" operation;
object identities of different classes are disjoint, i.e.
YC,De€:C+#D— 2(C)N2(D)=0.

s C. and Cy,; for C € € are mapped to 27().
We use (%) to denote Up . Z(C); analogously 2(%.).

Note: We identify objects and object identities, because both uniquely deter-
mine each other (cf. OCL 2.0 standard).
1523

Basic Object System Sructure Example

Wanted: a structure for signature

Fo = ({Int}.{C,D}, {x: Int.p: Co1.n:C,},.{C — {p.n}, D {x}})

Recall: by definition, seek a 2 which maps
o 7€ .7 tosome Z(7),

* ¢ €% to some identities Z(C) (infinite, disjoint for different classes),

o C. and Co, for C € € to Z(Co,) = Z(C.) = 22(9). a.r@sewk
oL
oty -7 Dbk <5117
2(0) =MWt XM@TM?NDWAL o,0¢) V{1,351
6
D(D) =N % IR = $ts,20,% -] [R)7 -
C,
P(Con) = 2(C) = pVHE MWE
2oy =90 =277 Phes

16/22

System State Example

Signature, Structure:
= ({Int},{C. D}, {x : Int,p: Cox,n: C.},{C = {p.n}, D — {a}})
P(Int) =Z, 9(C)={lc,2¢,3c...}, Z(D)={1p.2p,3p,...}

Wanted: o : 2(€) » (V + (2(7) U 2(%.))) such that
« dom(o(u)) = atr(C),
o(u)(v) € D(r) ifv:T,TE T,
« o(w)(v) € Z(C.) ifv: D, with D@ .

o Concrete, ex
o= c@l {p 0,0 {50}},50 — {p— D, 0}, 1p — {2+ 23}}.
« Alternative: symbolic system state
o={l) p =00 = {e2}}. B {p = 0. 0).d o {23}
Ne 2(C), de D(D), c1 # ca.

assuming

19723

System State

ol olect idebBe i ncha,
porhol R f

Definition. Let 2 b¢a structure of & = (7,6, V, atr).

A system state of #/wrt. 2 is a type-consistent mapping

o @Aﬂv - (V»(2(T7)U2(%.))).
ch ug 2(C), C €%, if u e dom(o)

That is, for
[
« dom((u)) = atr(C) s
.gavm&?v ifo:r, 7€
. T%s € 9(D.)ifv: Dy, orv: D, with D € ¢

We call u € Z(€) alive in ¢ if and only if u € dom(c).

We use 5% to denote the set of all system states of .%" wrt. 2.

You Are Here.

fon

s/ dpmang

17/

20723

System Sate Example

Signature, Structure:
o = ({Int},{C. D}, {z : Int,p: Cox,n: C.}{C = {p.n}, D {a}})
D(Int) =2, P(C)={1¢,20,3¢,..}, (D) ={1p,2p,3p,..}

Wanted: o : 2(€) - (V - (2(7) U %(.))) such that
o dom(o(u) = atr(C),

o aw)(v) € A1) ifvin,T €T, o a(u)v) €

0 o ey Pt

0 6y= w_n;lumeomAqw sJM,ﬂ?mn w 4@@@& Ap bas a

) ifv: D. with D€ €

Dot ixr2d] p-lik P f
(e o itsolf
Z&V@Pﬂ
< obeut 4 Axaa
sy {5hfpe IW, 1A 3 Hacks 52,6
o Gule v
1823
__ CourseMap.

CD, SM € 0CL CD, SD s

eapr #,5D

o

mM&,ﬂPﬁ,\,SI@,@E

(a1,€1) -+ < wr = (03, consi, Sndi)) ey

(conso,Snda)

G =(N,E.[)

%

oD

212

References

2223

20131023 - main

o

References

[Booch, 1993] Booch, G. (1993). Object-oriented Analysis and Design with Applications.
Prentice-Hal

[Dobing and Parsons, 2006] Dobing, B. and Parsons, J. (2006). How UML is used. Communications
of the ACM, 49(5):109-114

[Harel, 1987] Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231-274.

[Harel et al., 1990] Harel, D., Lachover, H., et al. (1990). Statemate: A working environment for the
development of complex reactive systems. IEEE Transactions on Software Engineering,
16(4):403-414.

[Jacobson et al., 1992] Jacobson, I., Christerson, M., and Jonsson, P. (1992). Object-Oriented
Software Engineering - A Use Case Driven Approach. Addison-Wesley.

[Kastens and Biining, 2008] Kastens, U. and Biining, H. K. (2008). Modellierung, Grundlagen und
Formale Methoden. Carl Hanser Verlag Miinchen, 2nd edition

[OMG, 2006] OMG (2006). Object Constraint Language, version 2.0. Technical Report
formal /06-05-01.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2. Technical
Report formal /07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2. Technical

Report formal /07-11-02

et al., 1990] . J., Blaha, M., . W., Eddy, F., and Lorensen, W.

(1990). Object-Oriented Modeling and Design. Prentice Hall

232

